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Abstract:

This paper shows that the properties of nonlinear transformations of a fractionally
integrated process depend strongly on whether the initial series is stationary or not.
Transforming a stationary Gaussian I(d) process with d > 0 leads to a long-memory
process with the same or a smaller long-memory parameter depending on the Hermite
rank of the transformation. Any nonlinear transformation of an antipersistent Gaussian
I(d) process is 1(0). For non-stationary I(d) processes, every integer power transformation
is non-stationary and exhibits a deterministic trend in mean and in variance. In particular,
the square of a non-stationary Gaussian I(d) process still has long memory with
parameter d, whereas the square of a stationary Gaussian I(d) process shows less
dependence than the initial process. Simulation results for other transformations are also

discussed.

* The first author gratefully acknowledges the support of the German Academic Exchange Service

(DAAD/HSP 1III).



1. Introduction

Two of the most popular topics in univariate time series analysis in recent years have
concerned fractionally integrated series and nonlinear series. In this paper, we link the
two topics by considering the properties of f(X;) for different functions f (.) where X; is
fractionally integrated, or I(d). It is well known that there are three main types of
fractional processes (the topics mentioned here are carefully defined in the next section):

1. d <0 are stationary and antipersistent
ii. 0<d <Y are stationary in integer moments greater than one, and are long-memory
iii. d > Y2 which have non-stationary second and higher moments and are also long-

memory.

It is found that for class (i), the anti-persistent property is lost if f{.) is not an odd
function, that for class (ii) the long-memory is sensitive to the Hermite rank of the
transformation, with the higher the rank the lower the memory. For the third class a
variety of results are obtained. In particular, an integer power transformation f{x) = x"
does not change the process' long memory, whereas periodic transformations, e.g., f{x) =
cos(x) markedly reduce the initial long memory.

The next section considers cases (i) and (ii) while Section 4 is concerned with case
(ii1). In Section 3, the moments of fractionally integrated processes and thereby the
trending behavior of integer power transformations are derived. Finally, Section 5

presents simulation results for periodic and exponential transformations.

2. Transformations of stationary processes

We start this section with a couple of basic definitions which will be used throughout

the paper.

Fractional integration. A time series {X;} is called fractionally integrated with

differencing parameter d, or short-hand X; ~ I(d), if

- ) I'(j+d) ..
X =Y ce . withc. =——2—"— and ¢ ~iid (0, o). 1
. ,2;5 i =T 4DId) ; ( ) (1)

If & ~ iid N(0, 0°), {X;} is called Gaussian fractionally integrated and or Gaussian I(d).



Stationarity. A time series {X,} is called stationary if its mean and variance do not
depend on the time index ¢ If, in addition, the instantaneous (or theoretical)
autocovariance function (¢, h) = Cov(X;, X,.;) does not depend on 7, {X,} is called
covariance stationary.

It is important to note the difference between the instantaneous autocorrelation

function y(¢, h) and the empirical autocorrelation function
1 T-h _ .
F(h) = ;2(& -X)X,, - X),
=1

where T is the sample size and X is the sample mean. If {X,} is not covariance
stationary, y(t, h) and ¥ (h) are clearly different concepts. All our theory results will be
about instantaneous autocorrelations, whereas the simulation results are based on
empirical autocorrelations.

Spectral density at frequency zero. The spectral density of a covariance stationary time
series {X;} is given by

£ =7(0)+23 y(h)cos(Ah) @)

h=1

If (1)~ A7 as A approaches zero (d < ¥2), we write X; ~ LM(d). For d > Y5, we define
X, ~IMW) : & (1 - L)k X; ~ LM(d - k) for k = [d + 2], where [x] denotes the largest
integer smaller or equal to x. Hence, LM(d) can be thought of as a generalization of I(d),
because X; ~ I(d) = X, ~ LM(d).

Long memory. If X, ~ LM(d) with 0 < d < 1, we call {X;} a long-memory process with
parameter d. Note that any covariance stationary time series with hyperbolically
decreasing autocovariance function of the form y(h) ~ h**™", 0 < d < Y4, is LM(d), i.e., the
decay of the autocorrelation function uniquely determines the size of the process's long
memory. If d =0, {X,} is called a short-memory process.

Antipersistence. A covariance stationary time series {X;} is called antipersistent if its
spectral density at frequency zero is zero. Hence, an I(d) process with d < 0 is
antipersistent. Note, however, that the hyperbolical decay of the autocorrelations of such

an I(d) process is neither necessary nor sufficient for the presence of antipersistence.



To derive the long-memory properties of a non-linear transformation of a stationary
Gaussian fractionally integrated process, we decompose the transformation into a sum of
Hermite polynomials. This method has first been applied to fractionally integrated
processes by Gourieroux and Jasiak (1999). See Granger and Newbold (1976) for a more

detailed introduction to this approach.

