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Summary

In many meta-analysis cases the estimator of the overall e�ect in independent

trials or experiments leads to unjusti�ed signi�cant results. This paper con-

siders trials with two arms where the summary statistic of interest is either

the mean di�erence or the risk di�erence. By using convexity principles of the

relevant composed functions and the moments of the chi-square distribution,

corrections are made on the estimated standard deviation of the estimator of

the overall treatment di�erence. It is shown, analytically and by simulations,

that by making such corrections on the estimated standard deviation, signi�-

cance levels are attained which are relatively closer to the nominal level.

Key Words: Mean di�erence; risk di�erence; convexity; signi�cance levels
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1. Introduction and Notations

There are many areas (e.g. medicine, epidemiology and education) where

the combination of results from di�erent trials (studies or experiments) has

become common. For example, a situation may arise where one has to assess

the overall treatment di�erence when samples from the di�erent trials are

either homoscedastic or heteroscedastic. Recent studies by Li et al. (1994)

and Boeckenho�/Hartung (1998) attest to the fact that there is a systematic

overestimate in the signi�cance levels when combining studies in �xed e�ects

models which may be due to the underestimate of the variance of the estimator

of the overall treatment mean. If one considers trials which are comparative in

nature, then measures of the common treatment di�erence may take di�erent

forms, for instance, mean di�erences or e�ect sizes for quantitative data, and

risk di�erences, (logarithm) relative risks, or (logarithm) odds ratios for binary

data. By considering the mean di�erence and the risk di�erence we show both

analytically and by simulations that by making corrections on the estimated

standard deviation of the overall mean di�erence (or overall risk di�erence)

signi�cance levels can be obtained which are relatively closer to the nominal

level.

Suppose there are K "two-armed" (multicenter) trials in a meta-analysis.Let

x

jil

be the lth observation in arm j of trial i; i = 1; : : : ; K; j = 1; 2; l =

1; : : : ; n

ji

where n

ji

is the total number of observations in arm j of trial i:

Then the mean of the jth arm of study i is �x

ji

=

P

n

ji

l=1

x

jil

=n

ji

� (�

ji

; �

2

�

ji

=n

ji

);

and we will write �

2

ji

= �

2

�

ji

=n

ji

: De�ne y

i

= �x

1i

� �x

2i

= y

1i

� y

2i

; where y

ji

�

(�

ji

; �

2

ji

); i = 1; : : : ; K; j = 1; 2; is one of the summary statistics available

from arm j of study i for a meta-analysis.

Further, de�ne

y

i

= �+ e

i

; i = 1; : : : ; K; (1)
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where e

i

� (0; �

2

i

); and it is assumed that � = �

1i

� �

2i

is common in all the

studies. In this formulation, y

i

could be the mean di�erence for quantitative

data or the risk di�erence for binary data.

2. Estimation

Normal Data

Let y

ji

� N (�

ji

; �

2

ji

); i = 1; : : : ; K; j = 1; 2 (�

ji

= �

j

independent of trial

number i); so that y

i

� N (�; �

2

i

); with �

2

i

= �

2

1i

+ �

2

2i

; and e

i

� N (0; �

2

i

); for

i = 1; : : : ; K:

The best estimator of � in each trial is the individual sample treatment di�er-

ence

�̂

i

= �̂

1i

� �̂

2i

= y

1i

� y

2i

;

Due to variation in sample sizes and precision of the trials, and absence of

treatment-by-centre interaction, the best estimator of the underlying treatment

di�erence (that is common to all trials) is a weighted estimate, namely

�̂ =

1

P

K

i=1

1=�

2

i

K

X

i=1

1

�

2

i

� y

i

; (2)

with the associated variance ( cf: Whitehead/Whitehead, 1991)

�

2

�̂

=

1

P

K

i=1

1=�

2

i

(3)

Let s

2

ji

= s

2

�

ji

=n

ji

; with s

2

�

ji

= (1=n

ji

� 1) �

P

n

ji

l=1

(x

jil

� �x

ji

)

2

; be the estimate of

�

2

ji

; for i = 1; : : : ; K; j = 1; 2: Then the estimate of �

2

i

is �̂

2

i

= s

2

i

= s

2

1i

+ s

2

2i

:

Therefore, the estimate of � is given by

�̂

�

=

1

P

K

i=1

1=�̂

2

i

K

X

i=1

1

�̂

2

i

� y

i

; (4)
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and

�̂

2

�̂

=

1

P

K

i=1

1=�̂

2

i

; (5)

Further, we have that

V ar(�̂

2

i

) = V ar(�̂

2

1i

) + V ar(�̂

2

2i

) =

2

n

1i

� 1

� �

4

1i

+

2

n

2i

� 1

� �

4

2i

(6)

which is estmated by

d

V ar(�̂

2

i

) =

d

V ar(�̂

2

1i

) +

d

V ar(�̂

2

2i

) =

2

n

1i

� 1

� s

4

1i

+

2

n

2i

� 1

� s

4

2i

(7)

Binomial Data

For binary data, let y

ji

be binomially distributed with parameters n

ji

and p

ji

;

i = 1; : : : ; K; j=1,2. Therefore, y

i

= �̂

1i

� �̂

2i

= p̂

1i

� p̂

2i

approx

� N (�; �

2

i

);

with � = p

1i

� p

2i

= p

1

� p

2

; assumed identical in all the trials, i=1,. . . ,K and

p̂

ji

= y

ji

=n

ji

. Here

�̂

�

=

1

P

K

i=1

1=�̂

2

i

K

X

i=1

1

�̂

2

i

� y

i

; (8)

with

�̂

2

i

= �̂

2

1i

+ �̂

2

2i

=

1

n

1i

� 1

� (p̂

1i

� p̂

2

1i

) +

1

n

2i

� 1

� (p̂

2i

� p̂

2

2i

): (9)

It is suÆcient in our case to approximate V ar(�̂

2

ji

) by the delta-method, thus

V ar(�̂

2

ji

) �

 

@�̂

2

ji

@p̂

ji

j

p̂

ji

=p

ji

!

2

� �

2

ji

=

 

1� 2p

ji

n

ji

� 1

!

2

�

1

n

ji

p

ji

(1� p

ji

); (10)

which is estimated by replacing p

ji

with p̂

ji

:

In both the normal and binomial populations, to set con�dence intervals and

testing hypotheses, we use the corresponding statistic

T =

�̂

�

�̂

�̂

approx

� N (�; 1): (11)

The estimator �̂

�̂

is biased and underestimates �

�̂

: This can easily be shown

by using the concavity of �̂

2

�̂

in �̂

2

i

and Jensen's inequality (cf: Hartung, 1977

and Li, et al.,1994). That is,

E(�̂

�̂

) � �

�̂

:
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Trials where the estimator �̂

�̂

, which underestimates �

�̂

, is used in obtaining

T are often bound to be unjusti�ably signi�cant. Tables 1 and 2 below give

some actual simulated signi�cance levels for testing the hypothesis H

0

: � = 0

against a two sided alternative H

1

: � 6= 0 at � = 0:05 for di�erent con-

stellations of (n

1i

; n

2i

) and (�

2

�

1i

; �

2

�

2i

); i = 1; : : : ; K, for K=3 for normal and

binomial data.

Table 1: Actual simulated signi�cance levels for K=3 (Normal data).

(n

11

; n

21

) (n

12

; n

22

) (n

13

; n

23

) (�

2

�

11

; �

2

�

21

) (�

2

�

12

; �

2

�

22

) (�

2

�

13

; �

2

�

23

) �̂%

(5,6) (6,7) (7,5) (1,4) (3,4) (5,4) 10.3

(1,5) (3,3) (5,1) 10.5

(1,10) (3,30) (5,50) 13.1

(10,10) (10,10) (10,10) (1,4) (3,4) (5,4) 8.3

(1,5) (3,3) (5,1) 8.1

(1,10) (3,30) (5,50) 9.2

Table 2: Actual simulated signi�cance levels for K=3 (Binomial data).

