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Abstract

We propose a new test for the comparison of two regression curves, which is based on a
difference of two marked empirical processes based on residuals. The large sample behaviour
of the corresponding statistic is studied to provide a full nonparametric comparison of regres-
sion curves. In contrast to most procedures suggested in the literature the new procedure
is applicable in the case of different design points and heteroscedasticity. Moreover, it is
demonstrated that the proposed test detects continuous alternatives converging to the null
at a rate N~1/2. In the case of equal design points the fundamental statistic reduces to a test
statistic proposed by Delgado (1993) and therefore resembles in spirit classical goodness-of-
fit tests. As a by-product we explain the problems of a related test proposed by Kulasekera
(1995) and Kulasekera and Wang (1997) with respect to accuracy in the approximation of
the level. These difficulties mainly originate from the comparison with the quantiles of an
inappropriate limit distribution.

A simulation study is conducted to investigate the finite sample properties of a wild
bootstrap version of the new tests.

AMS Classification: Primary 62G05, Secondary 60F15, 60F17
Keywords and Phrases: comparison of regression curves, goodness-of-fit, marked empirical process,
VC-classes, U-processes

1 Introduction

The comparison of two regression curves is a fundamental problem in applied regression analysis.
In many cases of practical interest (after rescaling the covariable into the unit interval) we end up



with a sample of N = n; 4+ ny observations
(11) KJ:fZ(ij)+O'¢(X1J)8”, jzl,,nz, 1= 1,2,

where X;; (j = 1,...,n;) are independent observations with positive density r; on the interval
[0,1] (¢ = 1,2) and ¢;; are independent identically distributed random variables with mean 0 and
variance 1. In equation (1.1) f; and o; denote the regression and variance function in the i-th
sample (i = 1,2). In this paper we are interested in the problem of testing the equality of the
mean functions, i.e.

(12) HO . f1 = f2 versus H1 . f1 7£ f2.

Much effort has been devoted to this problem in the recent literature [see e.g. Hérdle and Marron
(1990), King, Hart and Wehrly (1991), Hall and Hart (1990), Delgado (1993), Young and Bowman
(1995), Hall, Huber and Speckman (1997), Dette and Munk (1998) or Dette and Neumeyer (1999)].
Most authors concentrate on equal design points and a homoscedastic error [see e.g. Hérdle and
Marron (1990), Hall and Hart (1990), King, Hart and Wehrly (1991), Delgado (1993)]. Kulasekera
(1995) and Kulasekera and Wang (1997) proposed a test for the hypothesis (1.2) which is applicable
under the assumption of different designs in both groups, but requires homoscedasticity in the
individual groups. In principle this test can detect alternatives which converge to the null at a
rate N~/2 (here N = n; +ny denotes the total sample size), but in the same papers these authors
mention some practical problems with the performance of their procedure, especially with respect
to the accuracy of the approximation of the nominal level.

To our knowledge the problem of testing the equality of two regression curves in the general
heteroscedastic model (1.1) with unequal design points was firstly considered by Dette and Munk
(1998) who considered the fixed design and proposed a consistent test which can detect alternatives
converging to the null at a rate N~%* under very mild conditions for the regression and variance
function (i.e. differentiability is not required). Recently Dette and Neumeyer (1999) proposed
several tests for the hypothesis (1.2) which are based on kernel smoothing methods and applicable
in the general model (1.1). These methods can detect alternatives converging to the null at a rate
(NV/h)~'/2 where h is a bandwidth (converging to 0) required for the estimation of nonparametric
residuals.

It is the purpose of the present paper to suggest a new test for the equality of the two regression
curves f, and f, which can detect alternatives converging to the null at a rate N~Y/2 and is
applicable in the general model (1.2) with unequal design points and heteroscedastic errors. The
test statistic is based on a difference of two marked empirical processes based on residuals obtained
under the assumption of equal regression curves. We prove weak convergence of the underlying
empirical process to a Gaussian process generalizing recent results on U-processes of Nolan and
Pollard (1987, 1988) to two-sample U-statistics. The asymptotic null distribution of the test
statistic depends on certain features of the data and the finite sample performance of a wild
bootstrap version is investigated by means of a simulation study.

We finally note that marked empirical processes have already been applied by Delgado (1993)
and Kulasekera (1995) and Kulasekera and Wang (1997) for testing the equality of two regression
functions. However, Delgado’s (1993) approach sensitively relies on the assumption of equal
design points and homoscedastic errors because the marked empirical process is based on the
differences of the observations at the joint design points. The method proposed in this paper



uses two marked empirical processes of the residuals for both samples, where the residuals are
obtained from a nonparametric estimate of the (under Hy) joint regression function from the total
sample. Moreover, in the case of equal design points the basic statistic considered here essentially
reduces to the test statistic considered by Delgado (1993). On the other hand the methods
proposed by Kulasekera (1995) and Kulasekera and Wang (1997) require a homoscedastic error
distribution. Moreover, these authors mention some practical problems because the performance
of their procedure depends sensitively on the chosen smoothing parameters for the estimation
of the regression curves and larger noises yield levels substantially different from the nominal
level. As a by-product of this paper we will prove that the problem with the accuracy of the
approximation of the nominal level is partially caused by a substantial mistake in the proof of
Theorem 2.1 and 2.2 in Kulasekera (1995), because this author ignores the variablitiy caused by
the nonparametric estimation of the regression function in the application of Donsker’s invariance
principle.

The present paper is organized as follows. Section 2 introduces the marked empirical processes,
the corresponding test statistics and gives their asymptotic behaviour. Some comments regarding
the test of Kulasekera (1995) and a clarification of its asymptotic properties are given in Section
3. The finite sample behaviour of a wild bootstrap version of the discussed procedures is studied
in Section 4 which also gives a result regarding the consistency of a wild bootstrap. Finally, all
proofs are deferred to the appendix.

2 A marked empirical process and its weak convergence

Recall the formulation of the general two sample problem (1.1). We assume that the explanatory
variables X;; (j = 1,...,n;) are i.i.d. with positive density r; on the interval [0,1] (¢ = 1,2). The
regression functions f1, fo and the densities 71,7, are supposed to be r (> 2) times continuously
differentiable, i.e.

(21) ri, fi € CT([O, 1]), 1=1,2.

Throughout this paper let

2 ng

1 v — Xi;
2.2 A1) = —— K(i")
(22) ) =y LK,
=1 j=1
denote the density estimator from the combined sample Xii,..., Xy, Xo1, ..., X9, where h
denotes a bandwidth satisfying
(2.3) h—0, NhR" =0, h"logN —0, Nh* —

and K is a symmetric kernel with compact support of order r > 2, i.e.
. 1 0 7=0
(—1) . =
(2.4) S K(u)u du=1< 0 c1<ji<r-1
i k.#0 : j=r




[see Gasser, Miiller and Mamitzsch (1985)]. We assume that there exists a decomposition of the
nonnegative axis of the form

[0,00) = U[%’—b a;)

0=a <a < ... <ay1 < a, = 00) such that for some ¢ € {—1,1} the function eK
is increasing on the interval [agj, as;+1) and decreasing on the interval [agji1, agjt2). A straight-
forward argument shows that

(2.5) Plaz) =5 r() i= kari (@) + Koo (2)

as N — oo, provided that sizes of the individual samples satisfy

(2.6) ”N = ki + O

1

y) i=12,

where k; € (0,1),7 = 1, 2. The Nadaraya-Watson estimator of the regression function [see Nadaraya
(1964) or Watson (1964)] from the combined sample is defined by

& i = S 3SR (R

and consistently estimates

k171 () f1 () + Kora(z) fa () '

r(z)

Note that under the null hypothesis of equal regression curves we have f; = fo = f. For i = 1,2
we define residuals

(2.8) eij = (Yi — f(Xiy))7(X55)

f(x) =

(2.9) fii = Yy — f(Xy)

and consider the marked empirical processes

. 1 — 1 &

(2.10) RY(0) = 5 2 enl{Xy <t} = 5 D e {Xo < 1)
7=1 7j=1
. 1 & 1 &

(2.11) RY(W) = 5 D hl{Xy <t} = 5 Dl {Xy < 1)
j=1 =1

where ¢ € [0,1] and I{-} denotes the indicator function. The multiplication of the residuals
(2.9) with the density estimator 7(z) yields the residuals (2.8) and as a consequence a simpler

asymptotic analysis of the process RS\}) [see the following Proposition 2.1 and Theorem 2.2]. On the
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other hand the form of RS\?) is attractive because it reduces for equal design points (i.e. n; = ng,
X1 =Xy, j=1,...,m1) to the process considered by Delgado (1993). The following proposition
indicates that the marked empirical processes defined in (2.10) and (2.11) are useful for testing
the hypothesis (1.2) of equal regression curves. The proof is given in the appendix.

