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Summary

We propose a standardized partition space that o�ers a unifying frame-

work for the comparison of a wide variety of classi�cation rules. Using

standardized partition spaces, one can de�ne measures for the performance

of classi�ers w.r.t. goodness concepts beyond the expected rate of correct

classi�cations such that they are comparable for rules from so di�erent tech-

niques as support vector machines, neural networks, discriminant analysis,

and many more. For classi�cation problems with up to four classes, one can

visualize partitions from classi�cation rules that allow for a direct compar-

ison of characteristic patterns of the rules. We use these visualizations to

motivate measures for accuracy and non-resemblance in the sense of Hand

(1997), enhanced for non-probabilistic classi�ers.

1 Motivation

In the days of data mining, the number of competing classi�cation techniques

is growing steadily. Thus, it is a worthy goal to rate the goodness of classi-
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�cation rules from a wide range of techniques related to diverse theoretical

backgrounds. Restricting the term goodness to what can be most easily for-

malized and measured is dissatisfactory. That is, 'goodness' of a classi�cation

rule can stand for much more than only its ability to assign objects correctly

to classes. This is, however, the only aspect that is measured by the most fa-

mous performance measure, the misclassi�cation rate. Misclassi�cation rates

do not cover the variety of demands on classi�cation rules in practice.

In this context, Hand (1997) attaches importance on goodness concepts

regarding the rule's quantitative assessment of the membership of objects

in classes. This assessment typically determines the �nal assignment into

classes: a high assessment (relative to the assessed membership in other

classes) in the assigned class should be justi�ed (accuracy), the relative

sizes of membership in classes should re
ect 'true' conditional class probabil-

ities (precision), and membership values of objects in the di�erent classes

should be well-separated (non-resemblance).

Beyond the reliable quantitative assessment of the membership of new ob-

jects in classes, in many practical applications of classi�cation techniques it is

important that this assessment can be easily understood and is comprehen-

sible. For that purpose one often looks at the range of values of predictors

assigned to the same class. This relates to the rule's induced partitions of

predictor space. This predictor space is either the original space of observed

features as such, or, in cases where this space is too big for an understand-

able description, a space of suitably derived features. In the second case, a

direct comparison of the partitions from di�erent classi�ers would only be

possible, if all classi�cation methods would deduce at least resembling enti-

ties. This is not true for the wide variety of methods that are used in data

mining, e.g. discriminant analysis, neural networks, support vector machines,

decision trees,...

Therefore, we will standardize the space of induced partitions such that in

the standardized partition space we can compare and visualize the basic pat-

tern of rules, and additionally we can measure performance w.r.t. goodness

concepts like accuracy, precision, and non-resemblance.

2 Argmax Rules

Our method is applicable to all classi�cation methods that �nally decide for a

certain class c; c = 1; :::; G, using an argmax rule cl (like, e.g., Bayes optimal

classi�ers) based on transformations
~
m 2M of the observed predictor values

from a predictor space X into some G-dimensional space of real numbers

M � R

G

:

cl(x;
~
m) = arg max

c=1;:::;G

m(x; c); c = 1; :::; G:
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The vector
~
m(x) := (m(x; c); :::;m(x;G)) is interpreted as a vector of mem-

bership values for classes.

Our idea is motivated by the attempt to make any argmax rule comparable

to the 'true' or 'best' Bayes optimal classi�er. Any Bayes optimal classi�er

maximizes the probability that a new object will be classi�ed correctly, given

some learning set of examples L := f(x

1

; c

1

); :::; (x

N

L

; c

N

L

)g and some prior

knowledge �:

cl(x j
~
p

L;�

) = arg max

c=1;:::;G

p(c j x;L; �);x 2 X;

where p(c j x;L; �); c = 1; :::;G; x 2 X, are learnt conditional class proba-

bilities that are the membership values of this type of classi�er, and
~
p

L;�

(x)

is the vector of these probabilities.

By � we denote the complete knowledge about the relationship between pre-

dictors and classes that can be expressed in a probability model (including

a deterministic relationship as a special case) independent of the training

set L. We call the corresponding classi�er the true (or best) Bayes optimal

classi�er:

cl(x;
~
p

�

) = arg max

c=1;:::;G

p(c j x; �); x 2 X:

Membership values of Bayes optimal classi�ers all lie in the interval [0; 1] and

sum up to one. We denote this space of membership vectors byM

s

� [0; 1]

G

.

