
Meyners, Michael

Working Paper

Deriving a lower bound for the proportion of perceivers
in replicated difference tests by means of multiple test
theory

Technical Report, No. 2002,59

Provided in Cooperation with:
Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB 475),
University of Dortmund

Suggested Citation: Meyners, Michael (2002) : Deriving a lower bound for the proportion of
perceivers in replicated difference tests by means of multiple test theory, Technical Report,
No. 2002,59, Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in
Multivariaten Datenstrukturen, Dortmund

This Version is available at:
https://hdl.handle.net/10419/77300

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/77300
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Deriving a lower bound for the propor-

tion of perceivers in replicated di�erence

tests by means of multiple test theory

Michael Meyners

Fachbereich Statistik, Universit�at Dortmund, D-44221 Dortmund, Germany

Tel.: +49 231 755 3181 Fax: +49 231 755 3454

E-Mail: michael.meyners@udo.edu

Abstract

Analyzing repeated di�erence tests aims in signi�cance testing for di�erences as

well as in estimating the mean discrimination ability of the consumers. In addition

to the average success probability, the proportion of consumers that may detect

the di�erence between two products and therefore account for any increase of this

probability is of interest. While some authors address the �rst two goals, for the

latter one only an estimator directly linked to the average probability seems to be

used. However, this may lead to unreasonable results. Therefore we propose a new

approach basing on multiple test theory. We de�ne a suitable set of hypotheses that

is closed unter intersection. From this, we derive a series of hypotheses that may

be subsequently tested while the overall signi�cance level will not be violated. By

means of this procedure we may determine a minimal number of assessors that must

have perceived the di�erence between the products at least once in a while. From

this, we can �nd a conservative lower bound for the proportion of perceivers within

the consumers. In several examples, we give some insight into the properties of this

new method and show that the knowledge about this lower bound might indeed be

valuable for the investigator. Finally, an adaption of this approach for similarity

tests will be proposed.
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2 MICHAEL MEYNERS

Introduction

We consider repeated di�erence tests which are intended, e. g., to determine whether

or not di�erences between two products of the same kind exist. With it, we are

usually interested in di�erences with respect to taste, smell or appearance. Mostly

non-replicated tests are investigated in the area of sensory analysis, where usually

consumers are considered. A well-known di�erence test is the so-called triangle test.

For this, three samples of the products under consideration are used: two of product

A, say, and one of another product B, say. These samples are arranged in triangular

form and presented to the assessors. Those are asked to assess the samples and

identify the odd sample, i. e. the one that di�ers from the other ones. Details

concerning the design of the experiment are beyond the scope of this paper, but it

is easy to see that the probability of just guessing right by chance is equal to

1

3

.

This means that whenever the judges cannot �nd the odd sample due to product

di�erences or an inappropriate design and whenever the order of presentation is

chosen at random from one of the six possibilities AAB, ABA, BAA, ABB, BAB

and BBA, the success probability is

1

3

. For details we refer to the paper by Kunert

and Meyners (1999).

To analyze the outcomes of such an experiment, a simple binomial test ist used. In

a triangle test, we are concerned with the validity of the null hypothesis H

0

: \There

are no di�erences between the products". This, of course, is equivalent to testing

H

0

: \� =

1

3

" versus H

1

: \� >

1

3

", while � is the mean success probability within the

set of assessors. We may con�ne ourselves to this one sided test since the success

probability may not fall below

1

3

for any assessor in case the experiment has been

properly designed (Kunert and Meyners, 1999).

If the product di�erences are large, a small number of assessors may be suÆcient

to prove that there are indeed di�erences. However, in practical applications this
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kind of experiment is rather used when the expected di�erences are quite small.

Therefore, due to intra product variations caused by, e. g., di�erent stocks, the

assessors may fail to identify the odd sample once in a while, even if there are

di�erences present. Therefore, a large number of experiments has to be conducted

to �nd the di�erences between the products in case there are any. With it, a large

number of consumers has to be tested. This, of course, is very time consuming

as well as expensive. Hence considerations are given to testing the same consumers

repeatedly. Under proper randomization it can be shown that this does not inuence

the analysis of the data with respect to the signi�cance test (Kunert and Meyners,

1999). Hence we might still use the binomial test with

P

n

i=1

k

i

observations, while

k

i

is the number of replications of assessor i.

