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Model Selection Strategies for

Experiments with Dispersion E�ects

Transformations vs. Generalized Linear Models

Martina Erdbr�ugge

University of Dortmund

Germany

Abstract

Recently, instead of transforming responses for the analysis of designed experi-

ments, i. e. Taguchi-type-experiments like product or combined arrays, generalized

linear models as suggested by Nelder and Lee (1991) have been used to jointly model

the mean and dispersion of the response. For �tting these models, variance functions

and link functions for both the mean and dispersion submodels need to be speci�ed.

In this paper, a graphical method based on the quasi-deviance of the joint model is

presented which gives visual help in discriminating between transformation models

and generalized linear models. Furthermore, the choice of appropriate variance and

link functions or the transformation parameter is supported, respectively.

1 Introduction

In many technical applications, o�-line process control in terms of design of experi-

ments is used for process optimization. Robust parameter design has been coined by

Taguchi (1986), who suggests product array designs, where an outer array (variation of

noise factors) is carried out for every combination of design factor levels in an inner array.

The aim is to determine factor level combinations which lead to production on target while

minimizing response variation. Taguchi (1986) therefore distinguishes among \dispersion

factors", i. e. control factors that inuence the variance, \location factors", i. e. factors

that a�ect the mean, and those which neither have an e�ect on the mean nor the variance
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of the response. Factors inuencing only the mean are called \adjustment factors". These

notations also transmit to (fractional) factorial designs with replications instead of noise

array runs. Even for unreplicated experiments, methods for the identi�cation of disper-

sion e�ects have been proposed by Box and Meyer (1986); Bergman and Hynen (1997)

and others.

Transformations - either data driven or based on user knowledge - are commonly

used to achieve model simplicity and meet model assumptions. In terms of dispersion

and adjustment factors, we seek a metric in which only a few factors are inuencing the

variance and a larger number of factors can be used to adjust the mean on target after

minimizing the variation (assumption of separation).

Recently, also the generalized linear models theory (GLM) has been applied to ex-

periments with dispersion factors, in particular by Nelder and Lee (1991), (1998) and by

Engel and Huele (1996). This approach is based on the experience that it might be im-

possible to �nd a single transformation which leads to additivity and normality and also

removes dependencies between the mean and variance of the response at the same time.

Therefore this approach covers location and dispersion factors that are additive in di�erent

scales, resulting in two generalized linear models for the mean and dispersion. Therefore

these models are also called \double generalized linear models", compare Smyth and Ver-

byla (1999). Models using transformations can be viewed as an approximate special case

of double generalized linear models.

In Section 2 transformation models are presented. Section 3 covers the theory of

double generalized linear models and the estimation algorithm. In Section 4, graphical

tools for the model choice are suggested and applied to some simulated and real examples.

The paper closes with an outlook and discussion in Section 5.

2 Transformation Models

Transformation models have been examined in detail by Box and Cox (1964), who consider

power transformations and present a method for the estimation of the transformation pa-

rameter based on the error sums of squares. Assuming an underlying data transformation
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belonging to the family of Box-Cox-transformations

T

�
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i

) =

8

<
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�
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� 1
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: � 6= 0

ln(y

i

) : � = 0

; (1)

where the response y

i

; i = 1; : : : ; n, is assumed to be positive, they use the simple linear

model
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) ;

with L := fp : factor p a�ects the mean of T

�

(y)g the set of location factors.

Especially for data from experiments with factors that might inuence the variance

of the response, the assumption of homogeneous variances after transformation is too re-

strictive. Therefore, this model has been extended by many authors to allow for dispersion

e�ects:
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with D := fq : factor q a�ects the variation of T

�

(y)g the set of dispersion factors, com-

pare e. g. Nair and Pregibon (1988). For the expectation and variance of the transformed

response this model implies
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In most applications, there is no straightforward or subject-given choice of the trans-

formation parameter, but this parameter needs to be estimated from the data. By esti-

mating this parameter appropriately, we hope to �nd a metric in which dispersion factors

(possibly few or none) and additional additive adjustment factors may be identi�ed (as-

sumption of separation).
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3 Generalized Linear Models