In future, this will also be the space for standardized partitions. For up to

four classes, the partition of a Bayes optimal classi�er can be visualized in

a so-called regular simplex, also known as a barycentric coordinate system.

Such a diagram is well known in experimental design to represent mixtures

of components, and is used e.g. by Anderson (1958) to display regions of risk

for Bayes classi�cation procedures. For the purpose of visualizing the rule's

behaviour in such coordinates, we represent the conditional class probabilities

p(c j x;L; �); (x; c

x

) 2 T of some test set objects that were not used for the

learning of the rule.

Example For illustration, we generated small data sets (27 observations

each) for the training and the testing of a quadratic discriminant classi�er

with bayes-rule (Bayes-QDA). Observations come from three classes with �

2

-

distributions with parameters �

1

= 2, �

2

= 8, and �

3

= 16. The simplex on

the left hand-side in Figure 1 presents the vectors of true conditional class

probabilities of the observations in the test set. On the right hand-side you

see the estimated conditional probability vectors of the same observations of

the Bayes-QDA classi�er.

Solid borders in Figure 1 separate regions for observations that get assigned
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to the same class. Dashed borders within these regions separate observations

that di�er in the class with second highest (estimated) class probability.

The closer the marker of an object is to the class corner the higher its (esti-

mated) probability in that class. The layout of markers in the two simplexes

look pretty much the same, with the exception that themarkers for the Bayes-

QDA classi�er appear to be shifted to the right so that it seems to assume G

2

to be closer in probability to G

1

than to G

3

, though this is not the case as can

be seen by the symmetry in the simplex of the True-Bayes classi�er. Indeed,

a comparison of the correctness rates in the di�erent regions reveals that the

Bayes-QDA classi�er performs worse in the assignment to any class.

G1

G2

G3

CR
1
: 0.89

CR
2
: 0.56

CR
3
: 0.78

333

2

42

2

True Bayes

G1

G2

G3

CR
1
: 0.75

CR
2
: 0.43

CR
3
: 0.75

3

332

3

442

3

Bayes−QDA

Figure 1: Simplexes representing the behaviour of the True-Bayes and the

Bayes-QDA classi�ers on the test set. CR

1

{CR

3

denote the correctness

rates for the assignments to the corresponding classes G

1

{G

3

. The true class

de�nes the inner color of markers, the assigned class the color of the outer

circle.

For obtaining comparable partitions from arbitrary argmax rules it is not ap-

propriate to simply display their membership values. One obvious reason is

that they neither have to be non-negative nor add up to one. Moreover, any

ad-hoc standardization of membership values intoM

s

might lead to patterns

more in
uenced by the standardization procedure than by the rule's classi�ca-

tion behaviour. Even the membership values of argmax rules based on learnt

conditional class probabilities are not appropriate for comparisons, because

they give information about the rule's behaviour from its own perspective

only, whereas for comparisons, we would prefer a more objective view. Thus,

from now on we do no longer distinguish between membership values of prob-

abilistic classi�ers and non-probabilistic classi�ers, assuming the latter to be

'appropriately' standardized into the space M

s

. Appropriately means here

that for any x 2 X at least the order of the membership values of classes

stays the same whether it is based on the original membership values or on

the standardized ones. In this respect valid transformations are, for exam-
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ple, subtraction of the absolute zero-point (if this is �nite) or an estimator

thereof and division by the sum of membership values within the membership

vector of an object. For classi�ers with membership values that are not on a

metric scale, we recommend to use the ranks of m(x; 1); :::;m(x;G) for each

x 2 X divided by the number of classes G, as the relative distance between

membership values can not be interpreted.

Our aim is to scale membership vectors
~
m 2 M

s

!
~
m

s

2 M

s

, such that

scaled membership vectors of some test set observations re
ect the rule's

characteristic of classi�cation and give a realistic impression of the rule's

performance on the test set.