In general we are interested not only in knowing whether or not a di�erence be-

tween the products exists, but also rather in estimating the mean success probability

above chance, for which an easily determined estimator is common practice. Of ad-

ditional interest for the investigator is to judge upon the number of perceivers within

the consumers, i. e. those consumers that might detect the di�erence at least once

in a while. It may matter whether an overall 50% above chance success probabil-

ity is derived from all consumers detecting the di�erence in every second trial, or

from one half of the consumers that will almost surely detect the di�erence while

the other half never does. Assuming the latter case, an estimator of the number of

perceivers can be easily derived. However, this might lead to unreasonable results

as will be shown in what follows. The aim of this paper is to develop a method in

order to derive a lower bound for the proportion of perceivers by means of multiple

test theory.



4 MICHAEL MEYNERS

Model

For each assessor i 2 f1; :::; ng, her/his success probability is �

0

, say, in case he does

not taste the di�erence in a particular experiment and therefore she/he has to guess

which sample may be the right one. Contrariwise, the respective probability is 1 in

case the assessor perceives the di�erence in this experiment. For the triangle test,

we �nd �

0

=

1

3

, while we may have di�erent values of �

0

for other di�erence tests

like, e. g., the duo-trio test. Hence random variable representing the overall success

probability �

i

, say, of assessor i is given by

�

i

= �

0

(1� �

i

) + �

i

= �

0

+ (1� �

0

)�

i

; (1)

where �

i

is the random variable that represents the individual perceiving probability

of assessor i with values in [0, 1]. For a non-perceiver, �

i

is almost sure equal to

zero and hence the expectation �

i

:= E(�

i

) is equal to zero. On the other hand, if

E(�

i

) > 0 and hence �

i

:= E(�

i

) > �

0

, we call assessor i a perceiver. Note that this

is the most general model for di�erence tests, since all restrictions are derived from

properties that can be assured by means of the design of the experiment (Kunert and

Meyners 1999). From this formula, we will derive a lower bound for the proportion

of perceivers by means of multiple test theory.

Di�erent models have been proposed for the individual success probabilities. Be-

sides the one given here, the Beta-binomial model has been frequently addressed

(Ennis and Bi 1998, Bi and Ennis 1999a, b). This model has a main drawback since

it allows the success probability to fall below �

0

, which may only occur with an

inappropriate design of the experiment (Kunert and Meyners 1999). A corrected

version of the Beta-binomial model has been proposed by Brockho� (2002) and ex-

amined by Meyners and Brockho� (2002) as well. Assuming this model, the goal

would rather be to estimate the parameters of the distribution, which can be done
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by means of, e. g., Maximum-Likelihood estimators. However, we do not aim at this

for the following reasons. First of all, no textual justi�cation of the individual suc-

cess rates being (corrected) Beta-distributed can be seen. Instead, the main rational

behind this choice seem to be the easily determined statistical properties. Secondly,

our approach does not rely at all on the distribution assumption in model (1) for �

i

respectively �

i

, but only on the de�nition of a perceiver by means of �

i

> 0 respec-

tively �

i

> �

0

. Therefore our approach gives a non-parametric lower bound for the

proportion of perceivers. As it has been mentioned above, the model assumptions

are completely general such that non-robustness of the approach cannot pose any

problems.

Closed set of hypotheses under intersection

With respect to model (1), we may re-write the test problem in a more statistical

notation as

H

0

: �

i

= �

0

8 i 2 f1; :::; ng

versus

H

1

: 9 i 2 f1; :::; ng : �

i

> �

0

respectively

H

0

: �

i

= 0 8 i 2 f1; :::; ng

versus

H

1

: 9 i 2 f1; :::; ng : �

i

> 0:

For simplicity of notation, in what follows we con�ne ourselves to the former repre-

sentation of the problem. Let the random variable X

i

denote the number of correct
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answers of assessor i. Assuming a proper design of the experiment, we may assume

the outcomes of each test to be independent, and therefore the distribution of X

i

is

binomial with parameter �

i

and k

i

observations, shortly L(X

i

) = B(k

i

; �

i

).

