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Abstract

In the common trigonometric regression model we investigate the D-optimal de-

sign problem, where the design space is a partial circle. It is demonstrated that

the structure of the optimal design depends only on the length of the design space

and that the support points (and weights) are analytic functions of this parameter.

By means of a Taylor expansion we provide a recursive algorithm such that the D-

optimal designs for Fourier regression models on a partial circle can be determined in

all cases. In the linear and quadratic case the D-optimal design can be determined

explicitly.
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1 Introduction

Trigonometric regession models of the form

y = �

0

+

m

X

j=1

�

2j�1

sin(jt) +

m

X

j=1

�

2j

cos(jt) + "; t 2 [c; d];(1.1)

�1 < c < d <1; are widely used to describe periodic phenomena [see e.g. Mardia (1972),

Graybill (1976) or Kitsos, Titterington and Torsney (1988)] and the problem of designing

experiments for Fourier regression models has been discussed by several authors [see e.g.

Hoel (1965), Karlin and Studden (1966), page 347, Fedorov (1972), page 94, Hill (1978), Lau

and Studden (1985), Riccomagno, Schwabe and Wynn (1997)]. Most authors concentrate

on the design space [��; �], but Hill (1978) and Kitsos, Titterington and Torsney (1988)

point out that in many applications it is impossible to take observations on the full circle

[��; �]: We refer to Kitsos, Titterington and Torsney (1988) for a concrete example, who

investigated a design problem in rhythmometry involving circadian rhythm exhibited by

peak expiratory 
ow, for which the design region has to be restricted to a partial cycle of

the complete 24-hour period.

In the present paper, we address the question of designing experiments in trigonometric

models, where the design space is not necessarily the full circle but an arbitrary interval

[c; d] � R. Recently, Dette and Melas (2001) considered optimal designs for estimating

individual coeÆcients in this model and gave a partial solution to this problem. In the

present paper, we consider the D-optimality criterion, which is a reasonable criterion if

eÆcient estimates of all parameters in the model are desired. It is demonstrated in Section

2 that the structure of the D-optimal design depends only on the length a = (c � d)=2

of the design space and that there only exist two types of D-optimal designs (this result

seems to be even unknown for the complete circle). Our main result of Secion 3 proves

that the support points (and weights) of the D-optimal design are analytic functions of the

parameter a and that an appropriately scaled version of the D-optimal design converges

weakly as a ! 0 to a nondegenerate discrete distribution on the interval [0; 1]. Following

Melas (1978), these results are applied to obtain Taylor expansions for the support points

of the D-optimal design (considered as a function of the parameter a = (d� c)=2), which

allows a complete solution of the D-optimal design problem in the trigonometric regression

model (1.1) on the interval [c; d]. Finally, some examples are given in Section 4, and in

the linear and quadratic trigonometric regression model on the interval [�a; a] D-optimal

designs are determined explicitly.

2 Preliminary results for D-optimal designs in trigono-

metric regression models on a partial circle

Consider the trigonometric regression model (1.1), de�ne � = (�

0

; �

1

; : : : ; �

2m

)

T

as the

vector of parameters and

f(t) = (1; sin t; cos t; : : : ; sin(mt); cos(mt))

T

= (f

0

(t); : : : ; f

2m

(t))

T

(2.1)
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as the vector of regression functions. An approximate design is a probability measure � on

the design space [c; d] with �nite support [see e.g. Kiefer (1974)]. The support points of

the design � give the locations, where observations are taken, while the weights give the

corresponding proportions of total observations to be taken at these points. Due to the

2�-periodicity of the regression functions we restrict ourselves without loss of generality to

design spaces with lenght d � c � 2�. For uncorrelated observations (obtained from an

approximate design) the covariance matrix of the least squares estimator for the parameter

� is approximately proportional to the matrix

M(�) =

Z

f(t)f

T

(t)d�(t) 2 R

2m+1�2m+1

;(2.2)

which is called information matrix in the design literature. An optimal design minimizes (or

maximizes) an appropriate convex (or concave) function of the informationmatrix and there

are numerous criteria proposed in the literature, which can be used for the discrimination

between competing designs [see e.g. Fedorov (1972), Silvey (1980) or Pukelsheim (1993)].

In this paper, we are interested in D-optimal designs for the trigonometric regression model

(1.1) on the interval [c; d], which maximize the determinant

detM(�)

of the Fisher information matrix in the space of all approximate designs on the interval

[c; d]. Note that a D-optimal design minimizes the (approximate) volume of the ellipsoid

of concentration for the vector � of the unknown parameters in the model (1.1) [see e.g.