Proposition 2.1. Assume that (2.1), (2.3), (2.4) and (2.6) are satisfied, then

~

B[R] = 20 [ (1)~ SaDn@rata) e +O0)

E[RD0)] = 2mamy /0 (fi(e) - fz(x))% dz + O(h").

Note that .
/0 ((#) = @) (@)ra(@) dz = 0 V¢ e [0,1]

if and only if the hypothesis (1.2) is valid. Consequently, a test for the hypothesis of equal
regression curves could be based on real valued functionals of the processes (2.10) and (2.11) such
as (i =1,2)

ro, i
| 0 s 1790
0

te[0,1]

The asymptotic distribution of these statistics can be obtained by the continuous mapping theo-
rem [see e.g. Pollard (1984)] and the following result which establishes weak convergence of the

processes ]A%E\l,) and ]A%E\Z,) in the Skorokhod space D|0, 1].

Theorem 2.2. Assume that (2.1), (2.3), (2.4) and (2.6) are satisfied, then under the null hypoth-

esis of equal regression curves the marked empirical process v/ NRE\I,) defined by (2.10) converges
weakly to a centered Gaussian process ZW) in the space D[0, 1] with covariance function

sAL

(2.12) HW(s,t) = 4/0 (07 (2)kara(x) + 03 (x)kyry () K17y (1) Koo (1) dav.

Similarly, the process \/NRE\?) defined by (2.11) converges weakly to a centered Gaussian process
7@ in the space DI[0,1] with covariance function

(213) H®(s,1) = 4 /0 (03 (x)kars (@) + o3 (@)kar (2) = (i)(ZZ}TQ(x) da.

Remark 2.3. It is worthwhile to mention that the statement of Theorem 2.2 does not depend
on the specific smoothing procedure used in the construction of the processes. For example, a
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local polynomial estimator [see Fan (1992) or Fan and Gijbels (1996)] can be treated similarly but
with a substantial increase of the mathematical complexity. Note that local polynomial estimators
have various practical and theoretical advantages such as a better boundary behaviour and they
require weaker differentiability assumptions on the design densities. We used the Nadaraya-Watson
estimator because for this type of estimator the proof of the VC-property for certain classes of
functions is much simpler compared to local polynomial estimators [see, for example, the proof
of Lemma 5.2a]. Nevertheless Theorem 2.2 remains valid for local linear (or even higher order)
polynomial estimators and we used local linear smoothers in the simulation study presented in
Section 4.

Remark 2.4. The tests obtained from the continuous mapping theorem and Theorem 2.2 are
consistent against local alternatives converging to the null hypothesis at a rate 1/4/N. This follows
by a careful inspection of the proof of Theorem 2.2, which shows that for local alternatives of the
form f1(-)— f2(-) = A(-)/v/'N the marked empirical processes \/N]A%S\Z,)() (i = 1,2) converge weakly
to Gaussian processes with respective covariance kernels H("(-,-) given in Theorem 2.2 and mean

pM(t) = 21@1&2/ A(x)ry (x)re(z)dz

pA(t) = 2/{1/{2/ Az Tl *) ( )dx

respectively. These results can be used for an asymptotic comparison of tests based on R%) and

]%5\2,), which in general depends on the particular alternative under consideration. For example, if
A(-) =1 and o?(+) = 02(-) = 02 we have

EODE  mmlfy n@r@dd? ke @@
HO(t,t) o2 [Tr)(2)ry(a)r(e)de S /0 r(z) do = H®(t,t)’

where the inequality follows by the Cauchy-Schwarz inequality. This indicates a better perfor-
mance of statistics based on the process RE\Z,) for smooth one-sided local alternatives.

Remark 2.5. The results can easily be extended to the comparison of k£ regression curves in the
model

For a generalization of the statistic RS&) consider the residuals

~

e = (Vo — fOX0)FO(Xp), i=1,.. k-1

(j e {i,i+1},£¢€{1,...,n;}) where f® and 7 denote the Nadaraya-Watson and the density
estimator from the combined ith and (i + 1)th sample. If N = >>¥ n; denotes the total sample
size,

2|

1



ng i1

5 1 . 1 ; .
Ry =~ e X<t} - ~ S el X <ty (i=1,... k1),
(=1 =1

then it follows that ]%5\1,) (t) :== (Rg\})l t),..., R%Lfl(t))T converges weakly to a (k — 1)-dimensional
)

: 1 1 : .
Gaussian process (Z;7,..., Z,(ch)T with covariance structure

Cov(Z7 (1), 2§ (5)) = kij(s A 1)
where kij = I{Iji, (] S Z) and

( 4f0u(ai2(a:)ffi+1ri+1(:r) + UZ-ZH(x)/{iri(x))ﬁimi+1ri(x)ri+1(x)dx if j=1

kij(u) = ¢ —4 [ o2 (@)kj_1kk5 01751 (@) (2)rja (o) de if j=i+1

L 0 if j>i+1.

3 Some remarks on related tests

As pointed out in the introduction the application of empirical processes has already been pro-
posed by several authors. Among many others we refer to An and Bing (1991), Stute (1997),
who considered the problem of testing for a parametric form of the regression and to the recent
work of Delgado and Gonzédlez-Manteiga (1998), who used this approach in the construction of
a test for selecting variables in a nonparametric regression. In the context of comparing regres-
sion curves empirical processes were already applied by Delgado (1993) and Kulasekera (1995),
Kulasekera and Wang (1997) and recently in an unpublished report by Cabus (2000). Delgado
considered equal design points (i.e. n; = ny; Xy; = Xy and a homoscedastic error distribution)
and the process Rg\?) reduces in this case to the process introduced by Delgado (1993). Kulasekera
(1995) and Kulasekera and Wang (1997) discussed the case of not necessarily equal design points
and homoscedastic (but potentially different) errors in both samples. In this case these authors
proposed a test also based on a marked empirical process and investigated its finite sample per-
formance by means of a simulation study. In the same papers Kulasekera (1995) and Kulasekera
and Wang (1997) mention some difficulties with respect to the practical performance of their pro-
cedure. They observed levels substantially different from the nominal levels in their study and
explained these observations by the sensitive dependency on the bandwidth. We will demonstrate
in this section that these deficiencies are partially caused by the use of incorrect (asymptotic)
critial values.

To be precise consider the model (1.1) in the case of a fixed design X;; =¢;; (j =1,...,n;; ¢ =1,2)
satisfying a Sacks and Ylvisacker (1970) condition

tij ,]
0 .



let f; denote the Nadaraya-Watson estimator from the ith sample (i = 1,2) using bandwidth h;
(1 =1,2) and define residuals by

éu:Yu—Jg(tU), t=1,...,m
€y = Yoj — fi(ty;), j=1,...,n,.

The corresponding partial sums are given by

—

nitj -
eij

Vi

and the following result specifies the asymptotic distribution of these marked empirical processes.

(3.2) (1) = 0<t<l; i=1,2,

J

Theorem 3.1. If the assumptions (2.1), (2.3), (2.4), (2.6) and (3.1) are satisfied, then under
the null hypothesis of equal regression curves the marked empirical process py defined in (3.2)
converges weakly to a centered Gaussian process with covariance function

()
RoTo(x)

RTY(sAt)
(3.3) maa(s,t) = /0 (07 (2)kory(z) + 03 () K171 (T))

where Ry(t) = f(f r1(z) dx denotes the cumulative distribution function corresponding to the design
density ry.

