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An Alternative Method

for Meta�Analysis

Joachim Hartung

Department of Statistics� SFB���

University of Dortmund� Germany

Summary

In many �elds of applications� test statistics are obtained by combining estimates from

several experiments� studies or centres of a multi�centre trial� The commonly used test

procedure to judge the evidence of a common overall e�ect can result in a considerable

overestimation of the signi�cance level� leading to a high rate of too liberal decisions�

An alternative test statistic is presented and a better approximating test distribution is

derived� Explicitely discussed are the methods in the unbalanced heteroscedastic ��way

random ANOVA model and for the probability di�erence method� including interaction

treatment by centres� Numerical results are presented by simulation studies�

Key words� meta�analysis� combining experiments� multi�centre study� interaction treat�

ment by centres� heteroscedastic ANOVA model� random e�ects� probability di�erence

method

Zusammenfassung

In vielen Anwendungsgebieten werden Teststatistiken mittels Kombination von Sch�atzun�

gen aus verschiedenen Experimenten� Studien oder Zentren einer multizentrischen Studie

erhalten� Die allgemein verwandte Testmethode zur Beurteilung der Evidenz eines Gesamt�

e�ektes kann zu einer betr�achtlichen �Ubersch�atzung des Signi�kanz�Niveaus f�uhren� mit

der Folge eines hohen Anteils zu liberaler Entscheidungen� Es wird eine alternative Test�

statistik vorgestellt und eine besser approximierende Testverteilung wird hergeleitet� Die

Verfahren werden in der unbalanzierten heteroskedastischen Einfachklassi�kation der Var�

ianzanalyse mit zuf�alligen E�ekten und f�ur die Wahrscheinlichkeits�Di�erenzen�Methode

ausf�uhrlich diskutiert� einschlie	lich einer Wechselwirkung zwischen Behandlung und Zen�

tren� Numerische Ergebnisse werden aufgezeigt mittels Simulationsstudien�

	



� Introduction

The problem of judging an overall e�ect from several studies or experiments arises in a

variety of application 
elds� However� not only in meta�analysis of composed individual

results but also in analysing multi�centre trials� for instance one has separated samples

with heterogenous error variances and possibly an interaction of treatments with centres

to asses the overall e�ect� Taking the e�ects of this interaction as random� one gets the

so�called random e�ects model of meta�analysis� cf� sec� ��

In the commonly used method of meta�analysis� tracing back to Cochran 	���� 	�����

one gets the variance of the overall e�ect by estimating its components seperately� and for

the corresponding test statistic the standard normal distribution is taken as test distri�

bution� cf� sec� �� Now� this procedure is observed not to hold the prescribed signi
cance

level� which can lead to a high rate of too liberal decisions� That phenomenon mainly is

not a problem of the type of variance estimator involved� Computational experience with

other estimators than the usual unbiased one� for instance also with a kind of nonneg�

ative minimum biased estimator� as discussed by Hartung 	��	�� yield qualitatively no

essential improvements in the signi
cance levels obtained�

Therefore in the following� cf� sec� �� an estimation function is introduced that estimates

the variance of the weighted mean directly� based in its realisation on weights which on a


rst stage are estimated upon some other estimation principle� for instance here is cosen

the classical one�

Further� its distribution is approximated by equating the 
rst two moments to that one

of a ���distribution� such that the test of signi
cance for the overall e�ect becomes an ap�

proximate t�test that is more able to hold the actual signi
cance level near the prescribed

one�

The performance of the test procedures is discussed� including simulation studies� in the

unbalanced heteroscedastic random 	�way ANOVA model� cf� sec� �� and� 
nally� in order

to demonstrate the application to data that don�t follow an ANOVA model� to the prob�

ability di�erence method� cf� sec� �� comparing two proportions that are observed several

times�

Sometimes there is the opinion that one should avoid the random e�ects model because

it would be too conservative� and one should better work with the so�called 
xed e�ects

model� neglecting the interaction e�ect and assuming homogenity with respect to a com�

mon mean� Of course� this would lead to a higher actual sigini
cance level� However� here

it is to say that� even if the 
xed e�ects model is the correct one for the data situation