Hermite Polynomials: For j =0, 1, 2, ..., we define the Hermite polynomials H; (x) by'

2 2

(di) = H, (e 2 )

X
H; (x) is a polynomial of degree n; the first five Hermite polynomials are H,(x)=1,

H(x)=x, Hy(x)=(x>-D/2, H,(x)=(*=3x)/6, H,(x)=("—6x>+3)//24.
The Hermite polynomials are closely connected to the standard normal distribution. Let
¢(x) be the density function of the standard normal distribution and let X be a standard
normal random variable. Then (see, e.g., Cramér, 1946, pp. 131-133):

< l,form=n
[H,0H, (x)¢(x)dx = { (4)

O, form#n

which immediately implies E (H J(X )): 0 and Var(H J(X ))=1 for all j > 0. Moreover, if

X, and X, are jointly normally distributed with E(X;) = 0 = E(X,.»), Var(X;,) = 1 =

Var(X, ;) and Cov(X;, X;_») = pp, the joint density can be written as
FOx) =0 )o(x,_ )1+ Y, pi H (x)H ;(x,_,)} (5)
j=l

(see, e.g., Barrett and Lampard, 1955).
With this result, we can easily calculate the autocorrelation function of any
transformation of a stationary Gaussian process which can be written as the sum of

Hermite polynomials:

' For notational convenience, this definition slightly differs from the traditional definition of Hermite

polynomials, which is 7 ,(x)=/j! H,(x)-



Lemma 1: Let {X;} be a covariance stationary Gaussian process with standard normal

marginal distribution and autocorrelation function p, =corr(X,,X,,). Let g(.) be a

univariate transformation which can be written as a sum of Hermite polynomials H; (.):
g0 =g+ 8,H,(x). (6)
j=l

Then the autocorrelation function of g(X;) is given by

2.8Pi
corr(g(X,),8(X ) =—r . (7)

j=1

Proof: With (5) and (6), we obtain:

E(2(X,),8(X, )= [ [2(x)80x ) f(x,.x,,)dx,dx,,

—oco—00

oo

[ [2t)g(x 0GP NI+ Y, piH (5 H (x,,)Ydx,dx, .,

—oo—o0 J

[a(x )00 )dx, [g(x )0x,)dx,,

+ 3 0] [20)H (5000, [ 25 )H (5, )00, ),
= EG(X)) +Y82p]

= Cow(g(X,).g(X,, N =Y ¢’p}

Jj=1

With Var(g(X,)) = Z g7 the result follows immediately. n

Jj=1

Lemma 1 is a powerful tool that enables us to determine the long-memory properties

of transformations of stationary Gaussian fractionally integrated processes:



Proposition 1: Let {X;} be a stationary Gaussian I(d) process with E(X;) = 0 and
Var(X;) = 1. Let g(.) be a univariate transformation which can be written as the finite sum

of Hermite polynomials Hj(.):

J
g(x)=g,+ Y. ¢,H (x) with J 21 and g, #0. (8)

=1

J is called the Hermite rank of g(.).

(@If 0 < d < 05, then g(X;) is a long-memory process LM(J ) with
d =max{0,(d —0.5)J +0.5}.

(b) If -1 <d < 0 and if g(.) is non-linear, then g(X;) is a short-memory process LM(0).

Proof:

(a) The autocorrelation function of {X;} decays hyperbolically, i.e., for large h,

p, =[T(1-d)/T(d)] h**"'. With Lemma 1 we therefore obtain

J
25
Zg]ph 2 J
_J=J _ 8y I'l-4d) J(2d-1)
corr(8(X,),8(X, ) =——— T A ( rd) h : )
8 28
j=J j=J

This implies that the autocorrelations of g(X;) decrease hyperbolically, too, i.e.,

corr(g(X,),g(X,)) = c-h*" with a positive constant ¢ and 2d —1=(2d —1)J

for large

& d=(d-05)J+05.

Case 1: d>0. In this case, g(Xy) is LM(J ), since a long-memory process is
exclusively determined by the decay pattern of its autocorrelations.

Case 2: d <0. In this case, g(X;) has the same autocorrelation decay pattern as an
1(d) -process, but all autocorrelations of g(X;) are positive (because all

autocorrelations of X, are positive) so that

£,(0) =var(g(X,)+23 cov(g(X,),g(X, ) >0.

h=1

Hence, g(X;) is not antipersistent and thus an I(0)-process.



(b) If -1 <d <O, then p,<0 for all 2 > 0 and f(O):1+22ph =0. Therefore,

h=1
o J o J
1+2hzfp,{ >0 for all j > 1. With Lemma 1, we obtain fg(O):E;gj +2h§;2;gj.p,{,
= j= =l j=

which is positive if there is a j > 1 with g, #0. Hence, g(X,) is not antipersistent but

LM(0) if g(.) is non-linear. |

Proposition 1 (a) states that every transformation g(.) with Hermite rank larger than
one reduces the long-memory of the transformed stationary process. The larger the
original long-memory parameter, the smaller is the reduction of the long-memory caused
by such a transformation. In the limit case d = %2, the size of the long memory stays the
same for any transformation. The non-stationary case (d > %2) will be considered in
Section 4. Moreover, Proposition 1 implies that it is not possible to generate long
memory by transforming a Gaussian short-memory process.