The use of generalized linear models instead of transformation models has been sug-

gested by Nelder and Lee (1991). Not only for counts and proportions data, but also for

continuous data, it may not be possible to achieve additivity, normality and to remove

dependencies between mean and variance of a response variable at the same time by a

single transformation. Often di�erent transformations are needed to achieve these ob-

jectives. Considering gamma random variables y

i

; i = 1; : : : ; n, approximate normality

can be achieved by transforming the observations according to y

1=3

i

. On the other hand,

transforming the data according to log(y

i

) yields constant variances. In addition, the

transformation needed to achieve additivity of design factor e�ects depends on the true

underlying structure and not on the distribution assumption. In the following, generalized

linear models are reviewed. These allow other than normal distributions and can handle

di�erent kinds of relations between mean and variance of the response as well as mean

and dispersion depending on covariates by using extensions of the log-likelihood function.

Double generalized linear models needed for experiments with dispersion factors are

composed of two generalized linear models. The model for the mean is based on the

observed values while the model for the dispersion is based on residuals of the mean

model or on replicates. Nelder and Lee (1991) suggest the following mean and dispersion

model.

Mean Model:

E(y

i

) = �

i

; g(�

i

) = �

i

= �

0

+

X

p2L

�

p

x

ip

V ar(y

i

) = �

i

V (�

i

) ; (2)

where L := fp : factor p a�ects the linear predictor �g is the set of location factors

and g(�) a monotonic function, the so called link function for the mean. This function

speci�es the scale for the mean model. The variance function V (�

i

) is used to model

dependencies between mean and variance.

For the dispersion parameter �

i

a second generalized linear model is set up to model

dependencies on (presumably few of) the design factors. It is not possible to observe �

i

directly, therefore a dispersion component d

i

will be used complying with the condition

E(d

i

) = �

i

.
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Dispersion Model:
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where D := fq : factor q a�ects the linear predictor �g is the set of dispersion factors

(compare also Lee und Nelder (1998)). Common choices for the link h(�) and variance

function V

D

(�) as well as the dispersion parameter �

i

are given by �

i

� 2; V

D

(�

i

) = �

2

i

and h(�

i

) = ln(�

i

) which ensures that

^

�

i

will always be positive, resulting in a positive

variance for y

i

. This corresponds to �tting a gamma generalized linear model with log

link. We will stick to this approach.

3.1 Parameter Estimation in (classical) GLMs

To summarize inference and parameter estimation in (classical) GLMs, we use the mean

model and assume that the link and variance function are known and the dispersion

parameter �

i

� � is constant for all observations, i. e. the model �

i

= g(�

i

) = �

0

+

P

�

p

x

ip

; V ar(y

i

) = �V (�

i

).

For the analysis of GLMs, the response is assumed to be a random variable follow-

ing an exponential family distribution. Inference is based on the maximum likelihood

principle, necessary regularity conditions are assumed to be met.

The log likelihood can be written as
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n
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i
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:

From the properties of exponential families it can be shown that �

i

=

@
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i
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@
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�
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)

2
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i

), compare McCullagh and Nelder (1989), p. 28 f.

The maximum likelihood estimates for � = (�

0

; [�

p

]

p2L

)

0

can then be obtained by

solving the score-equations
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i

�

1
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@�

i

@�

i

x

ip

= 0

for instance by using the Fisher scoring algorithm (see McCullagh and Nelder (1989),

p. 40 �). The resulting vector of coeÆcient estimates �̂ is consistent and asymptotically
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normal with

�̂

a

� N
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�; E
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0

��

= N
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�1

�

;

where the approximate variance-covariance matrix is the Fisher information matrix.

Measures for the goodness of �t and residuals for generalized linear models are among

others the (scaled) deviance Dev and deviance residuals r

D

or the �

2

P

-Pearson-statistic

and corresponding Pearson-residuals r

P

given by
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)
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) =
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:

Both the deviance and the Pearson-statistic are asymptotically �

2

-distributed, compare

Firth (1991). The deviance is commonly used for testing nested hypothesis. For the test

of H

A

vs. H

B

of dimension A < B, the di�erence of deviances

Dev(�̂

B

; �̂

A

) = Dev(y; �̂

A

)�Dev(y; �̂

B

)

a

� �

2

B�A

can be used as a test statistic.