�



given� also the method commonly used there can yield a high rate of too liberal decisions�

e� g� Li� Shi� Roth 	����� B�ockenho�� Hartung 	�����

� The Model

Let ��i for i � 	� � � � � k� k � �� be stochastically independent normally distributed unbiased

estimators for the common mean � of k independent experiments� studies or centres of a

multi�centre trial� which also let provide stochastically independent unbiased estimatorsc��
i � �� a� e��� for the partial variance ��

i � � of c�i� i � 	� � � � � k� Due� for instance� to an

�interaction of response with centres�� there may be a common part ��
a � � of the variance

of the c�i that can not be estimated in the i�th study� i � 	� � � � � k� that is� we have the

so�called random e�ects model of parametric meta�analysis� respectively of combining of

experiments� c�i � N�� ��
a � ��

i ��c��
i given � i � 	� � � � � k� 	�

e� g� Cochran 	���� 	����� Yates� Cochran 	����� Hedges� Olkin 	����� DerSimonian�

Laird 	����� Whitehead� Whitehead 	��	�� Draper et al� 	�����

Of main interest here is to test a hypothesis like

H� � � � � against H� � � � �� ��

respectively to derive a con
dence interval for the common mean �� Denote

�i �
	

��
a � ��

i

� i � 	� � � � � k� � �
kX

i��

�i� ��

the best unbiased estimator of � would be

�� �
kX
i��

�i
�
c�i ��

with the variance var��� � 	�� � leading� under � � �� to the test statistic

��q
	��

� N�� 	�� ��

Now� for a realisation� the involved parameters have to be estimated�

Note that in applications often c�i is a function of further parameter estimates� for instance

a mean di�erence or an e�ect size of two treatments� or e� g� the di�erence� cf� sec� ��

the log� odds ratio or relative risk of two observed proportions� cf� the references cited

above� and c��
i frequently is only an approximation� e�g� via the delta�method� The general

assumptions for c�i and c��
i then can be ful
lled only in approximation� of course� implying

the same for resulting properties�

�



� The commonly used method

Let denote 	i � 	���
i � i � 	� � � � � k� and 	 �

Pk
i�� 	i� then� e� g� Chochran 	�����

DerSimonian� Laird 	����� Whitehead� Whitehead 	��	�� an unbiased estimator of ��
a

is given by

���
a ��

	

	� �
kX

i��

	�
i

�����
kX

i��

	i

��b�i � kX
j��

	j

	
c�j
�A�

� k � 	

	�
�� � ��

with the realisation f��
a� replacing ��

i by c��
i � i � 	� � � � � k� in ���

a� This estimator can become

negative with positive probability� and so one truncates it at zero�

c��
a �� maxf��f��

ag�

such that with

b�i �
	c��

a � c��
i

� i � 	� � � � � k� and �� �
kX
i��

b�i ��

the common mean is estimated by

�� �
kX

i��

b�i
��
c�i� ��

and the test statistic under � � � is taken as

T� ��
��q
	���

appr�� N�� 	�� ��

Caused by distributional de
ciencies� cf� also Li et al�	����� B�ockenho�� Hartung 	�����

the resulting test procedure is not satisfactory� because of the observation that the actual

levels attained by the test can arise much above the prescribed level� leading to a high

rate of too liberal decisions� cf� the simulation results in sec� � and ��

� A re�ned method

Let 
i � �i��� i � 	� � � � � k� 
 � 
�� � � � � 
k�
�� and xi � c�i� i � 	� � � � � k� x � x�� � � � � xk�

�

where c� denotes the transpose of a vector c�� then we consider the following quadratic

form in x�

S
� ��
kX

i��


ixi � 
 �x��� 	��

�



Theorem ���


i�� � � S
� has a 
central� ���distribution with 
k��� degrees of freedom�


ii�� �� � 
 �x and S
� are stochastically independent�

Proof� Denote D � diag��
a � ��

i � i � 	� � � � � k� the diagonal covariance matrix of x and

� �� 	� � � � � 	�� � IRk� i� e�

x � N� � �� D��

and let �i �� �� � � � � �� 	� �� � � � � ��� � IRk� with the 	 at the i�th place� mi �� �i � 
 and

the matrix M �� � �Pk
i�� 
imim

�

i� So we can write

�S
� � � �
kX

i��


im
�

ix��

� � �
kX

i��


ix
�mim

�

ix

� x�Mx�

and if MD � MD��� then x�Mx is ���distributed with traceMD� degrees of freedom�

and if MD
 � �� then x�Mx and 
 �x are stochastically independent� e� g� Mathai�Provost

	���� p� 	��� ����� note that m�

i� � � and thus MEx� � ��

To i�� We have

MD �
kX
i��

�
imim
�

iD

�
kX
i��

�
i�i � 
��i � 
��diag
�

	

�i
� i � 	� � � � � k



�
kX
i��

�
i�i � 
i
�
�

	

�i
�i � 	

�
�

�

�
kX
i��

�
�

	

�
�i�i

� � 	

�

�i

� � 	

�

i�i�

� �
	

�

i
�

�



�
kX
i��

�i�i
� � 


kX
i��

�i
� �

�
kX

i��


i�i

�
�� �

�
kX

i��


i

�

��

� I � 
�� �
kX

i��


i�i�
� � 
��

� I �
kX

i��


i�i�
��

�



where I denotes the k � k� identity matrix and

MD�� � I �
kX
i��


i�i�
��I �

kX
i��


i�i�
��

� I � �
kX

i��


i�i�
� �

kX
i��

kX
j��


i
j�i�
��j�

�

� I � �
kX

i��


i�i�
� �

�� kX
j��


j

�A kX
i��


i�i�
�

� I �
kX
i��


i�i�
�

� MD�

noting that
Pk

j�� 
j � 	 and ���j � 	� Further� we get traceMD� � k�Pk
i�� 
i � k� 	�

which completes the proof of i��

To ii�� There is with i�

MD
 �

�
I �

kX
i��


i�i�
�

�



� 
 �
kX

i��


i�i�
�


� 
 �
kX

i��


i�i

� ��

which yields ii��

Note that a result like i� for ��
a � �� is stated already by Cochran 	���� p� 			��

however� a direct proof that refers to a ��� criterion for quadratic forms we could not 
nd

in the literature�

Now S
��k � 	� is an unbiased estimator of var
 �x� � 	�� � but for a realisation� one

has to replace 
 by an estimate� and then in numerical experiences it proves to be much

more sensitive with respect to alterations in the 
�estimates than the following estimation

function�

De
ning now

�
� �

 �


	� 
 �

� and �i
� � 
i � 
i � 
�

i

	� 
 �

� i � 	� � � � � k� 		�

we consider the a�ne quadratic with respect to the random variables� form

Q
� �� �
�S
� �
kX

i��

�i
�c��
i � 	��

�



and get the following

Theorem ���


i�� Q
� is an unbiased estimator of 	�� � Var����


ii�� If the estimators c��
i of �

�
i are also stochastically independent of the estimators c�j of

�� i� j � 	� � � � � k� then


a� Q
� and �� are stochastically independent� and


b� an approximate 
central� ����distribution of  � Q
��	��� has the degrees

of freedom

 � Q��� � � � 	����

�k � 	�	�����
�� �
Pk

i�� �i
��Var���
i �
�

Proof� To i�� For the expectation we get with i� of theorem ��	� noting that

kX
i��

�i � 	� 	�Pk
i�� 


�
i

	� 
 �

� ��

EQ
�� � �
�
	

�
k � 	� �

kX
i��

�i
���
i �

�
kX

i��

�i
�

�
��
a

� k � 	�
	

�
�
� �

kX
i��

�
�i
�
� �i���� � �i ��

��

	� 
 �


�
	

�i

� k � 	�
	

�
�
� �

kX
i��

�
	

�
� 	���� �i��

��

	� 
 �


�

�
	

�
k � 	�


 �


	� 
 �

�

	

