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The E�ciency of OLS Estimator in the Linear

Regression Model With Spatially Correlated Errors

Butte Gotu�

Department of Statistics� University of Dortmund

Vogelpothsweg ��� ����� Dortmund� Germany

Abstract� Bounds for the e�ciency of ordinary least squares relative to

generalized least squares estimator in the linear regression model with 	rst


order spatial error process are given�
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� Introduction

Let the relationship between an observable random variable Y and k ex


planatory variables X�� � � � � Xk in a T 
county system be speci	ed in linear

regression form

y � X�  u � ���

where X is a T � k matrix of known constants with full column rank k � T �

and � is a k � � vector of unknown parameters� The vector u is a dis


turbance term with E�u� � � and Cov�u� � ���V�� where ��� is a positive

unknown scalar and V� a T � T positive de	nite matrix with identical dia


gonal elements�

The ordinary least squares �OLS� and the generalized least squares �GLS�

estimators of � in model ��� are given by �� � �X
�

X���X
�

y and �� �

�X
�

V ��
�

X���X
�

V ��
�

y� respectively� with covariance matrices

Cov� ��� � ��� �X
�

X���X
�

V�X�X
�

X��� and Cov� ��� � ��� �X
�

V ��
�

X����
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When the covariance of the disturbance vector u is not a scalar multiple of