Similarly, the process py converges weakly to a centered Gaussian process with covariance function
ma1 (57 t)

Note that Kulasekera (1995) considered a homoscedastic error and claimed in his proof of Theorem
2.1 [Kulasekera (1995)] weak convergence of u; to a centered Gaussian process with covariance
function m;(s,t) = o? - (s At), which is usually different from m;3_;(s,t) [an exception is the case
of the uniform design and equal homoscedastic variances in both groups]. For these reasons some
care is necessary if the test of Kualsekera is applied. We finally remark that Kulasekera (1995)
and Kulasekera and Wang (1997) discussed several related tests and similar comments apply to
these procedures.

In the case of a random design the processes (3.2) have to be modified because in this case the
observations are not necessarily ordered. A minor modification given by

1 & " _
N Z(Y;j — foi(Xip)) I{Xy; <}, i=1,2,
) ]:1

could be considered, which yields a slightly simpler covariance structure of the Gaussian process.

(3.4) AV () =

Theorem 3.2. If the assumptions (2.1), (2.3), (2.4) and (2.6) are satisfied, then under the null

hypothesis of equal regression curves the marked empirical process )\%) defined by (3.4) converges
weakly to a centered Gaussian process with covariance function mis(Ri(s), Ry(t)) where myy is

8



defined in (3.3) and Ry denotes the distribution function of Xy;. Similarly, the process )\53) con-
verges weakly to a centered Gaussian process with covariance function maoi(Ra(s), Ra(t)), where
ma1(s,t) = mya(t, s) and Ry is the distribution function of X;.

A rather different method to the problem of comparing regression curves was recently proposed
by Cabus (2000), who considered the U-process

ny N

X — X
ZZYM Vo) K (S5 ) [ < 8, X < 1),

(3.5) Un(

nlnzh

Note that this approach is similar to a method introduced by Zheng (1996) in the context of
testing for the functional form of a regression. Cabus (2000) proved weak convergence of the

process vV NUy to a centered Gaussian process with covariance function 4(%}[(1)(5, t) defined

K1K2)

n (2.12). It also follows from Cabus (2000) that the asymptotic behaviour with respect to local
alternatives is exactly the same as for the process RS&) [see Remark 2.4].

4 Wild bootstrap and finite sample properties

Throughout this section we will study the finite sample properties of a test based on the Kol-
mogorov Smirnov distance . »
(4.1) KY = sup [RY(®)], i=1,2,

te[0,1]
which rejects the hypothesis of equal regression curves for large values of K](é). In principle critical
values can be obtained from Theorem 2.2 and the continuous mapping theorem. However, it is well
known [see e.g. Hjellvik and Tjostheim (1995), Hall and Hart (1990)] that in similar problems of
specification testing the rate of convergence of the distribution of the test statistic is usually rather
slow. Additionally the asymptotic distributions of the Gaussian processes obtained in Theorem
2.2, 3.1 and 3.2 usually depend on certain features of the data generating process and cannot be
directly implemented in practice. For this reason we propose in this section the application of a
resampling procedure based on the wild bootstrap [see e.g. Wu (1986)] and prove its consistency
[see Theorem 4.1 below|. The finite sample properties of the resulting tests are then investigated
by means of a simulation study. To be precise let fg (x) denote the Nadaraya-Watson estimator of
the regression function from the total sample defined in (2.7) using the bandwidth g > 0, where
this dependency has now been made explicit in our notation. Define nonparametric residuals by

(4.2) i =Yy — f,(X) G=1,....n;i=12)

and bootstrap residuals by

(4.3) €ij = €y Vi

where Vi1, Vig, ..., Vi, Vo1,..., Vo, are bounded i.i.d. zero mean random variables which are
independent from the total sample

(4.4) Yy = {Xij,Yij li=1,2j= ln}

9



We obtain the bootstrap sample

(45) = fg( ) z]

and the corresponding marked empirical processes

ny

2

Ry (1) = %ZZ (Vi = B (Xe))in(X0) [{X < 1)
2

R0 = Z i~ Ji (X)) Xy < 1)

=

where throughout this section the index * means that the process has been calculated from the
bootstrap sample (4.5). Note that we use the bandwidth A for the calculation of the test statistic
(which is indicated by the extra index in f,’{ and 75,) and a bandwidth g for the calculation of the
residuals. Let K](\?* (1 = 1,2) denote the statistic in (4.1) obtained from the bootstrap sample,
then the hypothesis of equal regression curves is rejected if K](é) > k}‘v(?_a, where kj\gil)_a denotes
the critical value obtained from the bootstrap distribution i.e. , 7

PKY > ky o | Vv =a, i=12

The consistency of this procedure follows from the continuous mapping theorem and the following
result, which establishes asymptotic equivalence (in the sense of weak convergence) of the processes

\/N]A%E\Z,) and \/N]A%E\Z,)* in probability conditionally on the sample V.

Theorem 4.1. If the assumptions of Theorem 2.2 and the bandwidth conditions

(4.6) g—0, VNgh—oo, Ng” =0, ¢ logN—0, h" = 0(\/9)

are satisfied, then the bootstrapped marked empirical process Rg\i,)* converges under the null hypoth-

esis of equal regression curves weakly to the centered Gaussian process ZW(i = 1,2) of Theorem
2.2 1n probability conditionally on the sample Yy .

For the sake of comparison we will also discuss tests based on the approach proposed by Kulasekera
(1995) and Cabus (2000). More precisely, we use the generalization of Kulasekera’s approach to
the random design case and reject the hypothesis of equal regression curves for large values of the
statistic

(4.7) Ly = max{ sup [\ (1)], sup [\ (1)]}

te[0,1] te[0,1]

where the processes )\5\1,)(-) and )\5\2,)(-) have been defined in (3.4). Similarly, we consider the
statistic

(4.8) Cy = sup |Un(?)]

te[0,1]

10



where Uy is the process introduced by Cabus (2000) and defined by (3.5). The wild bootstrap
version of these tests is essentially the same as explained in the previous paragraph and an analogue
of Theorem 4.1 can be established following the steps of its proof in the appendix.

In our investigation of the finite sample performance of these procedures we considered a uni-
form density for the explanatory variables X;; and X,; (i.e. r = ry = 1), homoscedastic
errors in both samples given by o%(t) = 0.5,0%(t) = 0.25 and the sample sizes (n,ng) =
(25, 25), (25, 50), (25,100), (50, 25), (50, 50), (50, 100). For the regression functions we used the fol-
lowing scenario

(i) filz) = folz) =0
(i) filz) = 0; fo(w) =
(4.9) (iii) fi(2) = 0; folw) =1
(iv) fi(z) = 0; fo(x) = sin(27x)
(v) filz) = 0; foz) =V
(vi) fi(z) = 0; fo(x) = 227

where the first case corresponds to the null hypothesis of equal regression curves. For the esti-
mation of the regression functions from the total and individual samples we used a local linear
estimator [see Fan and Gijbels (1996)] with the Epanechnikov kernel

K(r) = 50— )1 (),

which yields an equivalent kernel of order r = 4 [see Wand and Jones (1995), p. 125]. For the
bandwidths we used ) )
h— {TL10'2 + nooj }1/579 _ h5/4
(n1 —+ TLQ)Z

for the estimation from the combined samples and

2\ 1/5
hi:<a—’> L i=1,2

Uz

in the Nadaraya-Watson estimators of fl and f2 from the individual samples. The random variables
Vi; used in the generation of the bootstrap sample are i.i.d. random variables with masses (V5 +
1)/2v/5 and (v/5—1)/2v/5 at the points (1 —+/5)/2 and (1 + v/5)/2 (note that this distribution
satisfies E[Vi;] = 0, E[V;3] = E[V;}] = 1). The corresponding results are listed in Table 4.1, 4.2, 4.3
and 4.4 for the statistics K](VI), K](\?), Ly and Cly, respectively, which show the relative proportion of
rejections based on 1000 simulation runs, where the number of bootstrap replications was chosen
as B = 200. We observe a sufficiently accurate approximation of the nominal level in nearly all
cases. A comparison of the tests based on K](;) and K](\?) shows that the application of the marked
empirical process ]A%E\Z,) usually yields an improvement with respect to the power of approximately
5 —10% [see Table 4.1 and 4.2]. A further comparison with the statistic Ly [essentially proposed
by Kulasekera (1995)] shows that this procedure is comparable with the test based on the marked

empirical process ]%5\1,), except in the case of the oscillating alternative fy(x) — fi(x) = sin(27z),

11



which is nearly not detected by Ly [see Table 4.1 and 4.3]. However, the natural competitor for
Ly is the statistic K](VQ), because in the construction of the marked empirical processes )\S\i,) in (3.4)
we did not multiply the residuals with the density estimator of the denominator of the Nadaraya
and Watson estimate. A comparison of the tests based on Ly and K](\?) shows a substantial better

performance (with respect to power) of the test based on the statistic Kz(v?) [see Table 4.2 and 4.3].