�
k � k���� 	���

	� 
 �


�
	

�

�
k �

k � 	�
 �
 � k � 	

	� 
 �


�

�
	

�

�
k � k
 �
 � k
 �
 � 
 �
 � k � 	

	� 
 �


�

�
	

�
�

To ii�� Part a� follows from theorem ��	 ii�� together with the additional assumptions

above� Now we come to part b��

If the random variable Q� �  �Q�EQ� follows ���� distribution� then for the variance

we have

VarQ�� �
� � VarQ�

EQ���
� � � �

�



that is

 � � � EQ���

VarQ�
� 	��

which conversely can be used as an estimate of the degrees of freedom of an approximate

���distribution� i� e� the 
rst two moments of the distributions are equated� cf� Patnaik

	����� So again� with i� of theorem ��	� we get for the variance of Q
�

VQ��� �� �
��
�

	

�

�
�k � 	� �

kX
i��

�i
��Varc��
i �� 	��

and by i�� EQ
�� � 	�� � yielding now the desired estimate for the degrees of freedom�

which completes the proof�

So� if Q � �� then under � � �� the test statistic ���
p
Q

appr�� t�� where t� denotes the

central� t�distribution with  degrees of freedom� and H� can be tested� replacing the

parameters by their estimates�

If the 
�� � � � � 
k take on di�erent values� then Q
� can become negative with a positive

probability� too� which is implied by the following

Corollary ���

Either at least one of the �i
�� i � 	� � � � � k� is negative or all �i
� are zero and all


i � 	�k� i � 	� � � � � k�

Proof� Assume that for all i � 	� � � � � k � �i
� � �� Now� cf� 		��
Pk

i�� �i
� � ��

implying� by our assumption� that for all i � 	� � � � � k� there holds �i
� � �� and therefore

for all i � 	� � � � � k�


i	� 
 �
� � 
i � 
�
i �

respectively dividing by 
i
i � �� yields

	� 
 �
 � 	� 
i�

i� e� all 
i are identical and by
Pk

i�� 
i � 	 there has to be 
i � 	�k for all i � 	� � � � � k�

completing the proof�

Thus we have also to truncate Q
� in a suitable way� considering simultanously the idea

of preserving a pointwise order for two estimators as induced by their expectations and

the concept of combining estimators� Now there is

var��� � var

�
kX

i��


ic�i
�

�



�
kX

i��


�
i ��

a � ��
i �

�
kX

i��


�
i �

�
i �

so de
ning

R
� ��
kX

i��


�
i
c��
i � � � a� e��� 	��

we have by R
� a lower estimator in the following sense�

EQ
�� � var���

� ER
���

Hence� a truncated estimator of var��� can be given by the order pointwise� preserving

estimator

qm
� � maxfQ
�� R
�g� 	��

or� more generally� by a linear interpolation near the switching point� That means� for

some real values A and B with

� � A � 	 � B 	��

let denote

L
� �� min

�
	�max

�
��

Q
��R
��� A

B � A

��
� 	��

where x�� �� �� for x � � and x�� �� �� for x � �� then � � L
� � 	� and we de
ne

the convex combination of Q and R�

qL���
� �� L
�Q
� � f	� L
�gR
�� 	��

and� regarding 
� �� and var ���
i �� i � 	� � � � � k� as known� the variance of qL can approxi�

mately be estimated L
� random� by

Vq �� L
��VQ��� � f	� L
�g�
kX

i��


�
i varc��

i �

�L
�f	� L
�g
kX

i��

�i
�
�
i varc��

i � ���

�� v
�

� �� varc��

��� � � � � varc��
k�
�
�

where the last term in ��� corresponds to the approximate covariance of L � Q and