Fedorov (1972)] and that optimal designs in the trigonometric regression model (1.1) for

the full circle [c; d] = [��; �] have been determined by numerous authors [see e.g. Karlin

and Studden (1966), Fedorov (1972), Lau and Studden (1985), Pukelsheim (1993) or Dette

and Haller (1998) among many others].

Our �rst preliminary result demonstrates that for the solution of the D-optimal design

problem on a partial circle it is suÆcient to consider only symmetric design spaces. To be

precise, let

� =

�

t

0

: : : t

n

!

0

: : : !

n

�

(2.3)

denote a design on the interval [c; d] with di�erent support points t

0

< : : : < t

n

and positive

weights !

0

; : : : ; !

n

adding to one and de�ne its aÆne transformation onto the symmetric

interval [�a; a] by

�

�

=

�

~

t

0

: : :

~

t

n

!

0

: : : !

n

�

(2.4)

where a = (d� c)=2 and

~

t

i

= t

i

� (d+ c)=2, i = 1; : : : ; n.

Lemma 2.1. Let M(�) and M(�

�

) denote the information matrices in the trigonometric

regression model (1.1) of the designs � and �

�

de�ned by (2.3) and (2.4), respectively, then

detM(�

�

) = detM(�):(2.5)
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Proof. If the number of support points satis�es n + 1 < 2m + 1, then both sides of the

equation (2.5) vanish and the proof is trivial. Next consider the case n = 2m, for which we

have [see e.g. Karlin and Studden (1966)]

detM(�

�

) = (detF (�

�

))

2

2m

Y

i=0

!

i

;(2.6)

where the matrix F (�

�

) 2 R

2m+1�2m+1

is de�ned by

F (�

�

) =

�

f

i

(

~

t

j

)

�

j=0;:::;2m

i=0;:::;2m

:(2.7)

Now it to easy to see that the vector f(t) de�ned by (2.1) satis�es for any � 2 R

f(t + �) = Pf(t)

where P is a (2m+ 1)� (2m+ 1) diagonal block matrix de�ned by

P =

0

B

B

@

1

Q(�)

.

.

.

Q(m�)

1

C

C

A

and Q(�) is a 2� 2 rotation matrix given by

Q(�) =

�

cos(�) sin(�)

� sin(�) cos(�)

�

:

Obviously, we have detP = 1 and obtain from (2.6) and (2.7)

detM(�

�

) = detM(�) ;

which proves the assertion of the Lemma in the case n = 2m. Finally, in the remaining

case n > 2m, the assertion follows from the Cauchy Binet formula and the arguments given

for the case n = 2m. 2

From Lemma 2.1 it is clear that it is suÆcient to determine the D-optimal designs for

symmetric intervals

[c; d] = [�a; a]; 0 < a � �

and we will restrict ourselves to this case throughout this paper. For �xed a 2 (0; �] let

�

�

a

denote a D-optimal design for the trigonometric regression model (1.1) on the interval

[�a; a]. Note that in general the D-optimal design for the trigonometric regression model is

not necessarily unique [see e.g. Fedorov (1972), who considered the case a = �]. However,

it is known that the optimal information matrix M(�

�

a

) is unique and nonsingular [see e.g.

Pukelsheim (1993), p. 151]. Moreover, due to the equivalence theorem for D-optimality

[see Kiefer (1974)] the design �

�

�

satis�es

d(t; �

�

�

) � 0 for all t 2 [�a; a];(2.8)
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with equality at the support points, where

d(t; �) = f

T

(t)M

�1

(�)f(t)� (2m+ 1)(2.9)

denotes the directional derivative of the function � ! log detM(�) [see Silvey (1980), p.20].

Let �

(1)

a

denote the set of all designs of the form

� = �(a) =

�

�t

m

: : : �t

1

t

0

t

1

: : : t

m

1

2m+1

: : :

1

2m+1

1

2m+1

1

2m+1

: : :

1

2m+1

�

(2.10)

where 0 = t

0

< t

1

< : : : < t

m

= a and de�ne

�

(2)

=

n

� j supp(�) � [�a; a]; d(t; �) = 0 for all t 2 [�a; a]

o

(2.11)

as the set of all designs on the interval [�a; a] with vanishing directional derivative for all

t 2 [�a; a], then we obtain the following auxiliary result.