3 Concepts under consideration

The goodness concepts of accuracy, precision, and ability to separate we are

focussing on refer to the concepts of inaccuracy, imprecision, and resemblance

of Hand (1997, p. 99). There are two main di�erences. First, we use coun-

terparts, i.e. high values and not to low values are desirable. Second, Hand

(1997) restricts his attention to probabilistic classi�ers where membership

values are equal to estimated conditional class probabilities. Our aim is to

generalize these concepts to be applicable for a wider range of techniques, by

using scaled membership values instead of estimated conditional class prob-

abilities.

Accuracy tells us something about the e�ectiveness of the rule in the assign-

ment of objects into classes. Measures of accuracy in the literature typically

typically assess whether true classes are the same as assigned classes. We

call these measures correctness measures to distinguish them from Hands

measures of accuracy that quantify the di�erence between a-posteriori class

probabilities of an observed object (1-0) and its estimated conditional class

probabilities of a probabilistic classi�er. Given an accurate rule in the sense

of Hand allows to interpret the size of the estimated probability in the as-

signed class as a reliable measure of the certainty we can have about that

assignment. Of course, we can measure the accuracy of any non-probabilistic

classi�er simply by 'estimating' the conditional class probability of an obser-

vation in the assigned class as one that is by using a correctness measure.

But this rule-dependent estimation is very crude. There is typically more

information about the assessed membership of objects in classes available in

non-probabilistic classi�ers. With our scaled membership values we intend to

propose a more sophisticated way to compare accuracy of probabilistic and

non-probabilistic classi�ers.

Ability to separate tells us, how well classes are distinguished, given the

transformations the classi�er uses to assess the membership of an object in
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the classes. Measures of the ability to separate are based on the diversity

of the vectors of 'true' conditional class probabilities among objects assigned

to di�erent classes given their membership values. This is slightly di�erent

from Hand's concept of non-resemblance, where the diversity of the 'true'

conditional class probabilities among classes within probability vectors given

membership values is of interest. Measures of the ability to separate com-

pare vectors, whereas measures of resemblance compare values within vectors.

Both concepts are highly related though, because class probability vectors of

objects that get assigned to di�erent classes di�er a lot, if the class proba-

bilities within the vectors di�er a lot, and vice-versa. The reason is that the

probabilities within vectors are non-negative and add up to one. We want

to obtain visualizations of scaled membership values that give a realistic im-

pression of the rules's ability to separate on the test set.

Precision tells us, how good the classi�er estimates 'true' conditional class

probabilities. Measures compare the rule's membership values with 'true'

conditional class probabilities. To measure precision, we obviously need

knowledge about 'true' conditional class probabilities. Since our scaled mem-

bership values should re
ect as precisely as possible the information in the

original membership values and the rule's performance on the test set, the

empirical precision will be enforced by our scaling procedure. Thus scaled

membership values can not be used to assess precision, but mirror informa-

tion of the rule's performance on the test set.

Note that, Hand (1997) also de�nes separability which is substantially dif-

ferent from the concepts above as it is a characteristic of classi�cation prob-

lems and not of rules. It tells us, how di�erent the 'true' conditional class

probabilities of objects are given the observed features. Separability deter-

mines an upper bound for any rule's ability to separate. A measure for

separability has to be based on the diversity of 'true' conditional class prob-

abilities given the values of the predictors of objects.

4 Scaling

We scale membership values of the observations of a test set such that they

resemble precise estimators of conditional class probabilities. So in a �rst

step, we assess the precision of a classi�er interpreting its membership values

as estimators of conditional class probabilities. And then we scale these

membership values towards a better precision.

For the quanti�cation of precision as such we would need knowledge on 'true'

conditional class probabilities. This is only available in simulation studies. In

all other cases, we need additional consideration: A basic strategy to judge

precision is to compare summary statistics of the estimated conditional class
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probabilities with corresponding summary statistics computed from a test set

T := f(x

1

; c

1

); :::; (x

N

; c

N

)g. In our case, for a fair comparison, we have to

use summary statistics that make the least model assumptions possible, or in

other words, that is based on some minimum commonly accepted prior knowl-

edge �. Only assuming a �nite number of classes, we know that for any �xed

observation the true conditional class probabilities p(1jx; �); :::;p(Gjx; �) are

parameters of a multinomial distribution. It is widely accepted to use fre-

quencies as point estimators of such parameters, when no expert knowledge

allows for a more sophisticated modeling. Thus, observed frequencies on the

test set are the summary statistics of choice for our purpose.