(n

11

; n

21

) (n

12

; n

22

) (n

13

; n

23

) (p

1

; p

2

) �̂%

(7,13) (10,7) (15,10) (0.3,0.3) 6.0

(0.4,0.4) 6.8

(0.5,0.5) 7.1

(0.6,0.6) 6.6

(0.7,0.7) 6.2

All of the attained signi�cance levels given in Tables 1 and 2 are larger than

the expected nominal level of 5%. Our concern is in the methods which will

make the attained signi�cance levels closer to the nominal level.
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3. Some Theoretical Results

De�ne on IR

K

+

the function f(x) =

P

K

i=1

1=x

i

; then f is convex, and h(x) =

1=f(x) is quasi-concave. Next, de�ne h(0) = 0; then h(�x) = � � h(x); � � 0;

x > 0; implies that h is positively homogeneous; so together with the quasi-

concavity it follows that h is concave (cf: Hartung, 1976, section1).

By Jensen's inequality, if f is convex, then Ef(x) � f(Ex) and the reverse is

true if f is concave.

Now, consider �̂

2

i

= �̂

2

1i

+ �̂

2

2i

as given early. By Patnaik (1949), the statistic

�

i

�̂

2

i

=E(�̂

2

i

) � �

2

�

i

; where

�

i

= 2 �

(E(�̂

2

1i

) + E(�̂

2

2i

))

2

V ar(�̂

2

1i

) + V ar(�̂

2

2i

)

;

which is estimated by

�̂

i

= 2 �

(�̂

2

1i

+ �̂

2

2i

)

2

d

V ar(�̂

2

1i

) +

d

V ar(�̂

2

2i

)

;

for i = 1; : : : ; K:

This facilitates the de�nition of the following approximate moments and in-

verse moments of the chi-square distribution(cf: Patel et al., 1976 ):

E (�̂

i

) = 


�1

�̂

i

� �

i

; 


�̂

i

=

s

�̂

i

2

�

�(�̂

i

=2)

�(�̂

i

=2 + 1=2)

(12)

E

�

�̂

4

i

�

= b

�̂

i

+1

� �

4

i

; b

�̂

i

+1

=

�̂

i

+ 2

�̂

i

(13)

E

�

�̂

�2

i

�

= c

�̂

i

+1

�

1

�

2

i

; c

�̂

i

+1

=

�̂

i

�̂

i

� 2

; (14)

Now, with �̂

2

�̂

=

�

P

K

i=1

1=�̂

2

i

�

�1

; we have

V ar(�̂

2

�̂

) �

0

@

K

X

i=1

s

�̂

i

�̂

i

+ 2

�

1

�

2

i

1

A

�2

�

 

K

X

i=1

�̂

i

�̂

i

� 2

�

1

�

2

i

!

�2

(15)

This can be proved as follows:

V ar(�̂

2

�̂

) = E

0

@

 

K

X

i=1

1

�̂

2

i

!

�1

1

A

2

�

0

@

E

 

K

X

i=1

1

�̂

2

i

!

�1

1

A

2
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� E

0

@

 

K

X

i=1

1

�̂

2

i

!

�1

1

A

2

�

 

K

X

i=1

E

 

1

�̂

2

i

!!

�2

by using the convexity of

�

P

K

i=1

1=�̂

2

i

�

�1

in �̂

�2

i

: Using �rst (13) and then (14),

we have

V ar(�̂

2

�̂

) � E

0

@

K

X

i=1

1

q

�̂

4

i

1

A

�2

�

 

K

X

i=1

c

�̂

i

+1

�

1

�

2

i

!

�2

�

0

@

K

X

i=1

1

q

b

�̂

i

+1

� �

4

i

1

A

�2

�

 

K

X

i=1

c

�̂

i

+1

�

1

�

2

i

!

�2

=

0

@

K

X

i=1

s

�̂

i

�̂

i

+ 2

�

1

�

2

i

1

A

�2

�

 

K

X

i=1

�̂

i

�̂

i

� 2

�

1

�

2

i

!

�2

(16)

by the concavity of

�

�̂

2

�̂

�

2

in �̂

4

i

; which is seen to be similar to h(x) above.

Now, let

^

� =

0

@

K

X

i=1

s

�̂

i

�̂

i

+ 2

�

1

�̂

2

i

1

A

�2

�

 

K

X

i=1

�̂

i

�̂

i

� 2

�

1

�̂

2

i

!

�2

(17)

with � =

�

P

K

i=1

q

�̂

i

=(�̂

i

+ 2) � 1=�

2

i

�

�2

�

�

P

K

i=1

�̂

i

=(�̂

i

� 2) � 1=�

2

i

�

�2

as in (14).