Proposition 1(a) is not particularly surprising, as Taqqu (1979) derived the same result
for stationary increments of fractional Brownian motions, which form another class of
long-memory processes. Note, however, that increments of fractional Brownian motions
are clearly distinct from fractionally integrated time series, because their autocorrelations
and, equivalently, their spectra are not identical (see, e.g., Beran, 1994, pp. 52/53 and
63/64). Moreover, Taqqu (1979) only considers processes with d > (1 — J 7)/2, so that

d>0 by assumption.

The second part of Proposition 1 shows that antipersistence is a much more fragile
property than long-memory. In theory it is immediately lost for any non-linear
transformation. In practice, we can expect this effect to be larger for even functions g(.)
than for odd functions. To see this, consider an I(d) process with —1 < d < 0. This process
has hyperbolically decaying negative autocorrelations which sum up to —%2 , so that the
spectral density at frequency zero is zero. If we consider the square, which has Hermite
rank 2, (or any other even transformation) of this process, all its autocorrelations are
positive (due to (7)), so that the spectral density at frequency zero is considerably larger
than zero. In contrast, the autocorrelations of an odd transformation, e.g., of the cube,

which has Hermite rank 3, are all still negative. The spectral density at frequency zero is



positive, but it can be expected to be much closer to zero than in the case of an even
transformation. Therefore, an odd transformation of an antipersistent process might still
seem antipersistent in practice.

Another interesting implication of Proposition 1 is that a stationary Gaussian 1(d)
process can be fractionally cointegrated with a non-linear function of itself: Let X; ~ I(d),
then {3X, — X,’} has a smaller long-memory parameter than {X;} itself. Note that such
"cointegration with itself" is impossible for I(1) series: Granger and Hallman (1991)

show that X; ~ I(1) cannot be cointegrated with any non-linear transformation g(X,).

g(X) and its Long-memory parameter of the original series X
Hermite Rank d=-04 d=-0.2 d=0.2 d=0.4

X theory -0.4 -0.2 0.2 0.4

(rank 1) simulation -0.40(0.033) | -0.20(0.032) | 0.20(0.032) | 0.40(0.032)
X* theory 0 0 0 0.3

(rank 2) simulation 0.01(0.032) | 0.01(0.032) | 0.04(0.037) | 0.29(0.060)
X*® theory 0 0 0.2 0.4

(rank 1) simulation -0.13(0.033) | -0.09(0.032) | 0.14(0.033) | 0.32(0.045)
xX* theory 0 0 0 0.3

(rank 2) simulation 0.01(0.033) | 0.01(0.032) | 0.03(0.039) | 0.24(0.071)
X®-3X theory 0 0 0 0.2

(rank 3) simulation -0.01 (0.033) | -0.00(0.033) | 0.01(0.036) | 0.19(0.061)
X*-6X° theory 0 0 0 0.1

(rank 4) simulation 0.00(0.32) |-0.00(0.032) | 0.00(0.035) | 0.12(0.060)

Table 1: Average estimated long-memory parameter of some transformations of 2,000

simulated stationary Gaussian I(d) processes with 2,000 observations each

Table 1 shows the results of a small simulation study. For four values of the long-

memory parameter d (—0.4, —0.2, 0.2 and 0.4) we simulated 2,000 Gaussian 1(d) processes
with 2,000 observations each, using the algorithm proposed by Hosking (1984). Then we
transformed these series with several transformations g(.) and estimated the long-memory
parameter of the transformed series with a periodogram regression over the m = [T°%]
smallest Fourier frequencies (see Geweke and Porter-Hudak, 1983, Hurvich, Deo and
Brodsky, 1998). Each cell shows the average estimate of the long-memory parameter d,
its empirical standard error in brackets and the corresponding theoretical value.

The simulation results clearly confirm Proposition 1. The average estimates differ

from the theoretical value by more than two standard errors only for negative values of d



and the transformation g(X) = X °. As we argued above, this is due to the fact that an odd
transformation (especially one with Hermite rank 1) of an antipersistent process, disturbs
(and thereby destroys) the antipersistence only slightly, so that it is likely to still look like
an antipersistent process in finite samples. It is interesting to note that the standard errors
are very small for negative values of d and for the identity transformation g(X) = X. (The
asymptotic standard error of the estimation procedure is 0.031.) On the other hand, the
standard error seems to increase with the size of the long-memory for all other

transformations and d > 0.