If there is only a �nite number of possible values fa

1

; :::; a

K

g of x; (x; c

x

) 2 T,

and there are enough (up to the considerations of the analyst for a given task)

observations for each of them - say N

T;k

; k = 1; :::;K - in the test set, we can

estimate:

p (c j X=a

k

;T; �) =

P

(x;c

x

)2T:x=a

k

I

c

(c

x

)

N

T;k

;

where I

c

is the indicator function corresponding to class c, c = 1; :::; G. In

most cases, however, we will need to partition objects into a small num-

ber of regions R(1); :::;R(K),

S

k=1;:::;K

R(k) = X � f1; :::; Gg, to obtain

a reasonable estimator for the conditional class probabilities p(1j(X;C) 2

R(k); �),...,p(Gj(X;C) 2 R(k); �) in that region:

p (c j R(k);T; �) := p (c j (X;C) 2 R(k);T; �)

=

P

(x;c

x

)2R

T

(k)

I

c

(c

x

)

N

T;k

; c = 1; :::; G;

where R

T

(k) := R(k)\T, k = 1; :::;K. We call these estimators the region-

conditional class frequencies and denote their vector by
~
p

T;�

(R(k)), k =

1; :::;K.

We want to de�ne regions in the same way for all argmax rules. Also, we want

objects with the same membership values to lie in the same region. Thus, for

the de�nition of regions we use information in the membership vectors
~
m,

reduced to what is comparable among all argmax rules, namely the order of

the classes sorted by descending membership values. We de�ne a group to

consist of all observations with the same order
~
o = (o

1

; :::;o

d

) :M

s

! O

d

�

f1; :::; Gg

d

, of depth d, d � G�1 due to the �rst d 2 N highest membership

values:

o

1

(
~
m(x)) = argmax fm(x; c); c = 1; :::; Gg

= cl(x;
~
m)

o

2

(
~
m(x)) = argmax fm(x; c); c 2 f1; :::; Gg no

1

g

:::

o

d

(
~
m(x)) = argmax fm(x; c); c 2 f1; :::; Gg n fo

1

; :::;o

d�1

gg ;
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where we omitted for ease of notation the membership vector in the notation

of the orders on the right hand sides of the equations. Let R(~o) denote the

region that corresponds to objects with a certain ordering ~o of the mem-

bership values. With a few ties in the order, we propose to randomize tied

observations to the corresponding regions. With many ties (may be due to

the classi�ers algorithm) it is better to join regions, if possible.

For G classes and maximum depth G�1 we get G! regions. Depending on

the size of the test set, this may be still too many regions for the number

of observations in these regions to be considered 'suÆciently' high. Thus,

we introduce the depth as a parameter to customize for required sub-sample

sizes. Within regions we then scale membership values such that their mean

is approximately equal to the estimated conditional class probabilities that

de�ne the region only, that is

1

N

T;
~
o

X

(x;c

x

)2R

T

(~o)

m

s

(x; c) � p (c j R(~o);T; �) ;

with c = fo

1

; :::;o

d

g and N

T;
~
o

denoting the number of objects in R

T

(~o).

Scaling at depth one

The most coarse and yet still useful graining we get for depth one, where only

the highest value m

cl(x;
~
m)

(x) := m(x; cl(x;
~
m)); (x; c

x

) 2 T, responsible for

the class-assignment de�nes the region. We callm

cl(x;
~
m)

(x) the assignment

value of an object (x; c

x

) 2 T.

We approximate the empirical distribution F

T;c

: M

s

! [0; 1] of the as-

signment values m

c

(x); (x; c

x

) 2 R

T

(c) within each region R(c) by a Beta

distribution B(�

c

; �

c

), c = 1; :::; G. We estimate suitable parameters �

c

; �

c

using the method of moments (c.p. Gelman et al. (1995), p. 481) for a Beta

distribution. Thus in region R(c) with N

T;c

objects in the test set, we get:

�

c

+ �

c

=

m

T;c

(1�m

T;c

)

1

N

T;c

�1

P

x2R

T

(c)

(m

c

(x) �m

T;c

)

2

;

�

c

= (�

c

+ �

c

)m

T;c

;

�

c

= (�

c

+ �

c

)(1�m

T;c

);

withm

T;c

:=

1

N

T;c

P

(x;c

x

)2R

T

(c)

m

c

(x), denoting the arithmetic mean of the

observed assignment values in the cth region R(c); c = 1; :::; G.