3.2 Parameter Estimation in double GLMs using Extended

Quasi Likelihood or Pseudo Likelihood

In GLMs, distributions belonging to a speci�c exponential family involve speci�c dis-

persion parameters � and variance functions V (�), i. e. for the normal distribution

� = �

2

; V (�) = 1. The quasi (log) likelihood approach allows for a separation of

the mean and variance.

A quasi likelihood can be de�ned for any desired mean and variance connection

E(yjX

L

) = � = g

�1

(X

L

�)

V ar(yj�; �) = �V (�) ;
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where V (�) and g(�) are assumed to be known and � allows for over- or underdispersion.

The quasi likelihood Q is de�ned so that the �rst derivative of Q with respect to � is

the same as for a log-likelihood function:

@ Q(y

i

; �

i
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@ �

i

=

y

i
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i

�V (�
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)

:

This results in

Q(y;�) =

n
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� V (t)

d t + f(y
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:

Most of log likelihood properties transmit to QLs. (Quasi) score equations and (quasi)

deviances can be speci�ed analogous to the ones obtained from log-likelihoods. For the

(quasi) deviance we get

QDev(y;�) = �2fQ(y;�)�Q(y;y)g = �2

n
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) :

The idea of quasi likelihood can further be extended for the case of dispersion param-

eters depending on covariates or for unknown variance functions for the mean. Therefore

Nelder and Pregibon (1987) de�ne an extended quasi likelihood (EQL) function Q

+

by

Q

+
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:

It can be derived via saddlepoint-approximation to the log-density and complies the fol-

lowing two conditions:
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= 0 :

Therefore the EQL can be viewed as a log likelihood function for the dispersion parameter

if � is known and as a quasi likelihood function for the mean parameter if � is known.

The EQL for all observations is given by

Q

+

(y;�;�) = �

1

2

n

X

i=1

ln

�

2��

i
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i
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n
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d
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�

i

:

The dispersion model will be speci�ed according to equation (3) and for the variance

function of the mean model we assume a power function V

�

(�) = �

2�

with � unknown.
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The �tting algorithm maximizes Q

+

resp. minimizes the (extended quasi) deviance

�2Q

+

by alternating between �tting the mean and dispersion model assuming the actual

estimates �̂ or

^

� as �xed, respectively. This alternating procedure is motivated by the

orthogonality E(@

2

Q

+

=@� @ ) = 0. For �tting the dispersion model, d

i

= r

2

D

(y

i

; �

i

) is

used as a response variable, although E(r

2

D

(y
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i

)) ' �

i

only approximately.

As an alternative, the Pearson-residuals d
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= r

2

P
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i

; �

i

) satisfying E(r

2

P

(y

i
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i

)) =

�

i

may be used instead of the deviance residuals in the dispersion submodel. These

correspond to deviance residuals in the case of constant variance function, for instance

V

�

(�

i

) = 1. Firth (1991) suggests that in this case the dispersion parameter should also

contain the variation of the variance due to the dependence on the mean. This idea leads

to the normal density because of the variance function, but with dispersion parameter

and therefore variance depending on the mean. As a result, we get the so-called Pseudo

Likelihood (PL), which is given by
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compare also Engel and Huele (1996) and McCullagh and Nelder (1989), Ch. 10. The PL

can therefore be regarded as being the likelihood of a normal distribution with variance

function depending on the mean. Lee and Nelder (1998), for instance, point out that the

EQL provides better dispersion estimates than the PL, but there is no general agreement

on this issue in the literature.

3.3 Transformation Models as an approximate special case

In the case of g(�
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2 (1��)
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bon (1987). For T
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This connection between transformation models and GLMs is used by many authors for

suggesting methods to choose variance and link functions in generalized linear models,

compare i. e. Nelder and Lee (1991).

On the contrary, we apply methods for �tting mean and dispersion models in GLMs

to transformation models for estimating the transformation parameter. In particular in

unreplicated experiments, there are no methods yet available that allow the consistent

estimation of � when dispersion e�ects are present.