the identity matrix� that is Cov�u� �� ��� I as in model ���� it is well known

that the GLS estimator provides the best linear unbiased estimator �BLUE�

of � in contrast to OLS �see e�g� Fomby et al�� ����� p� ����

But in applications� Cov�u� usually involves unknown parameters like a spa


tial correlation coe�cient� so one has to look for another estimator� OLS� say�

In cases where Cov�u� does not involve unknown parameters� one problem

facing a researcher dealing with model ��� is how to measure the e�ciency of

OLS estimator �� relative to GLS estimator ��� For spatial case� this question

can be expressed as� what can we gain by estimating � in the regression

model based on spatial assumptions instead of using simple standard regres


sion speci	cations�

A number of authors have investigated the e�ciency of OLS relative to GLS

estimator when the errors are serially or spatially correlated by using va


rious e�ciency criteria �see Bloom	eld and Watson� ����� Kr�amer� �����

Kr�amer and Donninger� ����� Haining� ����� Gri�th� ����� Cordy and Grif


	th� ����� Kr�amer and Baltagi� ������ The most remarkable feature of the

results obtained is that the relative e�ciency depends mainly on the error

process considered and the degree of correlation� Another aspect of the re


sulting analysis shows the behaviour of the relative e�ciency of OLS when

the correlation parameter tends toward the boundary of the parameter space�

In this paper� bounds for the e�ciency of OLS relative to GLS estimator of �

in model ��� under 	rst
order spatial error process are constructed by using

the measure of e�ciency based on


 the euclidean norm of the di�erence PXV� � V�PX � PX � X�X
�

X���X
�


 the ratio of the traces of the covariance matrices of X �� and X ��


 the ratio of the determinants of the covariances of �� and �� �

�



� Bounds for the relative E�ciency of OLS Estimator

In order to analyse the e�ciency of OLS relative to GLS estimator� one needs

the structure of the covariance matrix of the disturbance vector u� So� we

start by specifying stationary 	rst
order spatial error processes�

Let the components of u follow a 	rst
order spatial moving average �MA����

process

ui � �
TX
j��

wij�j  �i

or� in matrix form

u � �W �  � � ���

where � denotes a spatial correlation coe�cient and � an error term with

E��� � � and Cov��� � ��� I �I is the T 
dimensional identity matrix�� W is

a T � T matrix whose elements are known nonnegative weights de	ned by

�see Cli� and Ord� ����� pp� ��
���

wij

���
��

� � � if counties i and j are neighbours �i �� j�

� � � otherwise 	

The element wij of the weights matrixW measures the strength of the e�ect

of county j on county i�

Under 	rst
order spatial autoregressive �AR���� process� the components of

u follow the pattern

ui � �
TX
j��

wijuj  �i

or� in matrix form

u � �W u  � 	 ���

Equations ��� and ��� can be written as

u � �I  �W � � and u � �I � �W ��� � � ���

respectively� where in the AR��� case the matrix I��W must be nonsingular�

From ��� and ���� we obtain four possible structures of Cov�u� � ���V� for

�



the 	rst
order spatial error process�

V� �

���������
��������

�I  �W ��I  �W
�

� � MA���

�I  �W � � MA���� conditional

�I � �W ����I � �W
�

��� � AR���

�I � �W ��� � AR���� conditional 	

���

To ensure that V� is positive de	nite� the possible values of � must be iden


ti	ed �see Horn and Johnson� ����� p� ����� According to the assumptions

given in model ��� the matrix V� has identical diagonal elements� and denot


ing this element by 
� we get

Cov�u� � ��� V� � �
��� �V � ��u V � ���

where V � ���
�V�� and ��u � 
��� is the variance of the disturbances ui�

i � �� � � � � T � Using the above assumptions under spatial process we can now

write model ��� as the familiar general linear regression model

y � X�  u � E�u� � � � Cov�u� � ��u V 	 ���

Consider the measure of e�ciency based on the euclidean norm of the dif


ference PXV � V PX de	ned by �see Bloom	eld and Watson� �����

e���� ��
�

�
jjPXV � V PX jj

�

�
�

�
tr��PXV � V PX�

�

�PXV � V PX��

� tr�PXV
�� � tr �PXV �

� 	 ���

When e���� � �� the OLS estimator �� can be applied without loss of e�


ciency whereas a loss of e�ciency is expected if e���� �� ��

Let �i�A� denote the i
th eigenvalue of a T � T matrix A� Under the as


sumptions that X
�

X � I� V positive de	nite and T � �k� Bloom	eld and

Watson give the following upper bound for e�����

e���� �
�

�

kX
i��

��i�V �� �T�i���V ��
� � ���

�



where the eigenvalues of V are in ascending order�

Remarks�

When there are big di�erences within the k pairs ��i�V �� �T�i���V �� of the

eigenvalues of V � then the bound in ��� will be large�

For the matrix X with full column rank� there is no loss of generality in

assuming that X
�

X � I because under the transformation

y � �X  u ����

with �X � X�X
�

X����� and  � �X
�

X����� the condition �X
� �X � I is valid

for all X� and the OLS and GLS estimators of � are given by �� � �X
�

X������

and �� � �X
�

X������� respectively� � and � are the estimators of  in �	
��

By inserting V � ���
�V� in ���� we have

e���� �
�


�
ftr�PXV

�

�
� � tr �PXV��

�g	 ����

Using the result of Bloom	eld and Watson ������� under the assumption

that X
�

X � I� V� positive de	nite and T � �k� and applying ���� we obtain

e���� �
�

�
�

kX
i��

��i�V��� �T�i���V���
� � ����

where the eigenvalues of V� are in ascending order�

In the following the upper bounds of e���� will be given� by applying the

relationship given in ���� under some assumptions on the weights matrix�

Corollary �

Let X
�

X � I and T � �k� When the components of the disturbance vector

u in model ��� follow a conditional spatial MA��� process� then

e���� �
��

�

kX
i��

��i�W �� �T�i���W ��� 	 ����

�



Proof�

For a conditional spatial MA��� process the matrix V� is given by V� �

�I  �W �� with W being symmetric� The diagonal elements of V� are all

equal to one because the respective elements of the weights matrix are all

equal to zero� This implies that 
 � �� Furthermore�

�i�V�� � �  ��i�W � � ����

where the eigenvalues �i�V�� and �i�W �� i � �� � � � � T are in ascending order�

Inserting ���� in ���� completes the proof� �

Remarks�

The bound in �	�� will be large when there are large di�erences within the

k pairs of eigenvalues ��i�W �� �T�i���W �� of the matrix W � That is� the

e�ciency of OLS relative to GLS estimator will be lower when the di�erence

within the pairs of eigenvalues of W are large�

The result of Corollary 	 also holds for a conditional spatial AR�	� process

if W is orthogonal�

If the row sums of W are equal to one� then e���� � k�� because the absolute

value of the eigenvalue �i�W � is less than or equal to one for all i �see

Graybill� 	��� p� ���

Corollary �

Assume that W is orthogonal and symmetric� Let X
�

X � I and T � �k�

When the components of the disturbance vector u in model ��� follow a

spatial MA��� or AR��� process� then

e���� �
� k ��

��  ����
	

�



Proof�

MA��� process�

Under a spatial MA��� process we have

V� � �I  �W ��I  �W
�

� 	

From the assumption that the weights matrixW is orthogonal and symmetric

it follows that

V� � ��  ���I  ��W �

implying 
 � �  �� and �i�V�� � ��  ���  ���i�W �� Inserting these

eigenvalues in ���� we get

e���� �
��

��  ����

kX
i��

��i�W �� �T�i���W ��� 	

Since W is orthogonal and symmetric we have �i�W � � f��� �g� which gives

e���� � ��k������  �����

AR��� process�

Under a spatial AR��� process the matrix V� is given by

V� � �I � �W ����I � �W
�

��� 	

When the weights matrixW is assumed to be symmetric and orthogonal� we

obtain �I � �W ��� � ����� � �����I  �W � �see Searle� ����� p� ����� and

V� has the form

V� �
�

��� ����
���  ���I  ��W �� 	

This implies that 
 � ��  ������� ���� and

�i�V�� �
�

��� ����
���  ���  ���i�W �� � ����

where the eigenvalues are in ascending order� Inserting ���� in ���� and using

the fact that �i�W � � f��� �g completes the proof� �

�



Remark�

If the diagonal elements of V� are not identical� then ��� holds when V� is

used instead of V �

The following result shows that the OLS estimator can be applied without

loss of e�ciency as � goes to one�

Theorem �

Let R�X� be the k
dimensional space spanned by the columns of X� and let

� �� ��� � � � � ��
�

� R�X�� If lim��� V � c ��
�

� c � IR� then lim��� e���� � �	

Proof�

The e�ciency e���� can be written as�

e���� � tr�PXV
�� � tr �PXV �

� � tr�PXV �V � PXV ��

� tr�PXVMXV � 	

When the condition lim��� V � c ��
�

holds� we have

lim
���

e���� � c�tr�PX��
�

MX��
�

� 	

Since � � R�X� we get MX� � �I � PX�X� � �� � being a k� � vector� and

this implies lim��� e���� � �	 �

If the ratio of the mean squared errors are used to de	ne the measure of

e�ciency of OLS relative to GLS estimator� then we have �see Kr�amer� �����

e���� ��
tr �Cov�X ����

tr �Cov�X ����

with Cov�X ��� � ��uX�X
�

V ��X���X
�

and Cov�X ��� � ��uPXV PX �

Using this measure of e�ciency a number of papers investigate the e�ciency

of OLS relative to GLS estimator under stationary AR��� process in time

series and spatial models �see Kr�amer� ����� ����� Kr�amer and Donninger�

����� Kr�amer and Baltagi� ������

�



The following theorem gives a lower bound for e���� which holds for all co


variance structures under general linear regression model ����

Theorem �

Let X
�

X � I� Then

Pk
i�� �i�V �Pk

i�� �T�k�i�V �
� e���� � � 	 ����

Proof�

Since ��u� in e����� cancels out� we set ��u � � in calculating covariances�

Under the assumption X
�

X � I� we have

tr �Cov�X ���� � tr �PXV PX� � tr �X
�

V X� ����

and

tr �Cov�X ���� � tr �X�X
�

V ��X���X
�

� � tr �X
�

V ��X���

�
kX
i��

�i��X
�

V ��X����

�
kX
i��

�

�i�X
�V ��X�

	 ����

Applying Poincar�e separation theorem we obtain the following inequalities

�see Horn and Johnson� ����� p� �����

kX
i��

�i�V � � tr �Cov�X ���� �
kX
i��

�T�k�i�V �

�i�V
��� � �i�X

�

V ��X� � �T�k�i�V
��� 	 ����

The second inequality in ���� implies

�

�i�X
�V ��X�

�
�

�T�k�i�V ���
� i � �� � � � � k	

�



Using ���� to ���� we have

tr �Cov�X ���� �
kX
i

�

�T�k�i�V ���

�
kX
i

�i�V �

tr �Cov�X ���� �
kX
i��

�T�k�i�V � 	 ����

From ���� it is clear that

Pk
i�� �i�V �Pk

i�� �T�k�i�V �
� e���� 	

The inequality e���� � � follows from the optimality of GLS estimator �see

Kr�amer� ������ �

Remark�

If there is a large di�erence between the sum of the k smallest and k largest

eigenvalues of V � then the e�ciency of OLSE will be small� but never less

than the ratio of the smallest and the largest eigenvalues �min�V ���max�V ��

For spatial models with 	rst
order spatial error process the following result

is obtained�

Corollary �

Assume that the matrix X ful	lls X
�

X � I� Let the weights matrix W be

symmetric with row sums equal to one� If the components of the disturbance

vector u follow a spatial MA��� or AR��� process� then

e���� �
��� ���

��  ���
� � � � 	 ����

��



Proof�

MA��� process

Under a spatial MA��� process with symmetric weights matrix the eigenval


ues of V� are given by

�i�V�� � ��  ��i�W ��� � i � �� � � � � T �

where the eigenvalues of W and V� are in ascending order� When the row

sums of W are all equal to one� then the absolute value of �i�W � is less than

or equal to one for all i �see Graybill� ����� p� ���� This implies

�



��� ��� � �i�V � �

�



��  ��� � � � � � ����

so that applying Theorem � gives �����

AR��� process

Using the same reasoning as in the MA��� case we obtain the following

bounds for the eigenvalues of V �

�


��  ���
� �i�V � �

�


��� ���
� � � � ����

and ���� follows by applying Theorem �� �

In what follows we use a measure of e�ciency which is based on the deter


minants of the covariances of the least squares estimators� and give a lower

bound for the e�ciency of OLS relative to GLS estimator�

Consider the measure of e�ciency given by �see Watson� �����

e���� ��
jCov� ���j

jCov� ���j
�

jX
�

Xj�

jX �V Xj jX �V ��Xj
�

where j � j stands for determinant� The matrices X
�

V X and X
�

V ��X are

positive de	nite because V is positive de	nite and X of full column rank�

This implies that e���� � ��

Let A and B be T � k matrices and assume that B
�

B is nonsingular� The

��



well known Cauchy
Inequality concerning the determinants of two matrices

A and B states that jA
�

Bj� � jA
�

Aj jB
�

Bj �see Basilevsky� ����� p� �����

Using A � V ���X and B � V ����X� we get jX
�

Xj� � jX
�

V Xj jX
�

V ��Xj�

This implies� under the assumption X
�

X � I� e���� � ��

The following theorem gives a lower bound for e�����

Theorem �

Let X
�

X � I� Then

e���� �
kY
i��

�i�V �

�T�k�i�V �
	 ����

Proof�

By applying Poincar�e separation theorem we get

kY
i��

�i�V � �
kY
i��

�i�X
�

V X� �
kY
i��

�T�k�i�V �

kY
i��

�i�V
��� �

kY
i��

�i�X
�

V ��X� �
kY
i��

�T�k�i�V
��� �

where the eigenvalues are in ascending order� This implies

jX
�

V Xj �
kY
i��

�i�X
�

V X� �
kY
i��

�i�V � �

so that
�

jX �V Xj
�

kY
i��

�

�i�V �
	

Furthermore�

jX
�

V Xj �
kY
i��

�T�k�i�V �

jX
�

V ��Xj �
kY
i��

�T�k�i�V
��� 	

��



This implies

�

jX �V Xj
�

kY
i��

�

�T�k�i�V �

jX
�

V ��Xj �
kY
i��

�

�i�V �
	 ����

According to the de	nition� we have

e���� �
��jX

�

V Xj

jX �V ��Xj
�

and using ���� yields the asserted result� �

Remark�

Bloom�eld and Watson �	���� give a narrower lower bound for e���� under

the additional assumptions that T � �k and k � ��

Under 	rst
order spatial error process we get the following result�

Corollary �

Assume that X
�

X � I� Let the weights matrix W be symmetric with row

sums equal to one� If the components of the disturbance vector u follow a

spatial MA��� or AR��� process� then

e���� �
��� ���k

��  ���k
� � � � 	

Proof�

The proof follows by applying Theorem � using the bounds of the eigenvalues

of the matrix V given in ���� and ����� �

Remark�

When the diagonal elements of V� are not identical� meaning that the u�is

have di�erent variances� we get �see Theorems � and ��

e���� �

Pk
i�� �i�V��Pk

i�� �T�k�i�V��

e���� �
kY
i��

�i�V��

�T�k�i�V��
	

��
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