Let H = fH

P

0

: P � f1; :::; ngg be the set of the following subsets of null hypothe-

ses:

H

P

0

: �

i

= �

0

8 i 2 P:

Since P

1

\ P

2

� f1; :::; ng for any subsets P

1

and P

2

of f1; :::; ng, we �nd that

H

P

1

0

\H

P

2

0

2 H for any subsets of hypotheses H

P

1

0

and H

P

2

0

2 H. Therefore this set

of subsets of hypotheses is obviously closed under intersection.

We will now use this property of the set of hypotheses to address our purpose,

i. e. to estimate the minimal number of perceivers.

Multiple test procedure

Our main concern is to test the following sets of hypotheses:

H

l

0

: �

i

= �

0

for at least n� l + 1 assessors

versus

H

l

1

: �

i

> �

0

for at least l assessors,

where l 2 f1; :::; ng. However, these hypotheses cannot be tested directly without

violation of the signi�cance level �, say. Therefore we re-write and enlarge the set

of subsets of hypotheses to a set that is closed unter intersection, namely the one

presented in the section before. We may now equivalently write H

l

0

as

H

l

0

: 9 P

l

� f1; :::; ng with jP

l

j = n� l + 1 : �

i

= �

0

8 i 2 P

l

:
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Marcus, Peritz and Gabriel (1976) propose a procedure that allows the performance

of a series of subsequent level-� tests for these hypotheses while the overall prob-

ability of making a type I error will not exceed �. For this series, it only has to

be guaranteed that all tested hypotheses are from the set given above { which are

actually all hypotheses of interest within this context { and that we test a subset of

hypotheses H

P

b

0

only if all subsets of hypotheses H

P

a

0

2 H, that are included in H

P

b

0

,

have been tested and rejected before. Here, these subsets of hypotheses are de�ned

by P

b

� P

a

, since, e. g., the null hypothesis that \�

i

= �

0

for all i 2 f1; :::; ng" is

obviously a particular case of the subset \�

i

= �

0

for all i 2 f1; :::; n� 1g". Hence,

following Marcus et al. (1976), we may test \�

i

= �

0

for all i 2 P

b

" versus \�

i

> �

0

for at least one i 2 P

b

" at level � whenever we could reject all subsets of hypotheses

\�

i

= �

0

for all i 2 P

a

". In these cases we accepted \�

i

> �

0

for at least one i 2 P

a

"

for all supersets P

a

� P

b

.

Applying this theory to the di�erence tests under consideration, from the technical

restrictions given above we �nd that the following subsequent testing procedure will

restrain the type I error rate at level �:

step 1: Test the set of null hypotheses \P

n

: �

i

= �

0

8 i 2 f1; :::; ng" versus

\9 i 2 f1; :::; ng : �

i

> �

0

" at level �.

step 2: If the set of null hypotheses P

n

could be rejected, test now all subsets of

null hypotheses \�

i

= �

0

8 i 2 P

n�1

" versus \9 i 2 P

n�1

: �

i

> �

0

" at

level �, while P

n�1

is an arbitrary subset of f1; :::; ng of length n� 1.

step 3: If there exist subsets P

n�2

of f1; :::; ng of length n� 2 such that all subsets

of null hypotheses P

n�1

with P

n�1

� P

n�2

have been rejected in the former

step, test these subsets P

n�2

at level �.

: : :
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step 4: If there exist subsets P

n�l+1

of f1; :::; ng of length n� l + 1 such that all

subsets of null hypotheses P

n�l+2

with P

n�l+2

� P

n�l+1

have been rejected

in the former step, test these subsets P

n�l+1

at level �.