In the following, we deal with the approximate special case of a transformation model

as well as with GLMs that allow for independent link and variance functions for the mean

model.

4 Determination of transformation parameters

For the simple transformation model, the transformation parameter � may be determined

by using the SSE-Plot proposed by Box and Cox (1964) or the �-Method mentioned by

Logothetis (1990). For the extended transformation model, the so called �-Plot has been

introduced by Box (1988) and a variant of the �-Method for this situation has been

suggested by Kunert and Lehmkuhl (1998).

For the more general case of generalized linear models, our main concern will be the

speci�cation of the link and variance function for the mean model. In order to simplify

notation, these parameters will also be called transformation parameters motivated by the

connection between transformation models and GLMs. Nelder and Lee (1991) suggest the

use of a mean-variance-plot respectively the �-Method to specify the variance function for

the mean. For an appropriate link function, usually a power transformation is used and

identi�ed by the method proposed by Box and Cox (1964) or the �-Plot by Box (1988).

Nelder and Pregibon (1987) use a contour plot of the extended quasi likelihood to check

the chosen transformation parameters in retrospect.

We prefer to allow for possible dispersion parameters in advance and therefore pro-

pose a graphical method for the estimation of transformation parameters. It is based on

the extended quasi likelihood respectively the pseudo likelihood which can be used for

experiments with and without replication and approximately reduces to the SSE-Plot by

9



Box and Cox for the transformation model and equal variances. We use EQL-plots (Nelder

and Pregibon, 1987) for di�erent dispersion models, but these are considered in advance

rather than in retrospect since the estimation of transformation parameters may heavily

depend on the choice of the dispersion model, compare Carroll and Ruppert (1988). It is

therefore in general not advisable to use the model with equal variances or �xed �

i

� � at

the stage of estimating the transformation parameters and then to �t the mean and vari-

ance model afterwards. If important dispersion factors are not considered while choosing

the link and variance function, in particular the parameter of the variance function may

be heavily biased.

The plot of SSE and the contour plot of the extended quasi deviance both do not

allow the consideration of dispersion e�ects, therefore generalizations seem reasonable.

For the following exploration, we will assume that we know which of the factors a�ect the

mean and that there are active dispersion e�ects (commonly one). The assumption of a

known set of location e�ects is quite restrictive, but necessary to avoid the consideration

of aliasing problems between location and dispersion e�ects. In practical applications,

however, the set of location factors has to be estimated.

4.1 Extension of SSE-Plot

The extended transformation model as introduced before, assumes normality after trans-

formation. Therefore the model of the transformed response corresponds to a GLM with

variance function V (�) = 1 and dispersion parameter �

i

= expf

0

+

P



q

x

iq

g = �

2

i

. We

can �t this model by using an iteratively weighted least squares procedure. Here we al-

ternate between a weighted least squares �t for the mean and a gamma generalized linear

model for the dispersion. The weights for the mean model are given by 1=�

2

i

(compare

Aitken, 1987; Engel and Huele, 1996). For normal models and constant variance function,

pseudo and extended quasi deviance are identical and given by
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�) =

n
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;
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where r

2

(y

i

; �̂

i

) = r

2

D

(y

i

; �̂

i

) = r

2

P

(y

i

; �̂

i

) for this model. We can see that for equal

variances this coincides with the quantity of interest for the original SSE-plot suggested

by Box and Cox (1964) by

D(�;y; �̂;

b

�

2

) = n ln

�

2�

b

�

2

�

+ n for �

2

i

� �

2

:

Alternatively, the mean and variance of the untransformed response may be modeled

directly in a GLM. In this case, the parameters of the link function � and the variance

function � are connected according to � = 1� �. In general, PL and EQL di�er (unless

V (�) = 1). The PL is given by

�2P (�;y; �̂;

^

�) =

n

X

i=1

ln

�

2�

^

�

i

�̂

2(1��)

i

�

+

n

X

i=1

�

y

i

� T

�1

�

�

x

T

i

�̂

� �

2

^

�

i

�̂

2(1��)

i

=

n

X

i=1

ln

�

2�

^

�

i

�̂

2(1��)

i

�

+

n

X

i=1

r

2

P

(y

i

; �̂

i

)