	 � L� � R� and VQ��� is given in 	��� Note that L � � for Q � A � R and L � 	 for

�



Q � B �R� if A � B� for A � B � 	 � qL � qm� Further� qL � �� a� e�

Applying again the Patnaik�approximation� cf� 	��� an approximate ��E���distribution

of E�� � qL���
��EqL���
� is given for

� � �qL������ � � � fEqL���
�g�
Vq

� �	�

If the c��
i are stochastically independent of the c�j� i� j � 	� � � � � k� then qL and �� are also

stochastically independent� cf� theorem ��� ii�� and Vq is a better estimate of varqL� with

respect to bias�

For a realisation� now 
 is replaced in qL and in �qL by its estimator� cf� ���

�
 �
	

��
 b��� � � � �c�k��

and with

�q �� qL� ���
�
�� cf� 	��� ���

�v�q� �� v �
� �� �dvarc��
��� � � � �dvarc��

k��� cf� ���� ���

where dvarc��
i � denotes an estimator of varc��

��� i � 	� � � � � k� the results above can be

summarized to state the test procedure in a compromized form as follows�

Theorem ���

Under � � �� there holds for the test statistic� cf� 
��� 
�� 
���

T� ��
��p
�q

appr�� t��� ���

with

� � � � �q�

�v�q�
� ���

Remark ���

The approximation in 
�� is better for the case that the c��
i are stochastically independent

of c�j� implying also that c
i depends on c�j only via c��
a� i� j � 	� � � � � k�

Remark ���


i�� If an estimate of varc��
i � is not reported in the i�th study or can not be computed

upon the knowledge of c�i and c��
i � for instance by the delta�method� cf� sec� �� then in

the formulas above we put dvarc��
i � 	 �� i � 	� � � � � k� de�ning then in � � x�� �� �

for x � � and the t���distribution as the standard normal distribution� cf� also

sec� � and ��

	�




ii�� De�ning� cf� 
����

�R �
�R �
��

kP
i��


�
i dvard��

i ��
� ���

then ��E�R� is an approximate distribution of E�R� � R
��ER
��� cf� 
���� so

that for � � �� � 	� an approximate 	 � ����con�dence interval for ER
�� is

given by
�R

���R����
R �
� � ER
�� � R �
�

�R
�� �R��

�

where ���� denotes the ��quantile of the ����distribution�

Now ER
�� � var��� under ��
a 	 �� and ER
�� � EQ
��� so one can use the

bounds of that interval to de�ne the �changing points� A and B�

A �
�R

���R����
� and B �

�R
���R��

� ���

where in the following sections we have chosen � � ����� There also we have ignored

partially the knowledge about the estimates of varc��
i � and worked with �xed values

for A and B� A � ���� B � 	��� and A � ����� B � 	����

The di�erent choices of A and B �in the neighbourhood of �� do not seem to have

much in�uence on the results�

� The unbalanced heteroscedastic ��way random ANOVA

model

Here let us consider the model

yij � � � ai � eij� i � 	� � � � � k� j � 	� � � � � ni � �� ���

where a�� � � � � ak� e��� � � � � e�n� � � � � � eknk are stochastically independent normally distributed

random variables with Eai� � Eeij� � �� varai� � ��
a � �� vareij� � ��i � �� and

� � Eyij�� i � 	� � � � � k� j � 	� � � � � ni�

For the i�th estimate ��i� i � 	� � � � � k� of � we get

c�i �
	

ni

niX
j��

yij � N�� ��
a � ��

i � with ��
i �

	

ni
��i �

and ��
i is estimated by

c��
i �

	

ni
� 	

ni � 	

niX
j��

yij �c�i��� i � 	� � � � � k�

		