Similarly, a comparison with Cabus’s approach shows that the test based on K z(v?) is more powerful

than the test based on Cy in all considered cases, especially under the oscillating alternative (iv)
[see Table 4.2 and 4.4]. Based on these observations and additional simulation results (which are
not displayed for the sake of brevity) we recommend to use functionals of the marked empirical

process RS?) in the problem of testing the equality of regression curves.

ny | no 25 50 100

a | 25% | 5% 10% | 2.5% | 5% 10% | 2.5% | 5% 10%
(i) | 0.030 | 0.056 | 0.112 | 0.024 | 0.048 | 0.099 | 0.018 | 0.047 | 0.093
(ii) | 0.479 | 0.593 | 0.720 | 0.593 | 0.718 | 0.809 | 0.630 | 0.746 | 0.824
25 | (iii) | 0.991 | 0.998 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
(iv) | 0.171 | 0.283 | 0.455 | 0.381 | 0.544 | 0.719 | 0.630 | 0.772 | 0.916
(v) 1 0.793 | 0.878 | 0.933 | 0.895 | 0.937 | 0.968 | 0.907 | 0.959 | 0.984
(vi) | 0.603 | 0.713 | 0.792 | 0.683 | 0.776 | 0.837 | 0.629 | 0.717 | 0.820
(i) |0.022 | 0.049 | 0.114 | 0.021 | 0.048 | 0.098 | 0.025 | 0.051 | 0.108
i) | 0.657 | 0.766 | 0.840 | 0.828 | 0.886 | 0.931 | 0.921 | 0.949 | 0.973
iii) | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
50 | (iv) | 0.180 | 0.295 | 0.458 | 0.441 | 0.598 | 0.785 | 0.755 | 0.868 | 0.959
(v) 1 0.920 | 0.960 | 0.983 | 0.987 | 0.991 | 0.997 | 0.999 | 1.000 | 1.000
(iv) | 0.765 | 0.843 | 0.899 | 0.919 | 0.956 | 0.971 | 0.958 | 0.999 | 1.000

Table 4.1 Rejection probabilities of a wild bootstrap version of the test based on K](;) [see (4.1)] for
various sample sizes and the regression functions specified in (4.9). The errors are homoscedastic
and have variances o3 = 0.5, 0% = 0.25.
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ny | neo 25 50 100

a | 25% | 5% 10% | 2.5% | 5% 10% | 2.5% | 5% 10%
i) | 0.024 | 0.055 | 0.120 | 0.029 | 0.053 | 0.111 | 0.021 | 0.056 | 0.110
ii) | 0.404 | 0.730 | 0.827 | 0.705 | 0.808 | 0.888 | 0.732 | 0.826 | 0.899
25 | (iii) | 0.998 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
(iv) | 0.163 | 0.290 | 0.579 | 0.381 | 0.537 | 0.741 | 0.617 | 0.779 | 0.908
(v) | 0.883 | 0.942 | 0.972 | 0.952 | 0.977 | 0.989 | 0.960 | 0.983 | 0.990
(vi) | 0.783 | 0.866 | 0.927 | 0.861 | 0.923 | 0.955 | 0.807 | 0.887 | 0.935
(i) |0.031 | 0.056 | 0.112 | 0.028 | 0.045 | 0.093 | 0.027 | 0.055 | 0.105
(ii) | 0.803 | 0.872 | 0.922 | 0.912 | 0.952 | 0.979 | 0.967 | 0.987 | 0.995
(iii) | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
50 | (iv) | 0.182 | 0.317 | 0.510 | 0.501 | 0.653 | 0.836 | 0.786 | 0.893 | 0.964
(v) |0.968 | 0.986 | 0.995 | 0.997 | 0.999 | 1.000 | 0.999 | 1.000 | 1.000
(iv) | 0.905 | 0.949 | 0.973 | 0.987 | 0.997 | 0.998 | 0.997 | 0.999 | 1.000

Table 4.2 Rejection probabilities of a wild bootstrap version of the test based on K](\?) [see (4.1)] for
various sample sizes and the regression functions specified in (4.9). The errors are homoscedastic
and have variances o3 = 0.5, 05 = 0.25.

ny | no 25 50 100

a | 25% | % 10% | 2.5% | 5% 10% | 2.5% | 5% 10%
i) | 0.029 | 0.053 | 0.101 | 0.033 | 0.066 | 0.122 | 0.025 | 0.049 | 0.113
i) | 0.594 | 0.704 | 0.810 | 0.649 | 0.759 | 0.857 | 0.667 | 0.777 | 0.834
25 | (iii) | 0.995 | 0.998 | 1.000 | 0.995 | 0.998 | 0.998 | 1.000 | 1.000 | 1.000
(iv) | 0.037 | 0.057 | 0.120 | 0.022 | 0.034 | 0.065 | 0.009 | 0.017 | 0.042
(v) | 0.865 | 0.934 | 0.966 | 0.913 | 0.948 | 0.976 | 0.891 | 0.939 | 0.976
(vi) | 0.799 | 0.858 | 0.913 | 0.826 | 0.888 | 0.930 | 0.790 | 0.869 | 0.912
(i) | 0.027 | 0.054 | 0.110 | 0.028 | 0.045 | 0.080 | 0.031 | 0.052 | 0.106
ii) | 0.805 | 0.883 | 0.935 | 0.909 | 0.953 | 0.983 | 0.948 | 0.969 | 0.988
iii) | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
50 | (iv) | 0.025 | 0.046 | 0.102 | 0.023 | 0.046 | 0.079 | 0.012 | 0.038 | 0.032
(v) 1 0.950 | 0.980 | 0.993 | 0.998 | 0.999 | 0.999 | 0.999 | 1.000 | 1.000
(iv) | 0.935 | 0.968 | 0.986 | 0.987 | 0.995 | 0.999 | 0.986 | 0.995 | 0.988

Table 4.3 Rejection probabilities of a wild bootstrap version of the test based on Ly [see (4.7)] for
various sample sizes and the regression functions specified in (4.9). The errors are homoscedastic
and have variances o? = 0.5,0% = 0.25.
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ny | neo 25 50 100

a | 25% | 5% 10% | 2.5% | 5% 10% | 2.5% | 5% 10%
i) | 0.026 | 0.048 | 0.102 | 0.037 | 0.060 | 0.121 | 0.017 | 0.053 | 0.118
ii) | 0.582 | 0.702 | 0.808 | 0.636 | 0.757 | 0.844 | 0.653 | 0.763 | 0.834
25 | (iii) | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
(iv) | 0.062 | 0.090 | 0.137 | 0.048 | 0.057 | 0.103 | 0.030 | 0.045 | 0.062
(v) | 0.867 | 0.829 | 0.868 | 0.921 | 0.960 | 0.979 | 0.910 | 0.956 | 0.982
(vi) | 0.359 | 0.736 | 0.826 | 0.689 | 0.775 | 0.748 | 0.655 | 0.754 | 0.830
(i) | 0.022 | 0.055 | 0.106 | 0.020 | 0.041 | 0.080 | 0.029 | 0.051 | 0.104
ii) | 0.792 | 0.876 | 0.915 | 0.889 | 0.935 | 0.965 | 0.928 | 0.951 | 0.974
iii) | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
50 | (iv) | 0.046 | 0.079 | 0.149 | 0.048 | 0.076 | 0.134 | 0.022 | 0.038 | 0.068
(v) |0.968 | 0.988 | 0.995 | 0.992 | 0.998 | 0.999 | 1.000 | 1.000 | 1.000
(iv) | 0.854 | 0.906 | 0.955 | 0.929 | 0.957 | 0.980 | 0.941 | 0.961 | 0.983

Table 4.4 Rejection probabilities of a wild bootstrap version of the test based on Cy [see (4.8)] for
various sample sizes and the regression functions specified in (4.9). The errors are homoscedastic
and have variances o3 = 0.5, 05 = 0.25.