^

�

i

:

The EQL is given by

�2Q

+

(�;y; �̂;

^

�) =

n

X

i=1

ln

�

2�

^

�

i

ŷ

2(1��)

i

�

+

n

X

i=1

d

i

^

�

i

;

where d

i

can be either d

i

= r

2

D

(y

i

; �̂

i

) or d

i

= r

2

P

(y

i

; �̂

i

). Minimizing the Pseudo-

Deviance or the Extended-Quasi-Deviance yields in most cases very similar results to

minimizing the Deviance for the transformation model as can be seen from the Figures

accompanying the following examples.

When using double GLMs, we suggest the consideration of di�erent (simple) disper-

sion models in advance in the stage of estimating the (unconnected) parameters � and

� of the variance and link function, respectively. This can be achieved by applying the

extended quasi deviance plot as used by Nelder and Pregibon (1987) prior to the analysis.

A comparison of these estimates for di�erent dispersion model assumptions allows the

choice of an appropriate model.

In the following, some examples will be given to visualize the e�ect of neglected

dispersion factors on the transformation parameter estimation and how such dispersion

e�ects can be identi�ed from the suggested plots.

Examples from simulations

Our �rst data set (Example 1) has been simulated according to the transformation

model with transformation parameter � = �1 and has been reported by Box (1988). The
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set of location factors is given by L = fB, D, Gg, factor D also a�ects the dispersion,

i. e. D = fDg.

Figure 1: Extended SSE-Plot and PL and EQL-Plots for Example 1
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In Figure 1, the extended SSE-Plots as well as the respective plots of the EQL (with

d

i

= r

2

D

) and PL when assuming � = 1 � � are given. Obviously, a notedly reduction

of the deviance will be achieved when assuming a dispersion e�ect of factor D. All three

�gures yield very similar results in terms of transformation parameter estimation.

Our second example (Example 2) has been simulated according to an underlying

12



double GLM with the sets of location and dispersion e�ects given by L = fA, B, Cg and

D = fAg. The mean and variance structure for this example is determined by the two

parameters � = 0 and � = 0.

Figure 2: Extended SSE-Plot and PL and EQL-Plots for Example 2
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Figure 2 contains the extended SSE-Plots and the PL and EQL-Plot for this data

set (assuming � = 1� �). Again, all three applied methods lead similar results, but for

this example both A and C might be considered as being dispersion e�ects.

Since we also want to consider double GLMs in our analysis, extended quasi deviance

13



(�2Q

+

) and pseudo deviance (�2P ) plots for independent values of � and � are also

created. Contour plots for Example 1 are given in Figures 3 and 4. The line intersecting

the plots corresponds to � = 1� � , i. e. transformation models, the brighter contour line

reects a 95% con�dence ellipse for the pair of transformation parameters.

Figure 3: Plot of �2Q

+

for di�erent dispersion model assumptions, Example 1
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From both �gures, the estimates of � and � minimizing the Deviances are nearest

to the true values, if the factor D is assumed as a dispersion e�ect. The line corresponding

to transformation models intersects the con�dence ellipses for all considered dispersion

models, but in particular when assuming B or G as dispersion e�ects, the estimates di�er
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Figure 4: Plot of �2P for di�erent dispersion model assumptions, Example 1

lambda

2
 b

e
ta

-1.5 -1.0 -0.5 0.0

3
4

5
6

626

632

without dispersion effects

lambda

2
 b

e
ta

-1.5 -1.0 -0.5 0.0

3
4

5
6

619
625

dispersion effect: B

lambda

2
 b

e
ta

-1.5 -1.0 -0.5 0.0

3
4

5
6

582

588

dispersion effect: D

lambda

2
 b

e
ta

-1.5 -1.0 -0.5 0.0

3
4

5
6

617

623

dispersion effect: G

from the true parameters.