: : :

In each step l, in case there is no set of subsets of hypotheses P

n�l+1

such that the

respective condition is ful�lled, the procedure has to be stopped. Hence, whenever

not all supersets of hypotheses including P

n�l+1

could be rejected, no additional test

should be performed anymore.

Still, for our purpose this procedure might be simpli�ed in most cases. We now

con�ne ourselves to the case where k

i

= k, i. e. all assessors perform the di�er-

ence test equally often, which usually holds whenever replicated di�erence tests are

considered. Assuming a proper design of the experiment, the results of di�erent

assessors can be assumed to be independent. For each subset P � f1; :::; ng we

know that L(

P

i2P

X

i

) = B(

P

i2P

k

i

; �

0

) whenever the corresponding null hypothe-

ses hold, i. e. whenever �

i

= �

0

for all i 2 P . Note that this is the case in which no

detectable product di�erences are given for the assessors within this experiment.

Hence the appropriate test in each step is the simple binomial test with parameter

�

0

and jP jk observations, while jP j denotes the length of P . In step 1 we hence

use nk observations. In case we can reject the set of null hypotheses, we accept

that there is at least one assessor i

1

, say, for whom �

i

1

> �

0

. We conclude that

there is at least one perceiver out of n consumers within this panel. (Note that

we are not interested in judging which assessors have perceived the di�erence, but

only in the proportion of perceivers in all. The other problem would require a large

number of replications k

i

for each assessor and is usually not of great interest in

practice.) Hence we know that we might go to step 2: for all subsets of length n� 1

of assessors we test whether there is still at least one within each subset who might
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perceive the di�erence. Of course, knowing that in most of these subsets assessor i

1

will be included, it is not of much use testing all these hypotheses once again.

Remembering the test problem under consideration, in this second step we only

want to know whether there is at least one perceiver in each subset of length n� 1.

In this step, we use the binomial distribution with (n�1)k observations. As it is well

known, we will reject the null hypothesis and assume the alternative whenever the

observed total number of correct answers is too large. Thus we may con�ne ourselves

to the case in which this number is the smallest within all cases. Obviously, this is

the case in which the assessor with the most correct answers is removed from the

complete set. In case there are several assessors with this number of successes, we

have di�erent possibilities. Fortunately this has no inuence on the outcomes, i. e.

it makes no di�erence which one will be removed. Let i

1

denote the assessor that is

removed now.

For the next step, note that in case we reject the null hypothesis without the

assessor mentioned before, we also would have rejected this hypothesis leaving out

any other assessor. In all those cases, the observed test statistic would have been

larger (or at least not smaller) while the critical value remains the same. Hence,

we implicitly have tested all other hypotheses. This allows us to proceed with the

next step according to Marcus et al. (1976) and to the procedure described above,

namely to test the hypotheses with any subset of length n � 2 of the assessors.

Again, we may con�ne ourselves to the subset in which one of the assessors with

the largest number of successes is removed and get to the next step, using subsets

of length n� 3.

Here, we have to pay attention to the inclusion condition of Marcus et al. (1976).

From all subsets of length n � 2, we explicitly considered only those determined

from the subset of length n� 1 chosen in step 2. The corresponding hypotheses, of
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course, could all be neglected, if the one considered in step 2 could be so, leaving

out the most successful assessor. On the other hand, consider the subsets of length

n � 2 that are determined from any other subset of length n � 1, leaving out any

other assessor but i

1

. The corresponding hypotheses imply that �

i

1

= �

0

, while this

is not included in the respective hypothesis for the subset of length n � 2 under

consideration. Hence, these hypotheses are not included in the one considered here.

Therefore it is not of any interest whether the hypotheses corresponding to the

subsets of length n�2 that are not determined from the subset of length n�1 from

step 2 could be rejected or not.

For the further steps, the following consideration is of additional importance:

Consider that not i

1

has been removed in the �rst step but i

2

, say. Then, in the

second step we might remove i

1

which hence results in a subset of importance for

the multiple testing procedure, but which has not been explicitly tested within

this procedure. However, this subset is obviously identical with the one derived by

removing i

1

�rst and then i

2

, i. e. this subset has indeed been tested, even though

derived in another way this time.