5 Proofs

For the sake of brevity we restrict ourselves to a consideration of the process ]%%) defined in (2.10).
The proofs for the process Rﬁ) are similar and therefore omitted.

5.1 Proof of Lemma 2.1
The expectation of the residuals in (2.8) is obtained as
Bley] = B |EYy(Xy) — f(Xi)7(Xi)|Xus, -, Xon,]

e

E [K(@) (fi(Xij) = fe(Xa)) I{ X5 < t}}

= ot [ () 60 - Rt dedy

N 75\37; /01 /Ot K<x ; y) (filz) = fs-i(y))ri(x)rs—i(y) dz dy

and a Taylor expansion and a standard argument yield

Bleg] = raci | (o) = faesla)rle)racs (o).
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Observing the definition of RS\}) we obtain
R t
B[RV®] = mime [ (file) = fela)n(@)na(o) do
0
t
v [ (fale) = fi@)rala)ri(z) da + O,
0

which establishes the assertion of the Lemma for the process R%)

5.2 Proof of Theorem 2.2
Recalling the definition of the residuals in (2.8)

(5.1) ey = 0i(Xyj)eit(Xig) + f(Xi)) 7 (X55) — f(Xip)(Xyy)

K(@) (f(Xij) — f( X))

and observing f; = f; under Hy we obtain by a straightforward calculation the decomposition
(5.2) RY(t) = Ru(t) + Sn(t) + Wa(t) + Vi (2)

where the processes Ry, Sy, Wy and Vy are defined by

(5.3) Ru(t) = %éal(xlj)gur(xu)f{xlj <t} - %iaz(xzj)gzjr(xzj)f{xzj <t}
(G4) Su(t) = gNﬁhéw(&m{ ez;(—wg;qw)z{x& <1} )
(5:5) Wlt) = é—lv—lg}vﬁh :lff(%)um — PTG < 1)
(56) V() = é—n”% o (Xig)es (F(X) = (X)) T{ Xy < 1}

The assertion of Theorem 2.2 now follows from the next Lemma and the following two auxiliary
results, which will be proved below.

Lemma 5.1. If the assumptions of Theorem 2.2 are satisfied, the process
Tn(t) = VN(Ry+Sy)
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converges weakly to a centered Gaussian process in the space D]0, 1] with covariance function given
by (2.12), where Ry is given by (5.3) and the process S' is defined by

(5.7) Sy(t) = i%iai()(ij)gij <% /OtK(Xz’jh— $>(_/<;1r1(:r) + Kora(w)) dx) .

1=

Proof. With the notation

(5.8) Ay(t) = o3(Xi))| (=) r (X)) I{X;; < t}+% /0 K(Xijh_x)(_mrl(:r) + Kora(2)) da

(i = 1,2) we decompose the process VN (Ry + S ) as follows

1
Tn(t) = VN(Ry(t) + Sy(1) = Y —= D eily().
— VN
For the covariance we obtain by a straightforward but cumbersome calculation

Cov(Tw(1), Tn(s)) = B Zal X1y)et A (1A (5) 1202 (X2)25; 80, (1) 2, (5)|

= / (I{y <t} +— ! /OtK(y;x)(—mrl(x)—i—@m(x))d:}:]
[ M{y < s}+— /Os K(?) (—k17m1 () + Rora(x)) dx] r1(y) dy

+ /ig/olag(y) [—r(y)]{y <t} + % /Ot K(y ; :r) (=K1 () + Kora(x)) dx]

X

[rtty s+ TR () ) ) ) d
= A + A

where the last equation defines the terms A; and As. The first term gives for s <t

—k17r1(x) + Kory(2)) dx ki1 (y) dy

+/0t0f(y)7"(y)%/0 K('y -

)l
+/saf(y)r(y)%/0 K( hw) — k11 (z) + Kora(z)) dz sy (y) dy
)

+/Olaf(y)%/ot i K( 2 K( ) (rra(@) + rara@)
)

(—k111(2) + Kora(z ))dxdzmrl(y) dy

>=
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N /osaf(y)(’flﬁ (y) + wara(y))*kari(y) dy
+2 /Osaf (v) (k1r1(y) + Kora(y)) (—r1r1(y) + Kora(y)) k1 (y) dy

+ /Osaf(y)(_fﬁ?”l(y) + 527”2(1/))2"@17"1(9) dy + o(1)

— 1 [ G )3 dy +o(1),
0
Now a similar calculation for the second term yields the claimed covariance structure, i.e.
Cov(Ty(t), T(s)) = 4 / ot (y)riri(y)rars(y) dy + 4 / 03 (y)rara(y)iri (y) dy + o(1)
0 0
= H(s,t) + o(1).

The central limit theorem for triangular arrays proves convergence of the finite dimensional dis-
tributions of Ty. Weak convergence now follows if

(5.9  E|(ITyw)—Tyw)*(Tnw) —Ty(u))?*| <C(w—u)? forall 0<u<v<w<l1

can be established [see Billingsley (1968); p. 128; or Shorack and Wellner (1986); p. 45-51]. To
this end we note that for two independent samples of i.i.d. bivariate centered random vectors
(az’;ﬂi)z’:l,...,nl and (%,5i)z':1,...,n2 the inequality

610)  E[(Y et 3n) (X a+Y6)] < mEig) +snie)Es
i=1 j=1 i=1 j=1
+no B[ 67] + 33 E[{]E[0] + mins E[of] B[67]
+nins B[ |E[B7] + dnins Elon 1| E[161]

holds which follows by similar arguments as stated in the proof of Theorem 13.1 in Billingsley
(1968). We now apply (5.10) for the random variables

(5.11) a; = e(An(w) —Au(v) , B =eni(Au(v) — An(uw)) ,
Vi = €2i(Agi(w) — Ag;(v)) , 05 = £2(Ag;(v) — Agj(u)) .

A straightforward but cumbersome calculation yields

Ela3] = /01 o (z) <r(a:)]{v <z <w}+ %/@w K(x ; Z)(—/ﬁrl(z) + Kara(2)) dz) 27"1(3;) dx
= /vw ot (2)r?(z)ri(z) do

+2 /w Uf(x)r(x)% /w K(x ; Z)(—/ﬁrl(z) + Kare(2)) dzry () dx

17



+/01 a%(x)(% /vw K(x;z)(—wl(z)+K2r2(z))dz)2r1(x) do

r —z

< o(1) (w—v)+0(1)/vw (%/01 VK () (i (2) + mara(2))ra () i) e

= 0(1) (w —u)

and similar arguments show that the terms E|[(3%], E[v?], E[6?], E|a1 3] and E[v,8;] are of the same
order. Similarly we have

E[a23?] = E[£4] /01 ot (x) (r(x)[{v <z <wh+ % /Uw K(z . "””) (—r171(2) + Kara(2)) dz>2
(r(x)[{u <z <uv}+ %/uv K(Z ; x) (—r17m1(2) + Kara(2)) dz)2r1(x) dx
_ o) (w };U)Z,

RS = O) (w—u)”

Now, a combination of these results with (5.11) and (5.10) yields
1 ni no 9 ni n9 9
B[(Tw(w) = Tw@)*(Tx(0) - Tu ()] = 5B[(De+> %) (D o+>6) ]
i=1 =1 i=1 j=1

= (O(0) + O (w—w)? = O)(w — u),

which establishes (5.9) and completes the proof of Lemma 5.1.