Lemma 2.2. Let �

�

a

denote a D-optimal design on the interval [�a; a], then

�

�

a

2 �

(1)

a

[ �

(2)

a

:

Proof. Due to the equivalence theorem (2.8) any design � 2 �

(2)

a

is D-optimal for trigono-

metric regression model (1.1) on the interval [�a; a]. Now assume that

� =

�

u

1

: : : u

n

!

1

: : : !

n

�

is D-optimal for the trigonometric regression on the interval [�a; a], where the support

points satisfy �a � u

1

< : : : < u

n

� a. If � 62 �

(2)

a

, then d(t; �) 6� 0, but due the

equivalence theorem we have

d(u; �) � 0 8 u 2 [�a; a]

d(u

i

; �) = 0 8 i = 1; : : : ; n(2.12)

d

du

d(u; �)j

u=u

i

= 0 8 i = 2; : : : ; n� 1:

If

~

� denotes the re
ection of � at the origin, then it is easy to see that detM(�) = detM(

~

�)

and consequently

~

� is also D-optimal. Moreover, the concavity of the D-criterion implies

that the symmetric design �

�

= (� +

~

�)=2 is also D-optimal in the trigonometric regression

(1.1) on the interval [�a; a]. Note that there exists a permutation matrix P 2 R

2m+1�2m+1

such that

PM(�)P

T

=

�

M

1

(�) M

2

(�)

M

T

2

(�) M

3

(�)

�

;(2.13)
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where

M

1

(�) =

Z

a

�a

f

c

(t)f

T

c

(t)d�(t) 2 R

m+1�m+1

M

2

(�) =

Z

a

�a

f

c

(t)f

T

s

(t)d�(t) 2 R

m+1�m

(2.14)

M

3

(�) =

Z

a

�a

f

s

(t)f

T

s

(t)d�(t) 2 R

m�m

and f

c

(t) = (1; cos(t); : : : ; cos(mt))

T

, f

s

(t) = (sin(t); : : : ; sin(mt))

T

. Because the informa-

tion matrix of the D-optimal design is unique [see Pukelsheim (1993)], we obtain (note that

�

�

is symmetric)

M

2

(�) =M

2

(

~

�) =M

2

(�

�

) = 0 2 R

m+1�m

;

which implies for the directional derivative in (2.9)

g(t) = d(t; �) = f

c

T

(t)M

�1

1

(�)f

c

(t) + f

s

T

(t)M

�1

3

(�)f

s

(t)� (2m+ 1)

=

2m

X

i=0




i

cos(it)(2.15)

for appropriate constants 


0

; : : : ; 


2m

(note that the last representation follows by well

known trigonometric formulas). From � 62 �

(2)

a

we obtain that the polynomial g(t) is not

identically zero and the equivalence theorem shows that every suppport point is a zero of

the function g. Moreover, the functions f1; cos t; : : : ; cos(2mt)g form a Chebyshev system

on the interval [0; a] and a Chebyshev system on the interval [�a; 0]. Consequently, g has

at most 2m+ 1 roots in the interval [0; a] and at most 2m+ 1 zeros in the interval [�a; 0]

(including counting of multiplicities) [see Karlin and Studden (1966)]. Consider the case

[0; a] and substitute t = arccos x, then it follows, observing the de�nition of the Chebyshev

polynomials of the �rst kind

T

i

(x) = cos(i arccos x);(2.16)

[see Rivlin (1974)] that g(arccos x) is a nonpositive polynomial of degree 2m on the in-

terval [cos a; 1]. Consequently, if g(arccos x) has exactly 2m roots (including counting of

multiplicities), the boundary points cos a and 1 have to be roots of g(arccosx). Note that

a similar argument applies to the interval [�a; 0] and therefore the nonpositive function g

de�ned in (2.15) has at most 4m roots (including counting of multiplicities) in the interval

[�a; a]. Because the number of regression functions is 2m + 1, it therefore follows from

(2.12) that any D-optimal design � 62 �

(2)

a

has exactly 2m+1 support points in the interval

[�a; a] including the boundary points �a; a. A standard argument shows that all weights of

the D-optimal design have to be equal, i.e. !

j

= 1=(2m+1); j = 1; : : : ; 2m+1. If � 62 �

(1)

a

,

then � 6=

~

� and consequently �

�

= (� +

~

�)=2 is a D-optimal design for the trigonometric

regression model (1.1) on interval [�a; a] with more than 2m + 1 support points, which is

impossible, by the above discussion. This shows � 2 �

(1)

a

and proves Lemma 2.2.

2
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3 Analytic properties of D-optimal designs in trigono-

metric regression models on a partial circle

Lemma 2.2 motivates the consideration of designs of the form (2.10) and our next Lemma

gives an explicit representation for the determinant of the information matrix of this type

of design.