The shape of the contour lines di�er for the two deviances based on the EQL or

the PL. When applying the EQL (Figure 3), the parameters � and � seem nearly inde-

pendent, while for the PL (Figure 4), a positive correlation between these parameters is

observed.
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For our second example, the data are simulated according to a PL from a GLM with

� = � = 0. There is almost no di�erence between the plots using the EQL and the PL,

compare Figures 5 and 6.

From both �gures we can see that the true underlying parameter combination is not

covered by the con�dence ellipses, if a wrong dispersion model is assumed. In particular if

equal variances are assumed, i. e. no dispersion e�ects, a transformation model with � = 0

will be suggested. Only the consideration of A as a dispersion factor yields estimates near

by the true transformation parameters.

Figure 5: Plot of �2Q

+

for di�erent dispersion model assumptions, Example 2
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Figure 6: Plot of �2P for di�erent dispersion model assumptions, Example 2
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The last example considered, Example 3, is the textile data set reported by

Box and Cox (1964). We assume the following set of location factors: L =

fx

1

; x

2

; x

3

; x

1

x

2

; x

1

x

3

; x

2

x

3

g, namely the set of all main e�ects and two factor in-

teractions of the three factors.

Figure 7: Extended SSE-Plot and PL and EQL-Plots for the textile data (Box, Cox, 1964)
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Figure 7 displays the comparison of deviances for di�erent dispersion models and

di�erent model assumptions, i. e. Transformation Models and GLM for the special case

� = 1 � �. Only the main e�ects are considered as dispersion factors. The model with
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dispersion factor x

1

clearly yields the smallest deviance. Based only on these plots,

we would conclude a dispersion e�ect of factor x

1

and an underlying transformation

parameter of � = 1=4.

Figure 8: Plot of �2Q

+

for di�erent dispersion model assumptions, textile data (Box, Cox)
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However, if we compare the plots of Figure 7 with the extended quasi deviances

and pseudo deviances for the generalized linear model, i. e. independent transformation

parameters � and � as displayed in Figures 8 and 9, we can see that this clear structure

for the transformation model is due to the di�erent shape of contours for the model

with dispersion factor x

1

compared to the remaining three considered models. This

model is the only one supporting a transformation model to some extend, for all other
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Figure 9: Plot of �2P for di�erent dispersion model assumptions, textile data (Box, Cox)

lambda

2
 b

e
ta

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5

309

315

without dispersion effects

lambda

2
 b

e
ta

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5

309

315

dispersion effect: x1

lambda

2
 b

e
ta

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5

309

314

dispersion effect: x2

lambda

2
 b

e
ta

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5

303

309

dispersion effect: x3

dispersion models, the line representing these transformation models doesn't intersect

the con�dence region. All �gures suggest transformation parameters about 2� � 3:3

and � � 0:4. Assuming these parameter values, factor x

3

will be the only one with a

signi�cant dispersion e�ect (10%-level).

From all three examples we get the impression that the consideration of dispersion

e�ects in the stage of model selection is very important since the estimation of transfor-

mation parameters can be biased due to wrong assumptions. This may then result in

wrong location and dispersion factor models.
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5 Outlook and Discussion

Motivated by the three examples resulting from simulated as well as real data sets, a closer

examination of the extended quasi likelihood function or the pseudo likelihood function

and its behaviour for di�erent dispersion model assumptions seems to be of interest.

Standard likelihood theory suggests that under certain regularity conditions, consistent

estimates for the transformation parameters are achieved when assuming the true under-

lying dispersion structure. The objective of further investigations will be quantify the

bias of transformation parameter estimates if wrong dispersion models are assumed.

So far, only few simulations have been carried out. These suggest that for generalized

linear models the estimation of � is hardly a�ected, but the estimation of � is biased.

The bias direction seems to be related to the product of signs of location and dispersion

e�ect of dispersion factors.

This is not very surprising, since in the case of active dispersion e�ects, the estimation

of V (�) and g(�) also depends on �

i

. For �xed value �, it can in fact be shown that

estimating � via �-method minimizes the extended quasi deviance. However, since �

and � are not orthogonal, i. e. E

�

@

2

Q

+

@�@�

�

6= 0 and E

�

@

2

P

@�@�

�

6= 0, iterative estimation of

both parameters does not necessarily end up at the global minimum.
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