Table ���� Unbalanced heteroscedastic random 	�way ANOVA model� sample designs

Dd� k�� for d � 	� �� �� �� k � �� and k � �� with ��
a � ��	� 	��� and 	� for the simulation

results in table ����

Dd� k� k � � k � �

d i 	 � � 	 � � � � �

ni � 	� 	� � 	� 	� � 	� 	�
	

��i 	 � � 	 � � 	 � �

ni 	� �� �� 	� �� �� 	� �� ��
�

��i 	 � � 	 � � 	 � �

ni � 	� 	� � 	� 	� � 	� 	�
�

��i � � 	 � � 	 � � 	

ni 	� �� �� 	� �� �� 	� �� ��
�

��i � � 	 � � 	 � � 	

which is stochastically independent of ��i� i � 	� � � � � k� and further varc��
i � � � �

ni��
��

i �
��

of which an unbiased estimator� e� g� Hartung� Voet 	����� is given by

dvarc��
i � � � � 	

ni � 	
c��

i �
�� i � 	� � � � � k� ���

In k � � illustrative samples of sizes ni� respectively �ni� and in k � � samples by inde�

pendent replications of the 
rst samples� cf� table ��	� with di�erent constellations of the

residual variances ��i � for ��
a � ��	� 	��� and 	�� a simulation study 	� ��� runs each� is

performed in order to get estimates �� of the actual levels attained by the various test statis�

tics� at the prescribed nominal level � � ����� for the one�sided hypothesis H�� � � � �

against H�� � � � � and for the two�sided hypothesis H�� � � � � against H�� � � 
� ��

This is done for the commonly used statistic T�� cf� sec� �� and for some variants of T��

cf� ���� where T��� � T� with A � ���� B � 	��� T��� � T� with A � ����� B � 	���� and

in the correspondent test procedures� the knowledge of an estimate for varc��
i � is ignored

for both� i� e� we put there dvarc��
i � 	 �� i � 	� � � � � k� cf� remark ��� i�� Finally� T��	 � T�

with A�B chosen in accordance with remark ��� ii�� where � in ��� is taken as � � �����

here the information dvarc��
��� given by ���� is used�

The simulation results are shown in table ���� where in each package the 
rst number

gives �� for H�� and the second number cursive� �� for H���

	�



Table ���� Unbalanced heteroscedastic random 	�way ANOVA model� realized signi
�

cance levels ��� at the nominal level � � �� for the one sided H�� �	st number and for

the two�sided H�� �second number� cursive with the test statistics T�� T���� T��� and T��	
in the sample designs Dd� k� from table ��	�

� � �� ���

H�l k � � k � �
�
�

a d
l T� T��� T��� T��� T� T��� T��� T���

� �	
 �	� �	� �	� �	� 	� �	� 	�
�

� ���� ��� ��� ��� ��	 ��� ��� ��


� �	� �	� �	� �	� �	� 	� 	� 	�
�

� ��� ��� ��� ��	 	�� ��� ��� ���

	�

� �	� �	� �	� �	� �	 	� 	� �	�
�

� �
�� ��� ��� 	�� ���� ��� ��� ���

� ��	
 �	� �	� �	� �	� 	� 	� 	�


� ���� ���� ��	 ���� �
�� ��
 ��� ���

� ��	 �	� �	� �	� �	
 	� 	� 	�
�

� ���� ��� ��� ��� ���� ��� ��� ���

� ��	� �	� �	� �	� �	� 	� �	� �	�
�

� �	�� ��� ��� ��	 ���� ��� ��� ���
�	


� ��	� �	� �	� �	� �	� 	 	� 	
�

� 
��
 ���� ���� ���� ���� ��� ��
 ���

� ��	� �	
 	� �	� �	� 	� 	� 	�


� 
��� 	�� 	�
 	�� ���� ��
 ��� ���

� ��	� 	� �	
 �	
 �	� �	� 	� �	�
�

� ���� ��� ��� ��� �
�
 ��� ��� ��


� ��	 �	 	� 	� �	� 	� �	
 	�
�

� ���� ��� ��
 ��� ���
 ��� ��� ��

�


� ��	 	 �	
 	 �	 	� 	� 	�
�

� 
��� ��� ��� ��� ���� ��� ��� ��


� ��	� �	
 	� 	� �	� �	
 �	� 	�


� 
��� ��� ��� ��
 ���� ��� ��� ��
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For T�� the realized levels �� are lying partially much above the ���level� whereas the

results of the other test procedures don�t di�er very much and are satisfactory� at the