Lemma 3.1. Let � denote a design of the form (2.10) and x

i

= cos t

i

, i = 0; : : : ; m, then

detM(�) =

2

2m

2

(2m+ 1)

2m+1

m

Y

i=1

(1� x

2

i

)(1� x

i

)

2

Y

1�i<j�m

(x

j

� x

i

)

4

:(3.1)

Proof. For any design � of the form (2.10) we have

detM(�) = detM

1

(�) detM

3

(�);

where the matrices M

1

(�);M

2

(�);M

3

(�) are de�ned by (2.14). De�ne the design �

�

by

�

�

=

�

x

0

x

1

: : : x

m

1

2m+1

2

2m+1

: : :

2

2m+1

�

;

then it is straightforward to see, that

M

1

(�) =

�

Z

1

�1

T

i

(x)T

j

(x)d�

�

(x)

�

m

i;j=0

;(3.2)

M

3

(�) =

�

Z

1

�1

(1� x

2

)U

i

(x)U

j

(x)d�

�

(x)

�

m�1

i;j=0

(3.3)

where T

i

(x) is the Chebyshev polynomial of the �rst kind de�ned in (2.16) and

U

i

(x) =

sin((i + 1) arccosx)

sin(arccos x)

(3.4)

is the Chebyshev polynomial of the second kind [see Rivlin (1974)]. Because T

i

(x) is a

polynomial of degree i with leading coeÆcient 2

i�1

, it follows that M

1

(�) is essentially a

Vandermonde determinant, i.e.

detM

1

(�) = 2

m(m�1)

2

m

(2m+ 1)

m+1

�

det

�

(x

i

j

)

j=0;:::;m

i=0;:::;m

�

�

2

=

=

2

m

2

(2m+ 1)

m+1

m

Y

i=1

(1� x

i

)

2

Y

1�i<j�m

(x

j

� x

i

)

2

7



(note that x

0

= 1). Note that the support point x

0

of �

�

has a vanishing contribution to the

matrix M

3

(�) and that the leading coeÆcient of U

i

(x) is 2

i

. Therefore we have by similar

arguments

detM

3

(�) =

2

m

2

(2m + 1)

m

m

Y

i=1

(1� x

2

i

)

Y

1�i<j�m

(x

j

� x

i

)

2

and a combination of these formulas yields (3.1), which proves the assertion of Lemma 3.1.

2

We are now studying the function

�(x; a) =

m

Y

i=1

(1� x

2

i

)(1� x

i

)

2

Y

1�i<j�m

(x

j

� x

i

)

4

(3.5)

as a function of the length a of the design space. To this end we note that x

m

= cos(a)

and introduce the set

T = f(�

1

; : : : ; �

m�1

)

T

j 0 < � < : : : < �

m�1

< 1g(3.6)

X = f(x

1

; : : : ; x

m�1

)

T

j x

i

=cos(a�

i

); i=1; : : : ; m�1; (�

1

; : : : ; �

m�1

)

T

2Tg(3.7)

Note that any design � 2 �

(1)

a

of the form (2.10) is uniquely determined by a point

� = (�

1

; : : : ; �

m�1

)

T

2 T or its corresponding function x = (x

1

; : : : ; x

m�1

)

T

2 X by the

transformation t

i

= a�

i

= arccos x

i

; i = 1; : : : ; m � 1 (note that t

0

= 0; t

m

= a) and by

Lemma 3.1 the determinant of M(�) is proportional to the function � given in (3.5). By

standard arguments it can now be veri�ed that for �xed a 2 (0; �] the function � in (3.5)

is a strictly concave function of x = (x

1

; : : : ; x

m�1

)

T

2 X . Therefore (for �xed a) the func-

tion �(x; a) has a unique maximum in X , which will be denoted by x

�

(a) (because of its

dependence on the length of the design space). The function � is obviously di�erentiable

and x

�

(a) can be obtained as the unique solution of the equations

@

@x

�(x; a) = 0 2 R

m�1

:(3.8)

Moreover, for any x 2 X the matrix of the second partial derivatives

G(x; a) =

�

@

2

@x

i

@x

j

�(x; a)

�

m�1

i;j=1

(3.9)

is positive de�nite and in particular the matrix

J(a) = G(x

�

(a); a)(3.10)

is positive de�nite for all a 2 (0; �]. It therefore follows from the implicit function theorem

[see Gunning and Rossi (1965)] that the function

x

�

:

�

(0; �] ! X

a ! x

�

(a)

(3.11)
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de�ned as the solution of the equation (3.8) is real analytic. In other words: for any point

a

0

2 (0; �] there exists a neighbourhood U

0

of a

0

, such that the function x

�

j

U

0

can be

expanded in a convergent Taylor series. Observing the symmetry �(x; a) = �(x;�a), it

therefore follows that the function

�

�

:

8

<

:

[��; �]nf0g ! T

a! �

�

(a) =

�

arccos x

�

1

(jaj)

a

; : : : ;

arccos x

�

m�1

(jaj)

a

�

T

(3.12)

is also real analytic. The following result shows that the function �

�

can be extended to a

real analytic function on the full circle [��; �].

Lemma 3.2. The function �

�

de�ned by (3.12) can be extended to a real analytic function

on the interval [��; �], where

�

�

(0) = lim

a!0

�(a) = (�

�

1

; : : : ; �

�

m�1

)

T

;

�

�

1

< : : : < �

�

m�1

are the positive roots of the polynomial

P

(1;1=2)

m�1

(2x

2

� 1) =

1

2x

P

(1;1)

2m�1

(x) =

1

(2m+ 1)x

P

0

2m

(x)

and P

(�;�)

i

(x) denotes the ith Jacobi polynomial orthogonal with respect to the measure

(1� x)

�

(1 + x)

�

dx and P

2m

(x) is the 2mth Legendre polynomial orthogonal with respect to

the Lebesgue measure on the interval [�1; 1].

Proof. The assertion of Lemma 3.2 follows if we prove the existence of lim

a!0

�

�

(a) and the

claimed form of its components. Let x

�

= (cos(a�

1

); : : : ; cos(a�

m�1

))

T

, then the expansions

sin t = t + o(t), cos t = 1� t

2

=2 + o(t

2

) show that for a! 0

�(x

�

; a) =

a

2m(2m+1)

2

2m

2

m

Y

i=1

�

6

i

Y

1�i<j�m

(�

2

i

� �

2

j

)

4

(1 + o(a))

(�

m

= 1) and consequently, the limit lim

a!0

�

�

(a) exists and can be obtained by maximizing

the function

�

�(�) =

m

Y

i=1

�

3

i

(1� �

2

i

)

2

Y

1�i<j�m�1

(�

2

i

� �

2

j

)

2

(3.13)

over the set T de�ned in (3.6). Note that standard arguments show the strict concavity

of the function

�

� and consequently, the point �

�

= (�

�

1

; : : : ; �

�

m�1

)

T

where the maximum is

obtained is unique. Taking partial derivatives of the logarithm of

�

� yields the system

3

�

i

+

4�

i

�

2

i

� 1

+

m�1

X

j=1;j 6=i

4�

i

�

2

i

� �

2

j

= 0 ; i = 1 : : :m� 1(3.14)
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and substituting �

2

i

= y

i

2 (0; 1) gives

3

y

i

+

4

y

i

� 1

+

m�1

X

j=1;j 6=i

4

y

i

� y

j

= 0 ; i = 1 : : :m� 1 :(3.15)

Similar arguments as given in Karlin and Studden (1966) or Fedorov (1972) show that the

polynomial  (y) =

Q

m�1

i=1

(y � y

i

) satis�es the di�erential equation

y(1� y) 

00

(y) + (3=2� 7=2y) 

0

(y) + (m� 1)(m+ 3=2) (y) = 0:(3.16)

It is well known [see e.g. Szeg�o (1975), Sect. 4.21] that the unique polynomial solution of

this di�erential equation is given by the polynomial

P

(1=2;1)

m�1

(1� 2y)

and the assertion of the Lemma now follows from transformation y = �

2

and the equation

P

(�;�)

n

(�x) = (�1)

n

P

(�;�)

m�1

(x) [see Szeg�o (1975), formula (4.1.3)]. The alternative repre-

sentations of the polynomial P

(1;1=2)

m�1

(2x

2

� 1) are a consequence of P

(0;0)

n

(x) = P

n

(x) and

Theorem 4.1 in Szeg�o (1975). 2

Table 1: Values of the components �

�

1

(0); : : : ; �

�

m�1

(0) of the vector �

�

(0) de�ned in Lemma

3.2 and the polynomial solution of the di�erential equation (3.16) for various values of m.

m  (y) and �

j

(0)