3. Moments of fractionally integrated processes

In this section, we derive the moments of stationary and, more interestingly, of non-
stationary I(d) processes. Note that the traditional definition of fractional integration, as
given in (1), simply implies that the variance (and higher even moments) does not exist if
d > 0.5. The reason is that the process in (1) has an infinite past. To circumvent this
problem and to obtain more detailed results about the moments of long-memory

processes, we consider finite-past processes in this and the next section:

Finite-past I(d) process: A time series {X,} is called fractionally integrated with finite

past and differencing parameter d, if

X, =Y ce,_; with ¢, - LU i g~ iid (0, ). (10)
= I'(j+DId)

We write X, ~1(d). Note that for X, ~ 1(d) and Y, ~ I(d), {X,}—=>{¥,} (in

distribution). If & ~ iid N(0, 6°), {X;} is called Gaussian T(d ).

Proposition 2: Let X, ~ 1(d) with innovations {&} whose moments U, =EE") are

finite.

(a) If d < 0.5, all moments of X, converge as t — co.

(b) If d > 0.5, all even moments of X, diverge. More explicitly, for me {2,4,6,...}
(1) ~ 0™ )

X
m

(c) If mis odd and d < (m+1)/2m, the mth moment L (t) converges as t — o.
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(dIf d > 2/3 and p; #0, all odd moments diverge, i.e., for me{3,5,7,..}
#X (t) - 0(tn1(d—().5)—0.5) )

Proof: ()= EX) = B(See, D=3t = er fa 3 oo,
im0 0 J for large F(d) ‘o

where ¢ is some constant. For large ¢, the approximation ¢, = ‘" /F(d ) has been used.

The second approximation, Ek‘f ~O0(m™"), is an immediate implication of formula
k=1

0.121 given by Gradshteyn & Ryzhik (1980).

For higher moments, we proceed analogously:

W O=EX)=E(Y e )) =Y us

c+ -3(d-1) O(tSd 2)
j=0 =0 for larget l"(d)3 Z
#4 = E(X )= E((ZCJ Er- /) )=Zcf,uf ( )2 Zcﬂll’tz Jzﬂz
Jj=0 j1=0 j2=j1+1

=ic 6y Y el —62«: (U357 =(u5 —6(45) >2c +6[2 5](#5)2
J=0 J=0

jl=1 j2=1 Jj=0

0(t4d73)+0(z_2(2d71)) _ O(t4d 2)

u =3 cus ( )Z D s et = (U5 =30u3u5) Y ¢ +30 ¢f B el
=0 =0 j=0  j=0

j1=0 j2=j1+1

O(tsd—4)+0(t2d 1)0(t3d 2) _ O(ISd—3)

,ué((t):Zci‘ug ( chlcjzluz.uzx ( Zcﬂcjz(.us

j=0 jl j2 jl j2

(2 20 2 jzcjz's (U3 )3

it j2 13
. 3 . .
As the divergence rate of ( cf) is larger than the divergence rates of Y ¢, > ¢! ¢}
3\ .
and (Zc j) , the last term dominates the other three terms. Hence,

ur () ~o@*y=0@t*"). For all higher even moments, the same argument holds:

[12. ¢/ given D m(k)=m has the maximal divergence rate if m(k) = 2 for all k.
k k
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1
X 7 7 25 7 3 4
My (1) = E,cj.ui +(2 E,lecj2U§U§ + 3 E,cjlcﬂuu;uuj
=

Jtoj2 Jt j2

7 . .
+(223 22012‘1612‘2033(#2)2.113

U2 3
Here, the last term has the largest divergence rate:

u7X (l,) - 0(l7d—6)+0(l,2d—1)0(t5d—4)+0(l,3d—2)0(l4d—3)+O(lZd—l)O(lZzl—l)O(l,Sd—Z) — 0(t7d_4)
For higher odd moments m > 3, the same argument holds: The dominating terms will

always be of the form (Y c2us J" 7Y clus ~ 0¢ IOy = 0000 . W

From Proposition 2, we can immediately obtain the trend in mean of any power

transformation (i.e., X 2, X 3, ...) of a nonstationary T(d) process. For instance, if X; ~
T(d), X,2 has a trend of the form %' and X,4 has a trend of the form 472, Figure 1

illustrates this for the T(O.S) process. For these two plots, we simulated 2,000 T(O.S)

processes, transformed them by taking the second and fourth power, respectively, and

then averaged over all 2,000 processes.

X2 X4
50000

1
120
110
40000
100

90
20 30000
70

60 20000
50
40 ,
10000
30 ﬂ/,w/“WN”w
20 /’//J/m~
0% - - - - - - - - - - 0% - - - - - - - - - -
0 200 400 600 80D 1000 1200 1400 1600 1800 2000 0 200 400 600 8OO 1000 1200 1400 1600 1800 2000

Figure 1: Average trend in mean of the transformations of 2,000 simulated T(O.8) time

series; left for X,z, right for X,4.

Whereas the trend can be clearly seen in the aggregates of Figure 1, this is much less

so for the individual series as Figure 2 demonstrates. The reason is that X;* does not only

have a trend in mean of the order tZd_l, but it also has a trend in variance of the form 2.