De�ne a class of estimators of �

�̂

by

�̂

�̂

(

^

�; �) =

s

�

�̂

2

�̂

+ � �

q

^

�

�

; (18)

with

^

� de�ned in (17) and the control parameter � > 0: It is clear that

�̂

�̂

(

^

�; �) � �̂

�̂

:

Further, consider the following results:

i) E(�̂

�̂

) = E

v

u

u

u

t

 

K

X

i=1

1

�̂

2

i

!

�1

� E

v

u

u

u

t

 

K

X

i=1

1




2

�̂

i

� �̂

2

i

!

�1

�

v

u

u

u

t

0

@

K

X

i=1

1




2

�̂

i

� (E

q

�̂

2

i

)

2

1

A

�1

; since �̂

�̂

is concave in �̂

i
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= �

�̂

ii) �

�̂

=

v

u

u

u

t

 

K

X

i=1

1

�

2

i

!

�1

=

v

u

u

u

t

 

K

X

i=1

1

c

�̂

i

+1

� E

 

1

�̂

2

i

!!

�1

� E

v

u

u

u

t

 

K

X

i=1

1

c

�̂

i

+1

�

1

�̂

2

i

!

�1

; (19)

due to the convexity of �̂

�̂

in 1=�̂

2

i

: From (i) and (ii) above, we have the

following

d

E

v

u

u

u

t

 

K

X

i=1

1

�̂

2

i

!

�1

� �

�̂

� E

v

u

u

u

t

 

K

X

i=1

1

c

�̂

i

+1

�

1

�̂

2

i

!

�1

� E

v

u

u

u

t

 

K

X

i=1

1

c

�̂

i

+1

� 


3

�̂

i

�

1

�̂

2

i

!

�1

(20)

4. Simulation Results

To demonstrate how the proposed methods perform, a simulation study is car-

ried out with the number of trials, K=3, 6 and 9 for both the normal and

binomial cases. Di�erent constellations of unbalanced heteroscedastic samples

are considered as shown in Tables 3.a., 3.b., 3.c. for the normal case and Ta-

bles 4.a., 4.b., 4.c. for the binomial case.

To get an impression of how these procedures perform for relatively large trials,

we started with K=3 and made independent replications to give K=6, denoted

by 2�!; and K=9, denoted by 3�!; see the Tables below. Further, for K=6,

for example, replication was done such that n

11

= n

14

; n

21

= n

24

; n

12

= n

15

;

n

22

= n

25

; n

13

= n

16

; n

23

= n

26

and similarly for variances in the normal case.

For K=9, n

11

= n

14

= n

17

; n

21

= n

24

= n

27

; n

12

= n

15

= n

18

; n

22

= n

25

= n

28

;

n

13

= n

16

= n

19

; n

23

= n

26

= n

29

:

Used also in the Tables are the following representations:
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�̂

�̂

(c) =

v

u

u

u

t

 

K

X

i=1

1

c

�̂

i

+1

�

1

�̂

2

i

!

�1

; �̂

�̂

(c


3

) =

v

u

u

u

t

 

K

X

i=1

1

c

�̂

i

+1

� 


3

�̂

i

�

1

�̂

2

i

!

�1

and �̂

�̂

(

^

�; �) as in (18).

Table 3.a.: Simulated actual signi�cance levels (10 000 runs) at nominal level

� = 5% for K=3 and H

0

: � = 0 vs H

1

: � 6= 0 with test statistic as in (11)

and di�erent estimators for the standard deviation with a

1

= (n

11

; n

21

); a

2

=

(n

12

; n

22

); a

3

= (n

13

; n

23

) and b

1

= (�

2

�

11

; �

2

�

21

); b

2

= (�

2

�

12

; �

2

�

22

); b

3

= (�

2

�

13

; �

2

�

23

):

Test statistic, T = �̂

�

=�

Sample Sizes Variances �̂%

�

a

1

a

2

a

3

b

1

b

2

b

3

�

�̂

�̂

�̂

�̂

�̂

(c) �̂

�̂

(

^

�; 0:5) �̂

�̂

(c


3

)