To summarize, without loss of generality, we assume the assessors to be numbered

such that the one with the most successes is assessor n and the one with the least

successes is assessor 1. For assessors with identical numbers, an arbitrary order

might be chosen. If now k

i

= k for all i, we may use the following procedure:

step 1: Test the set of null hypotheses \P

n

: �

i

= �

0

8 i 2 f1; :::; ng" versus

\9 i 2 f1; :::; ng : �

i

> �

0

" at level �.

step 2: If the set of null hypotheses in step 1 could be rejected, remove assessor

n (i. e. the one with most successes) from the data set and test the set

of null hypotheses \P

n�1

: �

i

= �

0

8 i 2 f1; :::; n � 1g" versus \9 i 2
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f1; :::; n� 1g : �

i

> �

0

" at level �.

step 3: If the set of null hypotheses in step 2 could be rejected, remove assessor

n� 1 (i. e. the one with the second most successes) from the data set and

test the set of null hypotheses \P

n�2

: �

i

= �

0

8 i 2 f1; :::; n� 2g" versus

\9 i 2 f1; :::; n� 2g : �

i

> �

0

" at level �.

: : :

step l: If the set of null hypotheses in step l�1 could be rejected, remove assessor

n� l+2 (i. e. the one with the (l�2)-most successes) from the data set and

test the set of null hypotheses \P

n�l+1

: �

i

= �

0

8 i 2 f1; :::; n� l + 1g"

versus \9 i 2 f1; :::; n� l + 1g : �

i

> �

0

" at level �.

: : :

In each step l, the appropriate test is the binomial test using the binomial dis-

tribution with parameter �

0

and (n� l + 1)k observations. The procedure stops as

soon as a set of null hypotheses cannot be rejected anymore. With it, we have a test

procedure for the initial problem from the beginning of this chapter which restrains

the type I error at level �.

To be precise, this procedure does not only hold the level �, but is conservative!

Assume that k = 3 in a triangle test, i. e. �

0

=

1

3

. Then the probability that a

single assessor succeeds thrice by pure guessing is given by

1

27

and therefore smaller

than, e. g., 5%. We would not expect a single assessor to give this results by chance

only. On the other hand, if we have 30 assessors who are pure guessers, we would

nevertheless expect one of those to give three correct answers. On the other hand,

if a perceiver has an overall success probability of

1

2

, say, he might succeed once or

twice only in three replications as well. Hence, if there are a lot of non-perceivers

within the panel and only few perceivers with a moderate success probability, we



12 MICHAEL MEYNERS

will probably remove some of the non-perceivers from the data set instead of the

perceivers, which is due to their larger success rate by chance. On the other hand,

this cannot be helped, since we cannot judge by any means which particular assessors

perceived a di�erence, therefore the application of this conservative procedure is

essential to restrain the type I error rate at the given level �.

Finally, we may now go back to the initial test problem, namely to test whether

or not there are at least l assessors out of n that perceive a di�erence at least once

in a while. For these assessors, �

i

> �

0

holds. Let the procedure stop in step

l, i. e. the corresponding hypothesis cannot be rejected anymore. Thus, from the

construction of the procedure described above, we have shown that there are at least

l� 1 perceivers at a signi�cance level of �. Hence, a (conservative) lower bound for

the proportion of perceivers within the panel is given by

l�1

n

.

Relation to the conventional approach

The most frequently used estimate for the average success probability above chance

within the consumers is given by

�̂��

0

1��

0

whenever this value is positive. Here, �̂ =

x

nk

is the ratio between the total number of successes x and the total number of assess-

ments nk. If we are interested in the proportion of perceivers within the consumers

Æ, say, the same estimator is mainly used, i. e. the estimator

^

Æ =

�̂ � �

0

1� �

0

:

This only seems to be justi�ed in case of an additional assumption: If we can assume

that the success probability in each trial is either 1 or �

0

and remains the same for

each assessor, this approach is reasonable and justi�ed. For the interpretation, this

means that whenever an assessor identi�es the odd sample at least once, she/he will

always identify it. However, this does not seem reasonable as far as the products do
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not di�er too much from each other such that each assessor always correctly identi�es

the odd sample. Furthermore, the estimate and the assumption might contradict

each other. For a triangle test, Meyners (2002) considers the case of n = 20 and

k = 3 in which all assessors give 2 correct answers each. Hence the conventional

estimate for the overall success probability above chance is given by

1

2

, which could

be a reasonable value. Contrariwise, using this one for the proportion of perceivers

as well given the conditions mentioned above, this does not make any sense: From

the assumption there cannot be any perceiver at all { none of the assessors identi�ed

the odd sample in each trial! On the other hand, such outcomes would give strong

hints that a large number of the assessors under consideration indeed perceived the

di�erence between the products once in a while. The results are far beyond chance

in case of product equality.

From the procedure proposed here, we would estimate a lower bound for the

number of perceivers to be given by

18

20

= 0:9, such that we would conclude that

most consumers will indeed detect the di�erence between the varieties of the product

under consideration. With it, we would claim that they are perceivers. Noting that

this is a lower bound, obviously the estimate given before does not seem realistic

at all. Hence, an additional information is available from this procedure. In this

extreme example, we would get a much better impression of the data from the lower

bound than from the conventional estimate only.

Note that the procedure presented here guarantees that we will estimate the num-

ber of perceivers by a value not smaller than

1

n

if and only if signi�cant di�erences

between the products by means of the binomial test with nk observations can be

proven (cf. Kunert and Meyners, 1999). This fact represents the well known dual-

ity between statistical signi�cance testing and con�dence intervals { we hence may

consider our value as a lower bound of a con�dence interval for the proportion of
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perceivers. Using this method might only result in a lower bound, while the upper

bound would be given by 1. Considering our procedure the other way round, we

might also end up with an upper bound. However, for this we would have to consider

the inverse test problems, i. e. for any l 2 f1; :::; ng

H

l

0

: �

i

> �

0

for at least n� l + 1 assessors

versus

H

l

1

: �

i

= �

0

for at least l assessors.

The values of �

i

cannot fall below �

0

whenever the experiment has been properly de-

signed. Hence the test problem is equivalent to re-writing the alternative hypotheses

as

H

l

1

: �

i

� �

0

for at least l assessors,

for which the appropriate statistical test is well known. In this case, we derive the

number l the other way round, i. e. we remove those assessors that give the smallest

number of successes. Using the same arguments as before, this will result in a lower

bound for the number of non-perceivers respectively an upper bound for the number

of perceivers. Adding an arbitrary value � to �

0

, we may even con�ne ourselves on

perceivers with a minimum success probability above chance, which is probably of

more interest within applications. If we are interested in a 10% success probability

above chance, we would therefore consider � = (1 � �

0

) � 0:1 and consider the test

problems

H

l

0

: �

i

> �

0

+ � for at least n� l + 1 assessors

versus

H

l

1

: �

i

� �

0

+ � for at least l assessors
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for l 2 f1; :::; ng. The non-perceivers then include those assessors with a slightly

increased success probability up to �

0

+ � as well. If we only consider the upper

bound, a lower one for the corresponding con�dence interval would be zero. Deriving

an upper bound may be of particular interest whenever we are interested in proving

similarity in case no di�erences occurred. In this context it is common practice to

consider di�erences only if they are larger than a pre-de�ned minimal e�ect size.

Note that we have to decide in advance about the con�dence interval of interest.

Considering an identical value of � to determine both the lower and the upper bound

would result in a two-sided interval. Even though it is clear from the construction

that at least either the lower bound is 0 or the upper bound is 1, we are not allowed

to make the decision about which one to consider according on the outcomes. This

would result in a two-sided con�dence interval at level 2�! If we are interested in a

two-sided one at level �, we have to perform the multiple test procedures at level

�

2

.

Examples

In what follows, we give some more examples to illustrate the properties of the

lower bound for the proportion Æ under consideration. All these examples refer to

the triangle test and some of them have been discussed in more detail by Meyners

(2002). Here, we aim to give an impression of the properties of the newly proposed

method with respect to some data given in the literature. For this issue, we generally

assume a 5% signi�cance level.