For all power transformations (X;)", the trend in variance which is of order {ed-n

dominates the trends in all other moments in the sense that multiplying (X,)" by {@-09)
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removes the trend in all moments. Hence, the nonstationary process (X;)" can be
transformed into an asymptotically stationary process by simply multiplying it with
05, Figure 3 demonstrates this "rescaling" for the two time series shown in Figure 2:
The trends in mean and variance are removed successfully. It should be noted, however,
that this rescaling method works well only if the true starting point of the time series is
known. If we rescale, e.g., with (r — 50)™“ " instead of r™“ %> (maybe because we
couldn't observe the first 50 data points) the method still works for mid-sample and end-
of-sample observations but the first couple of observations are not properly rescaled and

remain "too large".

X2 X4
30000

1
160
150
1
130

120
110 20000

100
90
80
70

b0 10000

50

40

30

20

gt L
0% T T T 0

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600  BOO 1000 1200 1400 1600 1800 2000

Figure 2: Square and fourth power of a simulated 1(0.8) time series.

X2 X4
3 7

AN b

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 3: Square and fourth power of a simulated 1(0.8) time series rescaled by r° and

', respectively.

Finally note that Proposition 2 also holds for the random walk (d = 1) and for even
more persistent series (d > 1). For instance, the square of a random walk has a linear

trend in mean and a quadratic trend in variance (cf. Granger, 1995).
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4. Transformations of non-stationary processes

The last section was concerned with the moments of 1(d) processes and the moments

of power transformations of T(d) processes. In this section, we consider the

autocorrelation structure of such processes, from which we can draw conclusions about

their long-memory properties. In particular, we derive the long-memory parameter of the

square of a non-stationary 1(d) process.

Proposition 3: Let X; ~ T(d) withd > 0.5.

(a) Then Corr(X,,X, ,) ——=—1.

(b) If X, is Gaussian, then Corr(X",X",) ————1 forall me {2,3,...}.

Proof:

! =h t—h
E[chgl—jzcigt—i) GZZCjCj+h
j=0 B

i=0 j=0

t ) ) t—h )
Cj,|O ZCJ
=0

j=0

(a) Corr(X,,X, )= EX,. X,

JExHEXE) \/Gzicf \/szc? \/Gz
=0

j=0

J

' h-1 /s -1 t el
2 2 2 2
ch 2.6 zcj + 42‘3;
> j=h — 1_ j=0 1_ j=0 Jj=t—h+1 t—>o0 1
t i—h I=h
¥ | X 2.6
ch ch i i
j=0 j=0 Jj=0 Jj=0

Here, the inequality sign follows from c¢; > cj,;, and the limit holds as the sums in the
denominators diverge whereas the sums in the numerators converge.

E(X)" X))~ EXDEXX,)
VEX ™) - E(X!")? JE(X2,)—-EX]",)*

(b) Corr(X,", X", )=

(/'lmm (t’ h) B uri )/tmlz‘/tTh/2 — umm (t’ h) B l’tjz

) \/(;uzm - ,Lli )Vtm \/(JLLZm - ‘ui tTh .uzm - .uri

where V, =Var(X,), u, is the kth moment of a standard normal variate and

L, (t,h)=E(X},X",) with the normalization X, = X, /,JV, . We now use the fact

that, for given ¢ and h, ()2 . ,)? ._,) are bivariate standard normal with correlation
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coefficient p(z,h) = Corr(X . X ) =Corr(X,,X, ,)—==—>1. In particular, we

show by induction that u,, (r,h)——=— u, , which immediately implies result (b).

(D) m=1: p,(t,h) = pt,h)—=——1=p,.

(2) m=2: W, (t,h)=1+2p>(t,h)—==-3 (see Kendall, Stuart & Ord, 1987, p.103).
Moreover, a formula in Johnson and Kotz (1970, p. 47) yields
u,=@4-0H4-3)=3.

(3) m_> 2: Johnson and Kotz (1972, p. 91) provide the following formula:
Wy (6 1) = @M=D) p(t )L, 1, (1 1)+ (=D (1= P> (C I, 5 (01). With

My (8 ) —="— 0, ,,, We obtain p,, (t,h) —=—"—2m—1)u,,, . On the
other hand, u,, =(2m-1)u,,_,, according to Johnson and Kotz (1970). u

An immediate implication of Proposition 3 (b) is that the autocorrelations of
Y =a(t)X" + B(r) with Gaussian X, and any functions o(-) and B(-) converge to 1 as

well. Therefore, rescaling the process does not change its autocorrelations. Note that this
is true only for the theoretical, or instantaneous, autocorrelations Corr(X;, X, ;). In
contrast, the empirical autocorrelations are sensitive to rescaling, so that rescaling might

influence the estimated long-memory parameter.
Proposition 3 states that T(d) time series with d > %2 have time dependent

autocorrelations which converge to 1. This property is maintained for a Gaussian process

under any power transformation, even if it is detrended or rescaled afterwards. In this
sense, any power transformation of an 1(d) process with d > % has still long memory

with some d' > %. In particular, the rescaling considered in the previous section does not
change this persistence property. As a consequence, we can construct stationary

processes which have long-memory properties associated with a long-memory parameter

d>"%,eg., P

X, if X, ~ 1(d) with d > Y%. Such a process converges to a stationary
process whose autocorrelations are 1 at all leads and lags. Clearly, the limit process is

neither fractionally integrated, nor Gaussian.
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(a) If X, ~ Gaussian T(d ) with¥2<d < 1, then X is asymptotically LM(d).