(6,13) (10,6) (15,10) (1,4) (3,6) (5,3) 6.0 7.9 6.0 4.6 5.4

(10,40) (30,60) (50,30) 6.0 8.0 6.0 4.7 5.4

(20,80) (60,120) (100,60) 6.1 8.3 6.6 5.0 5.8

(12,26) (20,12) (30,20) (1,4) (3,6) (5,3) 5.7 6.6 5.7 4.4 5.4

(10,40) (30,60) (50,30) 5.3 6.3 5.3 3.8 4.9

(20,80) (60,120) (100,60) 5.8 6.6 5.8 4.4 5.5

From Tables 3.a�c and 4.a�c; we see that results with �̂

�̂

always overestimate

the nominal signi�cance level. This overestimate is relatively more pronounced

for the normal case (Tables 3.a� c).

Using �̂

�̂

(c) results in signi�cance levels which are in the same order of magni-

tude with the levels of �

�̂

; notice the large number of levels which are actually

equal for the normal case, Tables 3.a� c: The results of �̂

�̂

(c) in the binomial

case are in the same order of magnitude with those of �̂

�̂

; Tables 4.a� c:

By using �̂

�̂

(

^

�; 0:5) and �̂

�̂

(c


3

) we obtain further improvements of signi�cance

levels. The advantage with �̂

�̂

(

^

�; 0:5) is that we can obtain more improvements

by varying the control parameter, �:

There does not seem to be any sensitivity of the test statistics to changes in

the number of trials and the error variances.
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Table 3.b.: Simulated actual signi�cance levels (10 000 runs) at nominal level

� = 5% for K=6 and H

0

: � = 0 vs H

1

: � 6= 0 with test statistic as in (11)

and di�erent estimators for the standard deviation.

Test statistic, T = �̂

�

=�

Sample Sizes Variances �̂%

�

2� a

1

2� a

2

2� a

3

2� b

1

2� b

2

2� b

3

�

�̂

�̂

�̂

�̂

�̂

(c) �̂

�̂

(

^

�; 0:5) �̂

�̂

(c


3

)

(6,13) (10,6) (15,10) (1,4) (3,6) (5,3) 6.8 9.0 6.8 5.3 6.3

(10,40) (30,60) (50,30) 6.7 8.8 6.6 5.1 6.0

(20,80) (60,120) (100,60) 6.2 8.0 6.1 4.8 5.5

(12,26) (20,12) (30,20) (1,4) (3,6) (5,3) 5.8 6.7 5.8 4.4 5.5

(10,40) (30,60) (50,30) 5.7 7.1 5.8 4.4 5.5

(20,80) (60,120) (100,60) 5.4 6.5 5.5 4.0 5.2

Table 3.c.: Simulated actual signi�cance levels (10 000 runs) at nominal level

� = 5% for K=9 and H

0

: � = 0 vs H

1

: � 6= 0 with test statistic as in (11)

and di�erent estimators for the standard deviation.

Test statistic, T = �̂

�

=�

Sample Sizes Variances �̂%

�

3� a

1

3� a

2

3� a

3

3� b

1

3� b

2

3� b

3

�

�̂

�̂

�̂

�̂

�̂

(c) �̂

�̂

(

^

�; 0:5) �̂

�̂

(c


3

)

(6,13) (10,6) (15,10) (1,4) (3,6) (5,3) 6.7 8.7 6.7 5.1 6.0

(10,40) (30,60) (50,30) 6.7 9.1 6.8 5.2 6.1

(20,80) (60,120) (100,60) 6.6 8.6 6.5 5.1 6.0

(12,26) (20,12) (30,20) (1,4) (3,6) (5,3) 5.8 6.7 5.7 4.3 5.4

(10,40) (30,60) (50,30) 5.8 6.7 5.7 4.3 5.4

(20,80) (60,120) (100,60) 5.9 6.9 5.9 4.5 5.6
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Table 4.a.: Simulated actual signi�cance levels (10 000 runs) at nominal level

� = 5% for K=3 and H

0

: � = 0 vs H

1

: � 6= 0 with test statistic like

(11) and di�erent estimators for the standard deviation with a

1

= (n

11

; n

21

);

a

2

= (n

12

; n

22

); a

3

= (n

13

; n

23

):