First of all, we consider three data sets that have been presented by Hunter,

Piggott and Lee (2000). In each test, the number of replications was k=12. In the

�rst trial, the number n of assessors was 30, whereas it was 24 in the second and 23

in the last set. The numbers of assessors giving x right answers, x 2 f0; 1; :::; 12g,

are given in table 1.
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x 0 1 2 3 4 5 6 7 8 9 10 11 12 total

exp. 1 0 0 1 2 3 7 8 6 2 1 0 0 0 170

exp. 2 1 0 1 5 5 3 3 3 1 2 0 0 0 117

exp. 3 0 0 2 1 1 4 3 6 3 1 0 1 1 147

Table 1: Number of assessors with x right answers and total number of successes

for the three experiments reported by Hunter et. al. (2000).

For the �rst data set, the average success probability above chance would be

estimated by

3

2

�

170

360

�

1

3

�

� 0:21 by means of the conventional approach. At a 5%-

level we identify 13 perceivers, leading to

^

Æ =

13

30

� 0:43. Hence we conclude that

at least 2 out of 5 consumers �gure out the di�erence once in a while. Maybe we

would not worry about a �fth of the consumers �guring out the di�erence always,

but we might worry about 2 out of 5 �guring it out every second trial, which would

be about the case if the lower bound would be the true value. Hence this seems

to be a value that might indeed matter! The additional information may help the

investigator to draw the appropriate conclusions from the experiment.

For the second experiment, we get a quite di�erent result. Only two perceivers

are found by means of our procedure. Hence we calculate

^

Æ =

2

24

� 0:08 for the

lower bound, which is very small and quite similar to the estimator for the success

probability above chance derived from the conventional approach of about 11%.

For the third experiment, using our approach we estimate the number of perceivers

to be 11 out of 23. Hence we get

^

Æ =

11

23

� 0:48. In this case, the estimate for

the success probability above chance derived from �̂ in the conventional approach

is given by about 30%. Again, we would claim that the results might lead to a

di�erent interpretation. Knowing that at least one half of the consumers will �nd

the di�erence once in a while (but with a probability up to 60%) might be much

worse than less than a third of the consumers �nding the di�erence always. Maybe
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much smaller production costs could account for a loss of some of these purchasers,

but most likely not up to a 50% loss.

Furthermore, the data set from the �rst example of Brockho� and Schlich (1998)

will be considered. The data can be found in table 2 and contains the results for

n = 12 assessors and k = 4 replications each.

x 0 1 2 3 4 total

number of assessors 2 2 4 2 2 24

Table 2: Number of assessors with x right answers and total number of successes

for the �rst experiment reported by Brockho� and Schlich (1998).

In this experiment, using our approach we �nd only one perceiver out of 12 as-

sessors, thus

^

Æ � 0:08. At the same time, the estimator for the success probability

above chance is about 0.25. In this case, the lower bound can be assumed to be

rather conservative. If the value of 0.25 is valid, we would conclude that at least

three out of twelve assessors should have found the di�erence. This example shows

that the true number of perceivers might indeed be reasonably larger than the lower

bound derived from our approach.

Finally, we refer to the data presented by Priso, Danzart and Hossenlopp (1994).

They consider n = 6 and k = 10 for the �rst respectively n = 8 and k = 12 for the

second experiment. The outcomes are given in table 3.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 total

exp. 1 0 0 2 1 1 0 0 2 0 0 0 25

exp. 2 0 0 2 1 2 0 2 0 0 0 1 0 0 37

Table 3: Number of assessors with x right answers and total number of successes

for the two experiments reported by Priso et al. (1994).
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For the �rst experiment, the estimated success probability above chance is about

13%, while we cannot even prove signi�cant di�erences between these products, i. e.

the 5% lower bound from our approach is zero. From this data, it might seem that

there has to be at least one perceiver, otherwise we could not have observed two

assessors with seven correct answers each. However, the p-value of the global test

for product equality is 0.11. Using the method the other way round, for an e�ect

size of 50%, i. e. an average success probability of

2

3

(cf. Schlich 1993), we can show

that at least one half of the assessors does not perceive the di�erences with such a

large probability. Hence if we were only interested in that large e�ects, we could

conclude that at least one half of the consumers will not �nd the di�erence that

often.