(b) If X, ~ T(d ) with d >4, then X, is asymptotically Gaussian.

(c) If X, ~ 1(d) with V2 < d < 1, then X;* is asymptotically LM(d).

Proof:

(@) Let Y, =X,-X,, and Z, = X, + X,_,. Then (Y, Z) are jointly normally distributed

with E(Y;) =0 =E(Z,), and A(X ,2) =Y Z, . Using a formula for covariances of

products of multivariate normal variables (see Bohrnstedt and Goldberger, 1969), we

obtain:

Cov(YZ,.Y_,Z . )=Cov(Y,.Y_)Cov(Z,,Z,_,)+Cov(Y,,Z,_,)Cov(Z,,Y_,)

We first show that the second term of this expression, Cov(Y,,Z, ,)Cov(Z,.Y, ,),

converges:

COV(Y:’Zt—h) = E[(Xz - Xt—l)(Xz—h + Xt—h—l )]
= E(Xth—h ) + E(XzXz—h—l ) - E(Xt—IXt—h ) - E(Xz—le—h—l)

t t—h t t—h-1
= E(Z CE,_; chet_h_j ]+ E(Zciet_i chet_h_l_j ]
i=0 j=0 i=0 j=0

—

~

h
=0

~

-

—1 1—1 t—h-1
- E[ C&€ 1 z Ci€ ]_ E(Z C€ zcjgt—h—l—j ]
i=0 j i=0 Jj=0

h
j=0

t=h-1 t=h t=h-1
_ 2 2 2 2
=D €00+ D 0100 = 20,107 = D eic,,0
/ Jj=0 Jj=0 j=0
[ 1—h-1
ch (Cj+h+1 - Cj+h—l )+ Cin (Cz —Ci )
| j=0
[ —h-1
jhtd jrhrd-1 ) _ %
chcﬂh—l (j+h+1 Jj+h 1 + ct—h (ct cz—l ) ( )
| /=0

In the last step, we used the recursive relationship between c; and cj_; (see, e.g.,

Hosking, 1984). Note that ¢, ~ O(j*") and

l_j+h+d jth+d-1_(j+h+)(j+h)—(j+h+d)(j+h+d-1)

j+h+1 j+h (J+h+D(j+h)

_2=2d)j+h(h+)—(h+d)(h+d-1)
- (j+h+D(j+h)

0™
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(j+h+d jhtd-1
j+h-1

e o 1)~ 0(j*), so that (*) converges as t — o if

Consequently, ¢;c

d < 1. With exactly the same argument we can show that Cov(Z,,Y, ,) and hence the
product Cov(Y,,Z, ,)Cov(Z,,Y, ,) converges as t — oo.

Now consider the variance, which can anologously be written as:

Var(Y,Z,) = Var(Y,) Var(Z,) + Cov(Y,,Z,)* .

Cov(Y,,Z)=E[(X,-X,_ )X, + X, )]=EB(X)-E(X},)
t 1—1
= 20562 —2012.0'2 =c’o’ —2250
j=0 Jj=0

Hence, Var(Y,Z,)—=="—Var(Y,) Var(Z,), and we obtain for the autocorrelations:

Cov(Y,,Y,_,)Cov(Z,,Z,,) N Cov(Y,,Z,_,)Cov(Z,.,Y,_,)

Corr(Y,Z,,Y _,Z, ,)=
T Nar(VZ)\VarY,,Z, ) [Var(¥,Z,)[Var(Y,,Z, )

As t — oo, the second term converges to zero, because the numerator converges and
the denominator diverges. Hence,
Cov(Y,.Y,_,) Cov(Z,,Z, ,)

JVar(Y,)\[Var(¥,_,) /Var(Z,)|/Var(Z,_,)
=Corr(Y,.Y,_,)

COIT(YtZ”Yt,hZ,,h) for large

Here, the equality sign follows with Proposition 3 (a), using that Z, ~ 1(d).
As Y, ~1I(d-1), A(X})=YZ, ~LM(d-1) and thus X2 ~ LM(d).

l

t 13 t _A
(b) According to Granger (1988) it suffices to show that [2 ¢ r[z ¢ ) —2= 0.
=0

Jj=0

IR ; /3 |
Note that [ch] = (c+2 j3d3] ~low )] =0¢*7) . and

=0 for large t| =0

for large t|

Y. ~ [c+2j2d‘2) ~[0(t2"‘1)% =0(t"""?). Hence, for d > %,

j=0 j=0

1
2

1
; 3
cf. diverges faster than (Z ci r , so that the ratio converges to zero.