Thus, the empirical probability that the assignment value m(Y ) of any ran-

dom object (Y;C) 2 R(c) is smaller or equal to any observed assignment

value m

c

(x); (x; c

x

) 2 R

T

(c) in that region is approximated by:

P

T;c

(m

c

(Y ) �m

c

(x)) � F

�

c

;�

c

(m

c

(x)) ; c = 1; :::; G:
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We want this probability to be approximately valid for scaled membership

values as well, that is

P

T;c

(m

s

c

(Y ) �m

s

c

(x)) � P

T;c

(m

c

(Y ) �m

c

(x))

for any (x; c

x

) 2 R

T

(c), c = 1; :::; G. For their empirical distribution F

s

T;c

:

M

s

! [0; 1], though, we require that it gives rise to an estimated Beta distri-

bution with di�erent parameters that are corrected for the actual behaviour

of the classi�er on the test set:

N

s

T;c

:= �

s

c

+�

s

c

:= min fN

T;c

; �

c

+�

c

g ; (i)

�

s

c

:= N

s

T;c

p(c j R

c

;T; �): (ii)

The scaled membership value m

s

c

(x) can be calculated numerically from the

equation

F

�

s

c

;�

s

c

(m

s

c

(x)) = F

�;�

c

(m

c

(x))

for all (x; c

x

) 2 R

T

(c) and each c = 1; :::; G.

For the other membership values in the vector
~
m(x), we keep their ratio:

m

s

(x; g) =

1�m

s

c

(x)

1�m

c

(x)

m(x; g); g = 1; ::; G; g 6= c

)

m

s

(x; g)

m

s

(x; i)

=

m(x; g)

m(x; i)

; g; i = 1; :::; G; g; i 6= c;

for all (x; c

x

) 2 R

T

(c) and each c = 1; :::; G.

Justi�cation of the scaling

We use the Beta distribution for the approximations of F

T;c

and F

s

T;c

, be-

cause of its 
exibility and the implicit interpretation of its parameters as it

is the conjugate family of the Bernoulli distribution Be(p). Starting with

an improper prior B(0; 0), and after � successes in N Bernoulli trails, the

posterior distribution of probability p for success is B(�;N ��). Thus, �=N

is an estimator of success probability p and N can be interpreted as certainty

about the estimator.

With that in mind, we can view the assignment to class c, given the rule

assigns to this class, as a Bernoulli trial. Assignment values then re
ect the

rule's estimate of its probability to decide successfully.

In the test set, we see N

T;c

� p(c j R

c

;T; �) examples for success in N

T;c

trials of the rule's assignment to class c. Thus, the appropriate choice for a

corrected success estimator is

�

s

c

N

s

T;c

, c = 1; :::; G, as given in equation (ii).

An appropriate choice for the parameters N

s

T;c

; c = 1; :::; G is less obvious.

Using N

T;c

is not appropriate, because of its interpretation as certainty of
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the current knowledge about parameter p of the Bernoulli distribution. This

would lead to some non-intuitive behaviour of our scaling as, e.g. for N

T;c

!

1, all scaled assignment values of objects in that region approach p. The

parameter N

s

T;c

should rather have an interpretation as a measure of the

inverse dispersion of assignment values. Because of that, no huge scaling

of assignment values near to true conditional class probabilities should take

place. This is an argument favoring N

s

T;c

=�

c

+�

c

, but only for probabilistic

classi�ers. For other assignment values �

c

+�

c

is dependent on the ad-hoc

standardization of the corresponding membership vector intoM

s

, and might

be misleadingly high. The de�nition in (i) avoids unwarranted large certainty

parameters N

s

T;c

for each c = 1; :::; G.