2  (y) = y � 3=7

�

�

1

(0) =

p

3=7 � 0:6546

3  (y) = y

2

� 10=11y + 5=33

�

�

1

(0) � 0:4688; �

�

2

(0) � 0:8302

4  (y) = y

3

� 7=5y

2

+ 7=13y � 7=143

�

�

1

(0) � 0:3631; �

�

2

(0) � 0:6772; �

�

3

(0) � 0:8998

5  (y) = y

4

� 36=19y

3

+ 378=323y

2

� 84=323y + 63=4199

�

�

1

(0) � 0:2958; �

�

2

(0) � 0:5652; �

�

3

(0) � 0:7845; �

�

4

(0) � 0:9340

Table 1 shows the polynomial P

(1;1=2)

m�1

(2y� 1) (normalized such that the leading coeÆcient

is 1) and the corresponding values �

�

i

=

p

y

i

for lower degrees m = 2; 3; 4; 5. The following

result shows that for small designs space, i.e.

a � �(1� 1=(2m+ 1));

the solution of the optimal design problem can be obtained by a Taylor expansion of the

function �

�

in (3.12) at the point a = 0, where the ith component �

�

i

(0) of the vector �

�

(0)

is the ith positive root of the polynomial P

(1;1=2)

m�1

(2x

2

� 1).

10



Theorem 3.3. Consider the trigonometric regression model (1.1) with design space [�a; a],

where 0 < a � �.

(i) If a > �(1� 1=(2m+ 1)), then the design �

�

a

with equal masses at the 2m + 1 points

t

�

i

= 2�

i� 1�m

2m+ 1

; i = 1; : : : ; 2m+ 1(3.17)

is a D-optimal design.

(ii) If a < �(1� 1=(2m+ 1)), the D-optimal design is unique and of the form

�

�

a

=

�

�a �a�

�

m�1

(a) : : : �a�

�

1

(a) 0 a�

�

1

(a) : : : a�

�

m�1

(a) a

1

2m+1

1

2m+1

: : :

1

2m+1

1

2m+1

1

2m+1

: : :

1

2m+1

1

2m+1

�

(3.18)

where �

�

is a real analytic function on the interval [��; �] de�ned by (3.12) and Lemma

3.2.

Proof. Recall the de�nition of the set �

(2)

a

in (2.11) and assume that the design �

�

2 �

(2)

a

is D-optimal for the trigonometric regression model (1.1) on interval [�a; a]. Because

d(t; �

�

) = 0 for all t 2 [�a; a] it follows from the Chebyshev property of the functions

f1; sin t; cos t; : : : ; sinmt; cosmtg that the directional derivative d(t; �

�

) also vanishes on

the full circle [��; �] [see Karlin and Studden (1966), p. 20]. Consequently, �

�

is also

D-optimal for the trigonometric regression on the interval [��; �], which implies [by the

uniqueness of the D-optimal information matrix]

M(�

�

) = diag(1; 1=2; : : : ; 1=2);

detM(�

�

) = 2

�2m

:

On the other hand we have

lim

a!0

max

�

detM(�) = 0 ;

and consequently for suÆciently small a the D-optimal design cannot be an element of the

set �

(2)

a

. From Lemma 2.2 it follows that the D-optimal design must belong to the set �

(1)

a

and the discussion in the �rst part of this section shows that for suÆciently small a the

D-optimal design is unique and of the form (3.18). Now let �

�

a

denote the design de�ned

by (3.18) and

a

�

= supfa 2 (0; �] j �

�

a

is D-optimalg

= supfa 2 (0; �] j detM(�

�

) < 2

�2m

g(3.19)

(note that the second equality follows by continuity and Lemma 2.2). It is well known

[see Fedorov (1972) or Pukelsheim (1993)] that the uniform distribution �

u

at the 2m + 1

points de�ned by (3.17) is D-optimal for the trigonometric regression model on the interval

11



[��; �]. If â = �(1� 1=(2m+ 1)) denotes the largest support point of this design, then it

follows that �

�

â

= �

u

. Consequently, the design �

�

â

speci�ed in part (i) of Theorem 3.3 is also

D-optimal for the trigonometric regression on the interval [�â; â] and the D-optimality of

�

�

â

on [��; �] shows

�

�

â

2 �

(1)

â

\ �

(2)

â

;

which implies for the critical bound in (3.18) the inequality a

�

� â. Now for any design of

the form

� = �(a) =

�

�t

m

: : : �t

1

t

0

t

1

: : : t

m

1

2m+1

: : :

1

2m+1

1

2m+1

1

2m+1

: : :