Lemma 5.2. If the assumptions of Theorem 2.2 are satisfied we have for the processes Sy and
Sy defined by (5.4) and (5.7)

(5.12) sup Sy (t) — Sy (t)| = o,(

te[0,1]

-

Lemma 5.3. If the assumptions of Theorem 2.2 are satisfied we have for the processes Vi and
Wy defined by (5.6) and (5.5)

1
(5.13) tiﬁﬁ]WN(t” = op(\/—N)

1
(5.14) t:l[ég}lWN(t)l = Op(\/—N)'
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In order to prove Lemma 5.2 and 5.3 we need some basic terminology from recent U-processes
theory. For more details we refer to Nolan and Pollard (1987, 1988) or Pollard (1984). Let F
denote a class of real valued (measurable) functions defined on a set S with envelope F. The
covering number Ny,(g,Q, F, F) of F (with respect to the probability measure @) is defined as the
smallest cardinality for a subclass F* of F such that

min Q|f — ffP < PQ(F?) forall feF

f* e]:*
and

t
J(t,Q,F,F) :/ log Ny(z, Q, F, F) dx
0

is called the covering integral. The class F is called euclidean, if there exist constants A and V'
such that

Nl(g, Q,F, F) < Ae7V.
The class F is called VC-class if its class of graphs
D = {GrlferF}

with
Gr={(s,t)|0<t < f(s) or f(s)<t<O0}

forms a polynomial class (or VC class); i.e. there exists a polynomial p(-) such that
4{DNFID €D} < p(#F)

for every fixed finite subset F' of S. We finally note that VC classes are euclidean [see Pollard
(1984), Lemma II 25] and that sums of euclidean classes are euclidean [see Nolan and Pollard
(1987), Corollary 17].

5.3 Proof of Lemma 5.3

We will restrict ourselves to the process Vi considered in (5.13), the remaining case (5.14) is very
similar and left to the reader. Recalling the definition of Vy in (5.6) we obtain the decomposition

(5.15) V() = V2@ + VP () + VP () + V) (1) + 0, (—=),

5

where

(5.16) VI = N12h iial(xlj)elj <K(@) - hrl(le)) [{Xy; < t}

j=1 k=1
9 I Xyj — Xog
(5.17) V]S,)(t) = N, ;;01()(1]')61]' <K<JT) - hTZ(le)> I{le <t}
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(5.18) V(1) = N%ZZ@ Xa)) ( (@)—hmm) [{Xy; <t}

4 -~ Xoj — Xop
(5.19) V() = NZhZ_;kz_:az Xoj)ez; < (%) - hrz(xzj)> I{Xy < t},

the remainder in (5.15) is obtained replacing ; by n;/N and vanishes uniformly with respect to
t € [0,1]. The assertion of Lemma 5.3 now follows by showing that all terms in (5.15) are of order
op(\/iﬁ) uniformly with respect to ¢ € [0, 1].

Lemma 5.3a. If the assumptions of Theorem 2.2 are satisfied we have for the statistics Vls,l) and
V]\(,4) defined by (5.16) and (5.19)

(1) 1
sup |[Vy'(t)| = o
te[0,1]| N (0] o ( /—N)
(4) _ 1
sup |Vy'(t)] = o .
te[0,1]| N ()] p( /—N)

Proof (of Lemma 5.3a). Both terms are treated exactly in the same way and we only consider
V]\(,l) which can be written as

ni ni

() = N12h Zzal(le)&j <K<w) - hrl(le)> I{Xy; <t}

+ N12h ;Ul(le)glj (K(O) - hrl(Xu)) I{le < t}

(5.20) = Iv@t) + 1)

where the last line defines the processes Iy and I](\}), respectively. For the lastnamed term we
obtain by a straightforward calculation

W o (y L
(5.21) tzl[éli]u )] = (Nh) Op(\/N)

where we have used the assumptions for the bandwidth stated in (2.3). The treatment of the
remaining term Iy in (5.20) is more complicated and requires some basic results from the treatment
of U-processes [see e.g. Nolan and Pollard (1987)]. To be precise observe that

3/2

(5.22) VNIy = 5Uni(9) = 0p(1)
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uniformly with respect to ¢ € [0, 1], where U, is a U-process defined by

ni ni

(5.23) o) = Sy

1=1

with & = (Xy;,1;) and symmetric kernel

521 (68 = = (K(F) - n(xy) ) ), <0

+ey <K<¥) . hrl(Xli)> o (X)) I{ X1 <t}

Following Nolan and Pollard (1988) we introduce the notation ¢;(z) = Elp(&1,£)|& = 2] and
obtain a Hoeffding decomposition for the process U, , i.e.

(5.25) U () = Un () + = Z (&)
where
(5.26) P(z,y) = ¢(x,y) — p1(x) — 1(y)

(note that Efp(&1,&)] = 0). Finally, consider a class of functions
(5.27) F = {goh,t 1te[0,1],h> 0},

where ¢ : [0,1] x R x [0,1] x R — R is defined by

(5.28) onal,y) = T <K(""”1 ;yl) _ hrl(x1)> o () a1 < t}

e (B () = (o) ) o) < 1)

It can be shown by a tedious calculation and similar arguments as in Noland and Pollard (1987),
Lemma 16, and Pollard (1984), Examples II 26, IT 38 that the class F and the induced class

(5.29) PF = {p1 | p1(z) = Elp(&1,&2) |62 = 2], p € F}

are euclidean. Note that the proof of this property requires the special assumption on the kernel
K stated in the paragraph following equation (2.4) [see Pollard (1984), Example II 38 and problem
IT 28, who considered the case of a decreasing kernel function on [0, o), which is a special case of
the situation considered here]. It therefore follows that for v > 0 the covering integral satisfies

j(fYJQ@Q,f,F) < al’)’_bl(’}’log’y—fy)
J(1,Q, PF,PF) < ayy —by(ylogy —7)



(for given constants a, by, as, by) and consequently the assumptions of Theorem 5 in Nolan and
Pollard (1988) are fullfilled. Now the second part in the proof of this theorem shows

(530 sup U, (7)] = Ol 7).

The assertion of the first part in Lemma 5.3a now follows from (5.30), (5.25), (5.22), (5.20) and
(5.21) if the estimate

(5.31) sup I—Zh%thnl &) = op(1)

te[0,1]

can be established, where

Xlz

(5.32)  @1en(€) = 1(&) = cui /K )ri(x) dx—hrl(Xli))al(Xli)I{Xli <t}.

To this end we make the dependence of the bandwidth from the sample size explicit by writing
h = h,, and introduce the notation

tE[O,l]}.

We use similar arguments as given in the proof of Theorem 37 in Pollard (1984, p. 34). To be

precise define
— 1 5. = 2r+1
Oy, = e 0 Om = chi

ni

(5.33) Foy = {sol,t,hnl

where ¢ is a constant chosen such that

P = [ 2O [ K@ - hune) nea:

1

=32, [ A ( [ K@+ ho) = nE@)di) nds < 1n

Let F denote the envelope of the class PF defined by (5.29) (note that F,,, C PF for all n; € N)
and assume without loss of generality 0 < k; < PF) < k9. By the strong law of large numbers we

have
N—o0

k
IP(|P, F, — PF,| > 51) — 0

where P, is the distribution with equal masses at the points &;,...,&,,. Therefore it is sufficient
to prove the assertion (5.31) on the set {|P,, F; — PF|| < %1} for which %1 < P, F; < ’“2—1 + ko. The
following calculations are restricted to this set without mentioning this explicitly. Let P? denote
the symmetrization of P, [see Pollard (1984), p. 15], then we obtain for &,, = €62 a,, (¢ > 0)

k k
(5:30) P sup [P (9)] > 82, (5 +k2)) < AP ( sup [P ()] > 220, (5 + k)
pEFn, 2 pEFn, 2
< 4113( sup |P2, ()] > 2€n1Pn1F1).

306 ]

22



Conditioning on & = (£, ..., &,,) it therefore follows

}msil(PmFl)Q) 1}

]P( sup | Py (¢)| > 2¢,, P, Fy 2 max; P, ¢°
J S ndj

pEFn,

f) < min {2./\/1(6n1,Pn1,.7:n1, Fy)exp ( —

where the maximum runs over all m = Ny(e,,, P, Fn,, F1) functions of the approximating class
{91,...,9m}. Integrating, observing that P,, F; > % and that PF is euclidean yields

1 k2¢2
o Vv 1%n;
(5.35) P<@S§}€1 1By, (0)] > 2eumF1) < 24¢, exp ( T3 64 572“>

+ P( sup P, (¢?) > 64572“>
PEFn,

with positive constants A and V. The first term can be treated similarly as in Pollard (1984, p.
34) and converges to 0. The treatment of the second term is different because ¢ € F,, does not
necessarily implies |p| < 1. We obtain for the expectation

E| sup P, ((,02)

1 - r—X i 2
< —E‘Zg@(/K( SR () o — (X)) 02(X00)
ny i=1 ni

wEFn,
= o)
and Markov’s inequality yields (using the definition of 6, )
(5.36) ]P( sup Py, (¢?) > 64(5n1) = O(hy,)
PEFu,

A combination of (5.34), (5.35) and (5.36) finally gives

1
]P( 5 sup |Pn1(go)|>6) — 0 ifny —» 0
5n1an1 ‘Pe}-nl

which establishes the remaining estimate (5.31) [note that 02 cy,, = O(hy, [/ /n1)].