Scaling at depths d > 1

If regions are de�ned for more than the assigned class, that is d > 1, we

intend to use the dirichlet distribution for the approximation. As this is d-

dimensional there exists no inverse of the distribution function. Therefore,

our idea is to perform the scaling stepwise then, starting with the membership

values in ~o

1

and continuing with those in ~o

2

; :::; ~o

d

. On each level, we scale as

described above, but with a di�erent way to determine parameters. They will

be de�ned analogously to the de�nition of parameters when sampling from a

Dirichlet distribution using the Beta distribution as described in Gelman et

al. (1995, p. 482).

5 Measures

We now de�ne measures for the rating of the performance of argmax clas-

si�cation rules w.r.t. accuracy and ability to separate. These measures are

based on Euclidean distances between scaled membership vectors of test set

observations and vectors of the corners of the simplex ~e(c) (see Figure 1),

with components e

g

= I

c

(g); g = 1; :::; G; c = 1; :::; G. This is not only useful

for the understanding of the measures as such but also for a visualization

of the performance of classi�ers for classi�cation problems with up to four

classes.

The measure of accuracy is based on the Euclidean distances between scaled

membership vectors
~
m

s

(x) and the vector representing the corresponding

true class corner ~e(c(x)) for the examples (x; c

x

) in the test set T. We

standardize the mean of these distances such that a measure of one is achieved

if all vectors lie in the correct corners, and zero if they all lie in the centroid

of the simplex. The measure of accuracy is thus:

Ac

T

:=

G�1

G

�

1

N

P

(x;c

x

)2T

k ~e(c

x

)�
~
m

s

(x) k

2

G�1

G

;
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where N is the number of examples in the test set T.

Continuation of the example. We can now compare the behaviour of

the Bayes-QDA classi�er with the behaviour of some neural network (NN)

classi�er that originally used membership values in R with respect to accuracy.

One can see in Figure 2 that the NN-classi�er is slightly better.

G1

G2

G3

CR
1
: 0.75

CR
2
: 0.43

CR
3
: 0.75

Ac: 0.39

232 4422

Scaled Bayes−QDA

G1

G2

G3

CR
1
: 0.80

CR
2
: 0.50

CR
3
: 0.78

Ac: 0.41

2 223 222

Scaled NN

Figure 2: Simplexes representing the behaviour of the QDA-Bayes and the

NN classi�ers on the test set. CR

1

{CR

3

denote the correctness rates for the

assignments to the corresponding classes G

1

{G

3

, Ac the achieved value of ac-

curacy. Lines are drawn to illustrate the Euclidean distances that determine

the AC values.

Analogously, the measure of the ability to separate is based on the Euclidean

distances between scaled membership vectors
~
m

s

(x) and the vector repre-

senting the corresponding assigned class corner ~e(cl(x;
~
m(x))). Note that in

particular for poor classi�ers the assignment of an observation based on its

scaled membership values might be di�erent from the assignment based on

the original membership values, such that ~e(cl(x;
~
m

s

(x))) 6= ~e(cl(x;
~
m(x))),

and that we really want to use the original assignment in our de�nition. We

standardize the mean of this distances in the same way as above, such that

our measure of the ability to separate is de�ned as:

AS

T

:=

G�1

G

�

1

N

P

(x;c

x

)2T

k ~e(cl(x;
~
m(x))) �

~
m

s

(x) k

2

G�1

G

:

Continuation of the example. Again, the NN classi�er is superior to the

Bayes-QDA classi�er with respect to its ability to separate as you can see in

Figure 3.
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G1

G2

G3

CR
1
: 0.75

CR
2
: 0.43

CR
3
: 0.75

AS: 0.44

232 4422

Scaled Bayes−QDA

G1

G2

G3

CR
1
: 0.80

CR
2
: 0.50

CR
3
: 0.78

AS: 0.50

2 223 222

Scaled NN

Figure 3: Simplexes representing the ability to separate of the QDA-Bayes

and the NN classi�ers on the test set. CR

1

{CR

3

denote the correctness rates

for the assignments to the corresponding classes G

1

{G

3

, AS the achieved

value of ability to separate. Lines are drawn to illustrate the Euclidean

distances that determine the AS values.

6 Conclusions

In this paper, we introduced standardized partitions as a mean to compare

so-called argmax classi�cation rules. These partitions build an excellent basis

for the comparison of rules w.r.t. their quantitative assessment of the mem-

bership of objects in classes, in particular by means of accuracy and ability

to separate.
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