Test statistic, T = �̂

�

=�

Sample Sizes �̂%

�

a

1

a

2

a

3

(p

1

; p

2

) �

�̂

�̂

�̂

�̂

�̂

(c) �̂

�̂

(

^

�; 0:5) �̂

�̂

(c


3

)

(7,13) (10,7) (15,10) (0.3,0.3) 5.1 6.0 5.8 5.0 4.7

(0.4,0.4) 5.9 6.8 6.6 6.0 5.7

(0.5,0.5) 6.2 7.1 7.0 6.5 6.4

(0.6,0.6) 5.7 6.7 6.5 5.9 5.8

(0.7,0.7) 5.2 6.2 6.0 5.1 4.7

(15,25) (20,15) (30,20) (0.3,0.3) 4.9 5.4 5.3 4.9 4.8

(0.4,0.4) 5.2 5.6 5.6 5.5 5.5

(0.5,0.5) 5.7 6.0 6.0 5.9 5.9

(0.6,0.6) 5.2 5.6 5.6 5.5 5.5

(0.7,0.7) 5.2 5.6 5.5 5.2 5.1

Table 4.b.: Simulated actual signi�cance levels (10 000 runs) at nominal level

� = 5% for K=6 and H

0

: � = 0 vs H

1

: � 6= 0: with test statistic like (11) and

di�erent estimators for the standard deviation.

Test statistic, T = �̂

�

=�

Sample Sizes �̂%

�

2� a

1

2� a

2

2� a

3

(p

1

; p

2

) �

�̂

�̂

�̂

�̂

�̂

(c) �̂

�̂

(

^

�; 0:5) �̂

�̂

(c


3

)

(7,13) (10,7) (15,10) (0.3,0.3) 6.1 6.6 6.5 5.5 5.2

(0.4,0.4) 6.3 6.9 6.8 6.3 6.2

(0.5,0.5) 6.7 7.2 7.2 6.8 6.7

(0.6,0.6) 6.5 7.0 6.9 6.4 6.3

(0.7,0.7) 5.7 6.3 6.1 5.1 4.9

(15,25) (20,15) (30,20) (0.3,0.3) 5.2 5.6 5.6 5.2 5.2

(0.4,0.4) 5.4 5.6 5.6 5.4 5.4

(0.5,0.5) 5.5 5.8 5.8 5.7 5.7

(0.6,0.6) 5.8 6.1 6.1 5.9 5.9

(0.7,0.7) 5.2 5.7 5.6 5.2 5.1
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Table 4.c.: Simulated actual signi�cance levels (10 000 runs) at nominal

level � = 5% for K=9 and H

0

: � = 0 vs H

1

: � 6= 0 with test statistic like

(11) and di�erent estimators for the standard deviation.

Test statistic, T = �̂

�

=�

Sample Sizes �̂%

�

3� a

1

3� a

2

3� a

3

(p

1

; p

2

) �

�̂

�̂

�̂

�̂

�̂

(c) �̂

�̂

(

^

�; 0:5) �̂

�̂

(c


3

)

(7,13) (10,7) (15,10) (0.3,0.3) 6.0 6.6 6.4 5.2 5.0

(0.4,0.4) 6.9 7.6 7.6 6.8 6.8

(0.5,0.5) 6.8 7.3 7.3 6.8 6.7

(0.6,0.6) 6.6 7.1 7.1 6.5 6.4

(0.7,0.7) 5.7 6.2 5.9 5.1 4.9

(15,25) (20,15) (30,20) (0.3,0.3) 5.5 5.7 5.7 5.4 5.4

(0.4,0.4) 6.0 6.3 6.3 6.0 6.0

(0.5,0.5) 6.3 6.5 6.5 6.4 6.4

(0.6,0.6) 5.4 5.6 5.6 5.4 5.4

(0.7,0.7) 5.4 5.8 5.7 5.4 5.3

5. Conclusion

In this article we have illustrated analytically and by simulations that attained

signi�cance levels could be improved by using suitable weights for the estimated

standard deviation of the estimator of the overall treatment di�erence. The

use of the methods developed is recommended especially when the number of

trials is small.

A further investigation in this direction is to �nd out which methods are suit-

able when the measure of treatment e�ect is, for example, the e�ect sizes.

The extension of these procedures to cases when there is treatment-by-center-

interaction is also possible.
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