For the second experiment, the conventional approach results in an estimate of

about 8% for the success probability above chance, while once more we cannot even

prove signi�cant di�erences. Nevertheless, in this experiment it seems that there

is again at least one perceiver: 10 successes out of 12 trials is very unlikely due to

chance only, but here the number of assessors is too small to prove the alternative,

as it is in the �rst example. Considering e�ect sizes according to Schlich (1993) for

this example and considering the number of non-perceivers once again, for a 25%

e�ect size we would have claimed that at least one assessor is a non-perceiver, while

for a 50% e�ect size it would have been three of them.

Looking at the original data, we might have found one specialist with respect to

this product among our assessors, whilst the greatest part of consumers does not

really �nd any di�erences. This might explain why there is only one assessor with

such a large number of successes, while the second-best assessor has only six. Hence

a much more reasonable design might have been to use 24 assessors and let them

replicate only four-times each, say.



PERCEIVERS IN REPLICATED DIFFERENCE TESTS 19

Conclusions and outlook

The main concern of this paper was to propose an approach in order to estimate the

minimal proportion of perceivers in repeated di�erence tests. By means of a simple

example, we have shown that identical average success probabilities might be due

to very di�erent assessor performances. Here, the information about the minimal

number of perceivers might be of great interest for the investigator. On the basis

of a set of hypotheses that is closed unter intersection, we have developed a testing

procedure. This procedure allows to test subsequent hypotheses while the type I

error rate will not exceed the overall signi�cance level �. With the help of multiple

test theory we may therefore subsequently test whether there are at least n� l non-

perceivers out of n assessors, while l increases from 1 to n. If such a hypothesis is

rejected, we know that there are at least l perceivers within the panel, i. e. assessors

that might detect the di�erence between the products at least once in a while.

In several examples, we have shown that the proposed approach leads to reason-

able lower bounds according to the given data structure. Thus we have an additional

information to judge whether all successes have been given by a few assessors only or

whether all assessors might have provided a similar number of successes. Contrari-

wise, also examples exist in which the lower bound will not provide any additional

information compared to the average success probability of the assessors.

Resulting in a con�dence bound, the outcomes of our method obviously depend

on the chosen level �. As it has been shown in the examples, with a small number

of assessors we sometimes may not identify any perceivers at all at a 95%-level, even

though it seems that there have to be some. For a �xed total number of assessments

we therefore propose the use of less replications in favor of more assessors whenever

it is possible (cf. Meyners and Brockho�, 2002). Furthermore, it has been stated

that the method is rather conservative due to its construction.
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If concerns are given to similarity testing, this approach may be easily adapted to

derive an upper bound for the number of perceivers, while we may respect for the

fact that only e�ect sizes of at least some pre-determined amount are of interest.

Finally, it has been stated that a distribution for the success probability of the

perceivers could be assumed. For this, e. g., the Beta-binomial model might be

used (Ennis and Bi 1998, Bi and Ennis 1999a, b). This model has been adapted

by Brockho� (2002) in order to save the success probability from falling below �

0

,

the success probability of pure guessing. The use of appropriate models may lead

to more sophisticated estimates of the proportion under consideration. Maximum

likelihood estimators may be derived in these cases. These have quite nice proper-

ties, but are relatively hard to determine and therefore rarely used. Furthermore,

a textual justi�cation of the assumptions is hard to determine, neither exist appro-

priate tests for these assumptions to the author's knowledge. Even more, with the

approach presented here, misspeci�cations of the model might be detected when-

ever the estimated proportion of perceivers within the model falls below the bound

derived by our approach. Hence this method might easily provide the investigator

with some additional information. Even though the theory of our approach needs

some technical e�orts, the application of this method is considerably simple.
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