Jj=0

13
j=0

(c) follows directly from (a) and (b). [
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Proposition 4 states that taking the square of a non-stationary long-memory process
does not change the size of the long-memory parameter. This is in obvious contrast to our
findings for stationary Gaussian I(d) processes (see Proposition 1), for which taking the
square reduces the amount of long memory in the series. Note that our results only hold
for d < 1. For d = 1, Granger (1995) shows that the square of a random walk is a random
walk with drift, which has a variance that is quadratic in .

For higher powers than the square of an non-stationary I(d) process, we could not
establish any theoretical results. This is due to the fact that the autocorrelations of a non-
stationary process are not informative as they converge to one for any long-memory
paramter d > Y2 (see Proposition 3). As a consequence, we have to consider first
differences in the proof of Proposition 4. First differences of a non-linear transformation
of a linear process can become very complicated, however. The substantial

simplifications in the case of the square of a Gaussian time series do not apply for higher

power transformations.

g(X) and its Long-memory parameter of the original series X

Hermite Rank d=0.6 d=0.8 d=1
X original series 0.60 (0.032) 0.80 (0.033) 1.00 (0.032)
(rank 1)

X2 original series 0.56 (0.053) 0.78 (0.045) 0.99 (0.042)
(rank 2) rescaled series | () 56 (0.053) 0.78 (0.052) 0.98 (0.061)
X3 original series 0.55 (0.060) 0.78 (0.057) 0.99 (0.054)
(rank 1) rescaled series | () 55 (0.060) 0.76 (0.069) 0.97 (0.078)
X* original series 0.52 (0.081) 0.76 (0.073) 0.98 (0.067)
(rank 2) rescaled series | () 52 (0.082) 0.74 (0.090) 0.95 (0.096)
X°%-3X original series 0.54 (0.069) 0.77 (0.058) 0.99 (0.054)
(rank 3) rescaled series | () 54 (0.069) 0.76 (0.071) 0.97 (0.078)
X -6X?2 original series 0.50 (0.093) 0.75 (0.075) 0.98 (0.067)
(rank 4) rescaled series | () 50 (0.094) 0.73 (0.092) 0.95 (0.096)

Table 2: Average estimated long-memory parameter of some transformations of 2,000

simulated non-stationary Gaussian I(d) processes with 2,000 observations each

Table 2 illustrates the findings of the previous two propositions. It contains the

average estimated long-memory parameter of some polynomial transformations of three

non-stationary 1(d) processes with d = 0.6, 0.8 and 1. The first line of each cell shows
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the long-memory parameter estimated from the "original" transformed series, while the
second line displays the average parameter estimated from the rescaled transformed
series as discussed in the previous section. The numbers in brackets are the empirical
standard errors.

The simulations confirm the findings in Proposition 4: The square has the same long-
memory parameter as the original process for all three values of d. Moreover, Table 2
suggests that the same holds for higher power transformations. Although the average
long-memory parameter is consistently slightly smaller than the initial d, the difference is
never smaller than the estimated standard error. Another important observation is that the
Hermite rank of the transformation has virtually no influence on the long-memory
properties of the processes any more. Instead, the estimates seem to depend mainly on the
order of the polynomial transformation. Note that the standard errors increase with the
order of the polynomial and that they are generally larger than in the stationary case.

In addition, Table 2 shows that rescaling the transformed series does not lead to any
improvements of the estimates. On the contrary, the standard errors are larger for the
rescaled series than for the original series. Moreover, standard errors become much worse

if the transformed series are rescaled using a wrong time index (not shown in Table 2).

5. Transcendental transformations

The previous section presented results for polynomial transformations of non-
stationary fractionally integrated time series. In this section we discuss some simulation
results for sine, cosine, exponential and logistic transformations. This discussion will
confirm the fundamental differences between antipersistence, stationary long-memory
and non-stationary long-memory found in earlier sections.

Table 3 contains average estimates for the long-memory parameter of four

transcendental transformations: sin(X), cos(X), exp(X) and (1 + exp(X _1))_1 if applied to
seven different T(d) processes with d = —0.2, -0.4, 0.2, 0.4, 0.6, 0.8 and 1. We report

two Geweke-Porter-Hudak estimates: the first using the m = [TO'S] = 437 smallest Fourier
frequencies in the periodogram regression, the second using only m = [T°°] = 95

regression points. In the previous tables, we did not include the estimates for m = [7°,
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because they were very similar to (and by construction less precise than) those with m =

[7°%.