1

2m+1

�

(3.20)

with 0 < t

1

< : : : < t

m

� � it follows from Lemma 3.1 that

detM(�) = C

m

Y

i=1

(1� x

2

i

)(1� x

i

)

2

Y

1�i<j�m

(x

j

� x

i

)

4

=: h(x

�

)

with C = 2

2m

2

=(2m+1)

2m+1

, x

�

= (x

1

; : : : ; x

m

)

T

, x

i

= cos t

i

(i = 1; : : : ; m). The discussion

at the beginning of this section shows that h is strictly concave. Additionally, we have for

the design �

�

â

h(x

�

�

â

) = 2

�2m

and for any other design � of the form (3.20)

h(x

�

) < 2

�2m

(because otherwise a convex combination of �

�

â

and �

a

would have an information matrix

with a determinant larger than 2

�2m

, which is impossible). Consequently, because �

�

u

is of

the form (3.20) it follows for the quantity a

�

de�ned by (3.19) that a

�

= â.

If a � â, the discussion of this proof shows that the design speci�ed by part (i) of Theorem

3.3 is D-optimal. If a < â, the de�nition (3.19) shows that the D-optimal design is in the

set �

(1)

a

and Lemma 3.1 and 3.2 (with their corresponding proofs) imply that the D-optimal

design for the trigonometric regression on the interval [�a; a] is of the form (3.18), which

completes the proof of the theorem. 2

Note that Theorem 3.3 provides a complete solution of the D-optimal design problem.

In the case (i) with a � �(1 � 1=(2m + 1)) a D-optimal design for the trigonometric

regression model (1.1) on the interval [�a; a] is explicitly given by the uniform distribution

at the support points speci�ed by (3.17), but is not necessarily unique. If a < �(1 �

1=(2m + 1)) the D-optimal design is unique and speci�ed by (3.18), where the vector

�

�

(a) = (�

�

1

(a); : : : ; �

�

m�1

(a))

T

can be obtained by means of a Taylor expansion at the point

a = 0

�

�

(a) =

1

X

i=0

�

�

(i)

a

i

(3.21)
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and the vector �

�

(0)

= �

�

(0) is given in Lemma 3.2. It is shown in Dette, Melas and

Pepelyshev (2000) that the coeÆcients in the above expansion can be calculated by the

recursive relations

�

�

(s+1)

= �

1

(s + 1)!

J

�1

(0)

�

d

da

�

s+1

g(�

�

<s>

(a); a)

�

�

�

�

a=0

s = 0; 1; 2; : : :, where

�

�

<s>

(a) =

s

X

i=0

�

�

(i)

a

i

denotes the Taylor polynomial of degree s 2 f0; 1; 2; : : :g,

J(0) =

�

@

2

@�

i

@�

j

�(x

�

; a)

�

m�1

i;j=1

�

�

�

�

�

�=�

�

(0)

and

g(�; a) =

@

@�

�(x

�

; a) 2 R

m�1

:

Note that in general an exact determination of the radius of convergence for the Taylor

expansion (3.21) seems to be intractable. In general several re-expansions could be needed

to obtain the D-optimal design for any a 2 (0; �(1� 1=(2m+ 1)). However, our numerical

calculations in the following section indicate that the expansion at the point a = 0 always

gives the D-optimal design for the trigonometric regression model (1.1) on the interval

[�a; a] for any a 2 (0; �(1� 1=(2m+ 1)).

4 Examples

Example 4.1. Our �rst example considers the linear trigonometric regression model (m =

1) on the interval [�a; a], for which the solution is rather obvious. If a � 2�=3, the design

�

�

a

=

�

�

2�

3

0

2�

3

1

3

1

3

1

3

�

is D-optimal, while for a < 2�=3 the D-optimal design for the linear trigonometric regression

model on the interval [�a; a] is given by

�

�

a

=

�

�a 0 a

1

3

1

3

1

3

�

:

This follows directly from Theorem 3.3.

Example 4.2. In the quadratic regression model the situation is more complicated. If

a � 4�=5, then part (i) of Theorem 3.3 shows that the design

�

�

a

=

�

�

4�

5

�

2�

5

0

2�

5

4�

5

1

5

1

5

1

5

1

5

1

5

�
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is D-optimal. If a < 4�=5, the D-optimal design can be obtained by means of a Taylor

expansion as indicated in the second part of Theorem 3.3. However, in this particular case

an explicit solution is possible by a careful inspection of the arguments given in Section 3.