Lemma 5.3b If the assumptions of Theorem 2.2 are satisfied we have for the statistics V]S,Q) and
V]\(,?’) defined by (5.17) and (5.18)

(2) _ 1
sup |Vy'(t)] = o
te[0,1]| N ()] p( N

(3) 1
sup |[Vy'(t)] = o
te[0,1]| N (0] o ( N

Proof. The proof essentially follows the arguments given in the proof of Lemma 5.3a and we
will restrict ourselves indicating the main difference, which is a derivation of an analogue of the
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estimate (5.30). Because V]\(,Q) and V]\(,?’) are U-processes formed from two samples the results
derived in the proof of Theorem 5 of Nolan and Pollard (1988) are not directly applicable. For
this reason we indicate the derivation of an analoguous result for two sample U-processes. The
application of this result to the two sample U-processes obtained from V]S,Q) and VJS,?’) completes the
proof of Lemma 5.3b and follows by exactly the same arguments as given in the proof of Lemma
0.3a.
To be precise let P, () denote distributions on the spaces X and )Y and consider a class of real
valued measurable functions F defined on X’ x ) such that (P ®Q)(p) = 0 for all p € F. Assume
that there exists an envelope F' of F such that (P ® Q)(F) < oo. Let Xy,..., Xy, ~ P and
Yi,..., Y5, ~ @ denote independent samples and o4,...,0, and 7q,...,7, denote independent
samples (also independent from the X; and Y}) such that
Introducing the notation

é-i = I{O’Z = 1}X21 + I{O’z = —1}X21_1

§ = Hoi=1}Xgi 1 + I{oi = —1} Xy

G = Hm =1} + {1y = —1}Y;4

G = H{r = 1}Yo; 1 + I{7; = —1}Yy;

we obtain again independent samples &;,...,&,,&1,...,&, ~ P and (,...,(n, (15, (), ~ Q.
For a function ¢ € F consider the two sample U-statistic

(5.37) Sum(p) = Y > (& (),

i=1 j=1
and its standardized version

vn—+m

nm

(5.38) Ui () =

Let

Shm (p)-

p1(x) = Elp(&, )& = 7
e2(y) = Elp(&1, )G = ]
and define the kernel
(5.39) P(z,y) = o(x,y) — 1(z) — @2(y)
then it follows that the statistic U, () is degenerate [note that E[p(&;, ;)] = 0 by the definiton
of F]. Defining

n m

(5.40)  Tuml) == 3.3 [#(6G) +9(6, )+ 9(€ G) + 9(€1.C)
i=1 j=1
ZZQD X27,71/2] +90(X27,7}/2j 1) +90(X22 17}/2]) +90(X22 171/23 1)
=1 j=1
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and P, and @), as the empirical distributions based on &i,...,&, and (i, ..., (y,, respectively, it
can be shown by similar arguments as in Nolan and Pollard (1988) that the conditions

(5.41) sup E[J (1, Tpm, F, F)?] < o0
(5.42) | J1,PRQ,F,F) < oo
(5.43) sup E[J (1, P,, PF,PF)?*] < o
(5.44) sup BT (1, Qm, QF, QF)’] < oo

imply the estimate

1

E|sup|U,m(@)|| = O(—=
sup U (7)]] = O(
which gives

(5.45) 221]):|Unm(95)| = Op(\/—ﬁ)-

In the specific situation of V]S,Z) or V]S,?’) the assumptions (5.41) - (5.44) now follows, because the
classes F, PF and QF are euclidean [see the first part in the proof of Lemma 5.3a].

O
5.4 Proof of Lemma 5.2

Recalling the definition of Sy and S}, in (5.4) and (5.7), respectively, it follows that the difference
Sy — S is a linear combination of four terms of the form

o oo S ()10 <0 - [ (K5 )t
i)

which can either be represented as a degenerate one-sample U-process [ =k =1, and ¢ = k = 2]
or a degenerate two-sample U-process [( = 1,k = 2 and ¢ = 2,k = 1]. It now follows either by
the arguments in the proof of Theorem 5 in Nolan and Pollard (1988) or by its generalization in
(5.41) - (5.44) and (5.45) that the corresponding terms vanish at a rate Op(7) if the underlying
class of indexing functions is euclidean. For example, in the case / =k =1 the symmetric kernel
is given by

©(&i, &) = éfli(K(X1Z XIJ)I{XM <t} - / Xlz ) r1(x) dl‘>01(X1¢)

+51j(K(X“ le)]{Xlz<t} / L) 1(x)dx)01(X1j),

where & = (X4, 1;) and the degenerate one sample U-process is given by

n1 n1 ZSO €z>§]

Loz

25



Note that ¢1(z) = E[p(&1,£2)|&2 = ] = 0 which implies ¢ = ¢ and PF = {0}, which is obviously
euclidean. A cumbersome calculation shows that F is also euclidean and the arguments in the
proof of Theorem 5 in Nolan and Pollard (1988) yield

1 1) 11 1
SR VSR, (9)] = 05 3p) = oo )

The other three cases are treated exactly in the same way establishing the assertion of Lemma
5.2.
O

5.5 Proof of Theorem 3.2 and 3.3

The proof follows essentially the steps given for the proof of Theorem 2.2 and therefore we restrict
ourselves to the calculation of the asymptotic covariance structure of the process defined by (3.2).
A straightforward calculation yields

g Lmeslnlmt] n tlz— ' ti — tar) of (t)
Covl(®) () = s Do K U

1=1 jﬁl

n1n2h2 h ro(t1i)ra(tik)

i=1 k=1 j=1

_ iZ e / /01 K ("”” - y) K <"”” - Z) jg%((i)) 1 (£)ra(y)ra(2)dedydz
n2 h2 ORI /OR1 /:K(x . y) <z ; y) ag(y)g((j)):f((g))rl(z) dydd:

= mis(s,t) + o(1)

where my9 is defined by (3.3).

5.6 Proof of Theorem 4.1

The proof essentially follows the proof of Theorem 2.2 and we Wlll only sketch the main arguments.
For the sake of simplicity we restrict ourselves to the process R " (the remaining case is treated
exactly in the same way) and start with the decomposition

~

(5.46) RY (1) = Ry(t) + Si(t) + Wi (t) + Vis(t)
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where the processes on the right are defined by

* 1 - * 1 S *
(5.47) Ry (t) = NZSUT(XU)I{XU <t} - NZ%T(XZJ-)J{X% <t}

(5.48) Sx(t) = Z % 25;} (ﬁ Z Z}%W)]{X% < t})

549) Wilt) = 31 5 30 DK (M) () — a1y <1
(5.50)  Vy(t) == Z(—l)il% .’ ei (Pn(Xig) — (X)) I{ XG5 <t}

We will prove at the end of this section the following result.

Lemma 5.4. If the assumptions of Theorem 2.2 and (4.6) are satisfied we have for all § > 0

(5.51) ﬂa(\/ﬁts%pl]m(m > 6 yN) = 0,(1)
(5.52) P(mtsl[lp”s*() S5t > 6 [ ¥n) = 01)
(5.53) P(\/Nts%pl]w;;(m > yN) = 0,(1).

where the process S is defined by
(5.54) Sy(t) : Z ZQJ < / (?) (—k1r1(z) + Kare(z)) dx) :
i=1 j=1
Observing Lemma 5.4 it follows that the processes
Ty = VN(R} + 57)

and vV N ]A%E\l,)* are (conditionally on Yy) asymptotically equivalent in probability, i.e.