whole� cf� table ����

	 The probability di
erence method

Just for demonstrating the application of the procedures discussed in sec� � and � to

data not following an ANOVA model� we here consider the problem of testing the dif�

ference of two proportions� To this let for i � 	� � � � � k and j � 	� � the stochastically

independent random variables zij be binomially distributed with parameters nij � � and

pij� � � pij � 	� where it is assumed that in all studies i the probability di�erence is

identical� pi� � pi� �� �� An unbiased estimator of pij is cpij � zij�nij with

varcpij� � pij	 � pij��nij �� ��
ij� and cpij appr�� Np� ��

ij�� For the di�erence of the em�

pirical rates there is allowed that one really observes

c�i � ai � cpi� � cpi��� i � 	� � � � � k� ���

where the stochastically independent ai
appr�� N�� ��

a�� �
�
a � �� corresponding to �random

deviations� of the assumption of identical probability di�erences� represent the random

interaction e�ects� also assumed as stochastically independent of the zij� i � 	� � � � � k� j �

	� �� Thus we have

c�i appr�� N�� ��
a � ��

i �� �
�
i �� ��

i� � ��
i�� i � 	� � � � � k� �	�

An unbiased estimator of ��
ij is

c��
ij �

	

nij � 	

�cpij � cp�ij� � ���

and for its variance it is su�cient here to take the approximation given by the delta�

method�

varc��
ij�

appr�
�

���c��
ij

�cpij
�����
pij

�A�

��
ij �

�
	� �pij
nij � 	

��
	

nij
� pij � 	� pij�� ���

which is estimated by replacing pij with cpij�
Now c��

i � c��
i� � c��

i� and varc��
i � � varc��

i�� � varc��
i��� so that ��� yields an estimatedvarc��

i ��

	�



Table ���� Probability di�erence method� realized signi
cance levels ��� at the nominal

level � � �� for the one sided H�� �	st number and for the two�sided H�� �nd number�

cursive with the test statistics T�� T���� T��� and T��	 in the sample designs SDk� for

k � � and k � ��

Sample designs SDk� for ��
a � ���	� ��	� ���� and pij � ���

k � �� 	���������	���������

k � �� 	���������	����������	���������	��������

� � �� ���

H�l k � � k � �
��
a l T� T��� T��� T��	 T� T��� T��� T��	

	 ��� ��� ��� ��� ��� ��� ��� ���
���	

� ��� ��� ��� ��� ��� ��� ��� ���

	 		�� ��� ��� ��� ��	 ��	 ��� ���
��	

� ���� ��� ��� ��� ���� ��� ��� ���

	 	��	 ��� ��� ��� ��� ��	 ��	 ��	
���

� ���� ��� ��� ��� ���� �� ��� ��

Hence� all our test procedures can approximately be applied� This is illustrated in a sim�

ulation study 	� ��� runs each� for k � � groups of paired samples ni�� ni��� with sizes

	������ ���	��� ������� and for k � � groups by an independent replication of the 
rst

samples to get estimates �� of the actual levels attained by the various test statistics � with

the prescribed nominal level � � ���� � for the one�sided hypothesis H�� � � � � versus

H�� � � � � and for the two�sided hypothesis H�� � � � � versus H�� � � 
� �� where under

� � � � pi� � pi�� the probabilities are taken as pij � ���� whereas ��
a here is chosen as

���	� ��	� and ���� The test procedures� corresponding to T�� T���� T��� and T��	� are chosen

identically as in sec� �� where for T��	 here the approximate estimate dvarc��
i � derived from

��� is used� The results are put together in table ��	�

Now again we observe the realized levels �� for T� partially to increase much over the

���level� and that the T��variants produce� at the whole� satisfactory results�

	�



� Final remark

In this paper we have shown the consequences of the commonly used method for testing

hypotheses about the common e�ect in combining estimates from several independent

studies� experiments or centres of a multi�centre trial� where the occurence of a random

interaction of response with centres or studies is included in the considerations�

We recommend the use of the proposed alternative test procedure with the better approx�

imating test distribution�
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