Part (ii) of Theorem 3.3 shows that the D-optimal design in the quadratic trigonometric

regression model is in the set �

(1)

a

, whenever a < 4�=5 and consequently only one support

point t

�

1

= t

�

1

(a) has to be determined. This can be done by a direct di�erentation of the

function �(x; a) in (3.5). Note that m = 2, x

2

= cos a and therefore �(x; a) is a function

of only one variable, say x

1

2 (�1; 1). Elementary calculus yields that the derivative of �

has zeros at the points x

1

= cos a, x

2

= 1 and

x

3;4

=

1

8

h

2 cos(a)� 1�

p

33 + 12 cos(a) + 4 cos(a)

2

i

:

It is easy to see that only one of these two points yields to a solution in the interval [cos a; 1]

and consequently the D-optimal design for the quadratic trigonometric regression model

on the interval [�a; a] with 0 < a � 4�=5 is given by

�

�

a

=

�

�a �t

�

1

(a) 0 t

�

1

(a) a

1

5

1

5

1

5

1

5

1

5

�

where

t

�

1

(a) = arccos

�

1

8

h

2 cos(a)� 1 +

p

33 + 12 cos(a) + 4 cos(a)

2

i

�

:

Example 4.3. In the general the case m � 3 the second part of Theorem 3.3 has to be

applied if a � �(1 � 1=(2m + 1)) (note that in the remaining case a D-optimal design

is explicitly given in part (i) of Theorem 3.3). From Table 1 we obtain the values of

�

�

i

(0), i = 1; : : : ; m � 1 (provided m � 5) and the nontrivial support points �

�

i

(a) for

0 < a < �(1 � 1=(2m + 1)) can now be calculated by means of a Taylor expansion as

indicated at the end of Section 3. Table 2 shows the values of the �rst coeÆcients in the

expansion

�

�

i

(a) =

1

X

l=0

�

�

i(l)

�

a

�

�

l

; i = 1; : : : ; m� 1(4.1)

for m = 2; 3; 4; 5. It can easily be shown that �

�

i

(a) is an even function of the parameter a

and consequently the odd coeÆcients vanish and only the even coeÆcients are displayed.

Consider as a concrete example the case m = 3. If a � 6�=7 a D-optimal design for the

cubic trigonometric regression model on the interval [�a; a] is given by part (i) of Theorem

3.3, i.e.

�

�

a

=

�

�

6�

7

�

4�

7

�

2�

7

0

2�

7

4�

7

6�

7

1

7

1

7

1

7

1

7

1

7

1

7

1

7

�
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Table 2: CoeÆcients in the expansion (4.1). The D-optimal design in the trigonometric re-

gression model (1.1) on the interval [�a; a] with 0 < a < �(1�1=(2m+1)) has equal masses

at the points �a, �t

m�1

; : : : ;�t

1

, 0, t

1

; : : : ; t

m�1

, a, where t

i

= a�

�

i

(a), i = 1; : : : ; m� 1.

i 0 2 4 6 8 10

m = 2 �

�

1

(i)

.65465 -.21977 -.07747 .04852 .06118 -.02116

m = 3 �

�

1

(i)

.46885 -.19145 -.00875 .02584 -.00184 -.00283

�

�

2

(i)

.83022 -.13502 -.10286 -.05465 -.00161 .03946

m = 4 �

�

1

(i)

.36312 -.15556 .00820 .01117 -.00368 -.00011

�

�

2

(i)

.67719 -.18093 -.07349 .00094 .02393 .01100

�

�

3

(i)

.89976 -.08456 -.07603 -.06025 -.03806 -.01256

m = 5 �

�

1

(i)

.29576 -.12851 .01204 .00501 -.00238 .00036

�

�

2

(i)

.56524 -.18316 -.03971 .01585 .01178 -.00245

�

�

3

(i)

.78448 -.14366 -.08805 -.03360 .00483 .01980

�

�

4

(i)

.93400 -.05677 -.05431 -.04874 -.03965 -.02762

If 0 < a < 6�=7 the D-optimal design can be calculated from the expansion (4.1) and Table

2. For example if a = 1 we obtain that the D-optimal design for the cubic trigonometric

regression model on the interval [�1; 1] is given by

�

�

a

=

�

�1 �0:8154 �0:4494 0 0:4494 0:8154 1

1

7

1

7

1

7

1

7

1

7

1

7

1

7

�

:

Figure 1 shows the support points of D-optimal designs as a function of the length a of

the design space for m = 2; 3; 4; 5. The support points have been determined by a Taylor

expansion as indicated in Section 3 and the D-optimal design puts equal masses at these

points.
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Figure 1: The points of optimal design.
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