(5.55) P( sup [VNRY (1) =T (0)] > 3|V ) = 0,(1).

te[0,1]

(1)*

The following lemma shows that T’" in (5.55) can be replaced by

2

1 O
(5.56) Th() = —= > Ay Vijeis
= VN =1
where the quantities A;; are defined in (5.8).
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Lemma 5.5. If the assumptions of Theorem 2.2 and (4.6) are satisfied we have

(5.57) JP( sup [T (8) — T4 ()] > 6 ‘yN) = 0,(1).

t€[0,1]

The assertion of Theorem 4.1 now follows from (5.57) and (5.55) which demonstrate that it is
sufficient to consider the asymptotic behaviour of the process Ty (-) defined in (5.56). But this
process can be treated with the conditional multiplier theorem in Section 2.9 of van der Vaart
and Wellner (1996), which establishes that conditionally on Yy the process Ty converges to the
same Gaussian process Z(! in probability as the process Ty discussed in the proof of Theorem
2.2. The proof of Theorem 4.1 is now concluded giving some more details for the proof of the
auxiliary results in Lemma 5.4 and 5.5.

Proof of Lemma 5.4. For a proof of (5.51) we show

(5.58) Zn i = VN sup [V5(1)] = 0,(1),

t€[0,1]

the assertion is then obvious from Markov’s inequality, i.e.

lP(]P(ZN>6‘yN) >e) < %E[]P(ZN>6‘37N)] - élP(ZN>6) = o(1).

To this end we note that ej; = Vijéy; = Vijeioi(Xij) + Vig(f(Xij) — fg(Xij)) and obtain the
decomposition

(5.59) Vi = Vit + 1

where

(—1) S Vigeon (Xi) (i (Xi5) — (X)) T{X5 < 1}

1 j=1

(5.60) Vi(1) =

=l

)

(5.61) Vi) =

2l=

S V() — (X)) (n(Xs) = r(X) T < 1)

The term in (5.60) can be treated by the same arguments given in the proof of Lemma 5.3 for the
term Vy(-) (note that the only difference is the additional factor V;;) which gives

(5.62) VN sup [ViP(@0)] = o0,(1).

te[0,1]

For the second term we use Cauchy’s inequality and obtain

B[ s P0] < ¥4 el (B[00 - )] - B[ - rx])

te[0,1] i1 j

= 0(50=) = o)



which yields in combination with (5.62) the assertion (5.58) and completes the proof of the first
part of Lemma 5.4.

For a proof of the estimate (5.52) recall the definition of S% in (5.54) and observe
Sy — S =53 + 53

where

SyV(t) Z Z Vijei0i( X [ Z (X” Xlk)I{Xlk <)
Nh ZK(W) H{ Xy <t} — 7 /Ot K(%) (=K1 (T) + Rora(x)) dx]
S 3100 - F) [ () <

0 ZK<w> [{Xop < 1} — %/OtK(Xijh_ 33) (—k1r1(x) + Kore(2)) dl’].

The first term can be treated as in the proof of Lemma 5.2, which yields

(5.63) VN sup [S3V(1)] = 0,(1).

te[0,1]

The second term is estimated as follows

(5.64) sup 1537 Z Zw — J (Xl {Ul + U}
€ Z
where
1 1 & X — X b X — 2
vl = = = K(”i)IX <t—/K( if ) d (=12,
Nij htzﬁ)l,)l] N; h { Ltk = } . h HZTZ(Z) Zl )

The terms U](\fzj (i,¢ = 1,2) can be treated by Theorem 37 in Pollard (1984). More precisely, for
the first term we note

- X
sup ZK( ) X < 1) - / r(z)ds| = sup |Pag— Pyl
txel0,1] ' T ©EFn,
where P, denotes the empirical distribution of the first sample Xy, ..., Xy,, and

T —
‘7:.77,1 = {gohnl,t,$ | gphnl,t,ﬁ(y) = K( h/

ni

y)]{y <thz,telo, 1]}

29



(note that we made the dependency of the bandwidth on the sample size explicit, i.e. h = hy,).
Now F,, is a subset of a VC-class and the arguments used in the Theorem 37 of Pollard (1984)
yield for the sequences

am:\/g, 6727,1:C'hn17

the estimate

1 1
UL < = sup [Py — Pyl = —0,(62, ) = 0,(\/9).
hnl PEFn, hnl

By a similar argument for the terms U](\?i)j (5.64) simplifies to

sup |Sx2(8)] < 0,(v/7 Z Zw fo(Xi)| = o )

t€[0,1]

where the last estimate follows from Markov’s inequality. A combination of this estimate with
(5.63) gives

VN sup [Sy(t) = Sy(t)] = op(1)
t€[0,1]
and the assertion (5.52) follows again from Markov’s inequality.
Proof of Lemma 5.5. Defining (i = 1, 2)
- , 1 [t X;i —
(565) Aij(t) = (—1)Z71T(Xij)I{Xij S t} + E / K(%) (_mrl(a:) + HQTQ(.’L’)) dx
0

and recalling the definition of 77 in (5.56) we obtain

1)x , 1 <
TV () — Ta(t) = ZJ—NZAUu)vm(f(XU) — Fo(Xi))

— ;\/Lﬁj; Ai (Vi (f(Xs5) };(Xm))r()l(”)(r(XU) Po(Xii))
+Z\/1—N ’ Aij (Vi (f(X45) J?Q(XZ]))?((;((:))

(5.66) = Ax(t) + By(?)

[note that Ay;(t) = Aij(t)oi(Xi;), by the definition of A in (5.8)]. The first term is estimated as
follows

sup |An(t)] < 22: . Z sup |Ay(1) 1” F(X5) = Fo(Xig)| - Ir(Xg) — 79(X55)]
VN 4 (Xm)

t€[0,1] — VN el
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where we used Cauchy’s inequality and the fact that A;(-) is uniformly bounded. Now Markov’s
inequality yields conditionally on the sample Vy

(5.67) sup |An(t)] = 0p(1).

te[0,1]

The second term By /(t) in (5.66) consists of expressions of the form

- I K&K 1 /Xy — Xue 1
5.68)  By(t) := A=K ——) (f(X1;) = f(Xy))Vij———
68 By) = U5 3 Ay () ) = S
J I 1 /Xy — X 1
+ A=K (22— ) e o (X i)V ———
nfzkz 05K (o (XiViy i
which are all treated similary. We obtain
4
(5.69) By(t) =Y I(t)
/=1
where
N 1 /Xy — X
L(t) = Xy <t} =K(—~ (f(X1y) = f(Xu)) Vi
10 o S S S0 (B ) o
1 1 Xl] Xlk
= < e
Ly(t) nl\/_;;I{Xu_t}gK< ; )glkal(xlk)vlj

n1

I;(t) = n1\/_ Z / Xl] ( K171 () + Kora (7)) do

j=1 k=1
1 X1 — X 1
EK(jT> (f(X1y) — f(Xm))me
Ii(t) = nlxl/N 2. 1%/ K(leh_x)(—mrl(x)—i—/igrg(x))d:r
1 X — X 1
EK( 17 ; 1k>glk0'1(X1k)‘/1jm-

The processes I;(-) and Iy(-) are treated as in the proof of Lemma 5.3a writing I,(¢) as one sample
U-process —U ~ (@) indexed by an euclidean class of functions which gives

(5.70) sup |Li(t)| = 0,(1), ¢=1,2.
t€(0,1]

Similarly we have I,(t) = = s Un (), where ¢ is the symmetric kernel defined by

(5.71) 0(6;,61) = l/ le ( k11 () + Kore(T)) da - K(@)glko—l(Xlk)‘/lj

2 r(Xy )
Xlk —x\ (—K17r1(x) + Koro(x Xy — X
e sy
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and & = (Xyj,€15,V1;). A straightforward but tedious calculation shows that the class F of
functions defined by (5.71) is euclidean which gives

sup |14(t)] = o,(1).
t€[0,1]

By a similar argument for the process I3(-) and (5.70) we obtain from (5.69) sup;c g By (t)] =
0p(1). The remaining terms in By (t) are treated exactly in the same way, and it follows

sup |By(t)] = 0p(1)
t€[0,1]

and the assertion of Lemma 5.5 follows from (5.66), (5.67) and Markov’s inequality.
]
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