Long-memory| Number of Transformation g(X) and its Hermite Rank
parameter of | regression sin(X) cos(X) exp(X) [1+exp(X™))™
the series X | points used (rank 1) (rank 2) (rank 1) (rank 1)

d=-04 437 -0.23(0.033) | 0.02(0.032) | -0.04(0.069) | -0.36(0.032)
95 -0.14 (0.070) | -0.00 (0.070) | -0.02(0.071) | -0.32(0.071)
d=-0.2 437 -0.15(0.031) | 0.01(0.033) | -0.04(0.055) | -0.19(0.032)
95 -0.12(0.070) | -0.00 (0.073) | -0.03 (0.078) | -0.19(0.070)
d= 0.2 437 0.18(0.032) | 0.04(0.035) | 0.09(0.064) | 0.20(0.032)
95 0.19(0.073) | 0.03(0.074) | 0.09(0.100) | 0.20(0.072)
d= 04 437 0.37(0.036) | 0.28(0.058) | 0.32(0.060) | 0.40(0.032)
95 0.38(0.075) | 0.27(0.106) | 0.31(0.103) | 0.40(0.072)
d= 0.6 437 0.41(0.030) | 0.41(0.031) | 0.42(0.070) | 0.58(0.046)
95 0.36(0.069) | 0.37(0.067) | 0.38(0.109) | 0.58 (0.090)
d= 0.8 437 0.37(0.030) | 0.37(0.031) | 0.42(0.112) | 0.75(0.086)
95 0.16(0.072) | 0.16(0.070) | 0.25(0.156) | 0.71(0.146)
d= 1.0 437 0.29(0.031) | 0.29(0.031) | 0.38(0.151) | 0.85(0.176)
95 0.04(0.071) | 0.04(0.070) | 0.15(0.166) | 0.75(0.260)

Table 3: Average estimated long-memory parameter of some transformations of 2,000

simulated Gaussian I(d) processes with 2,000 observations each

Table 3 shows that antipersistence (i.e., d < 0) is partly preserved under odd

transformations (sine, logistic) but that it disappears under non-odd transformations, such

as the cosine or the exponential function. In contrast, the size of the long-memory of

transformations of stationary long-memory processes (0 < d < ¥2) mainly depends on the

Hermite rank of the transforming function, as Proposition 1 suggests. Note, however, that

none of the four functions considered in Table 3 can be written as a finite sum of Hermite

polynomials, which is a condition maintained in Proposition 1. Indeed, the results of

Proposition 1 do not hold for the exponential transformation, which can be written as

exp(x) = exp(O.S)i

we then obtain:

H,(x

N

J=0

) (see Cramér, 1946, p. 133). With Lemma 1 and g, =1/{/!
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oo

had . 1 .
Y. gip) —p;

; =y P _
corr(g(X,),g(X,.,)) = Flm _JJ exp(p,)—1

=1 _
z{ gf 27 exp(l) 1
j=

= !

: (1)

which converges to zero as h approaches infinity. However, the rate of convergence is
clearly not hz”H, as in Proposition 1, but rather exp(th’l) — 1, which is faster than Pt
This explains why the estimates of the long-memory parameter of exp(X) are smaller
(although not significantly smaller) than Proposition 1 suggests.

For non-stationary long-memory processes (Y2 < d < 1), we find again a completely
different behavior: For these processes, neither the symmetry nor the Hermite rank of the
transformation influence the long-memory of the transformed series. Instead, these time
series are most sensitive to periodic transformations. For d > %2, the long-memory
parameter of the sine or cosine transformation is smaller, the larger the initial d is. For
d =1, the average estimated long-memory parameter of sin(X;) and cos(X;) is 0.29 if we
use 437 regression points and 0.04 if we use 95 regression points. The heavy dependence
of the estimated long-memory parameter on the number of periodogram regression points
implies that the series have strong short-term correlations but no long memory. Indeed,
Granger and Hallman (1988) show that the sine and cosine of a random walk can be
written as an AR(1) process with heteroskedastic errors. The results for d = 0.6 and
d = 0.8 suggest that periodic transformations of non-stationary long-memory processes
still have some long memory, but that more and more of the initial long-memory is
transformed into short memory as d increases.

Surprisingly, the pattern of estimates for the exponential transformation resembles the
pattern of the periodic functions. The long-memory parameter of the transformed series
seems to decrease as d approaches 1 while short-run correlations seem to become
stronger. Granger and Hallman (1988) show that the correlogram of the exponential
transformation of a random walk has the correlogram of a stationary AR(1) process.
Furthermore, they show that this process has exponentially increasing variance, which
can explain the exceptionally large standard errors for exp(X) in Table 3.

The logistic transformation, (1 + exp(X )™, exactly retains the long-memory of

stationary long-memory processes and distorts values of d < 0 only slightly. For d > 12,
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the long-memory of the output is less than that of the input, but still larger than V2.
Moreover, the long-memory of the output series increases strictly with the long-memory
of the input — in contrast to the other three functions in Table 3. However, the most
remarkable fact concerning the logistic transformation is that it is bounded. It thereby
demonstrates that long-memory processes — even with long-memory parameter d > %2 —
can be bounded. Note that the logistic transformation of a random walk has all the
dominant properties of a random walk except for the variance which is linear in ¢ for the

input series but constant for the transformed series (see Granger, 1995).
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