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ABSTRACT

Bayesian D-optimal designs supported on a �xed number of points were found by Dette and Wong (1998)

for estimating parameters in a polynomial model when the error variance depends exponentially on the

explanatory variable. This work provides optimal designs under a broader class of error variance structures

and investigates the robustness properties of these designs to model and prior distribution assumptions. A

comparison of the performance of the optimal designs relative to the popular uniform designs is also given.

In addition, our results suggest that Bayesian D-optimal designs suported on a �xed number of points

are more likely to be optimal among all designs if the prior distribution is symmetric and is concentrated

around its mean.
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Bayesian D-optimal designs supported on a �xed number of points were found by Dette and Wong (1998)

for estimating parameters in a polynomial model when the error variance depends exponentially on the

explanatory variable. This work provides optimal designs under a broader class of error variance structures

and investigates the robustness properties of these designs to model and prior distribution assumptions. A

comparison of the performance of the optimal designs relative to the popular uniform designs is also given.

In addition, our results suggest that Bayesian D-optimal designs suported on a �xed number of points

are more likely to be optimal among all designs if the prior distribution is symmetric and is concentrated

around its mean.

1. INTRODUCTION

Heteroscedastic regression models are widely used in the biological and physical sciences, economics

and engineering. Often, the heteroscedasticity is modeled as a function of the design variables and

possibly, additional parameters. Common examples are modeling the error variance as a simple

power function or an exponential function of the mean response. Some work on estimating such

error variance structure includes Carroll and Ruppert (1982), Carroll (1982a, b), Davidian and

Carroll (1987) and Engel (1992). Tests for the presence of heteroscedasticity in the model are

given in Box and Hill (1974), Bickel (1978), Cook and Weisberg (1983), Carroll and Ruppert

(1981), Jobson and Fuller (1980) and Dette and Munk (1998).

It appears that there is only a handful of papers that address the problem of designing an

experiment when the error variance structure is known imprecisely. Schulz and Endrenyi (1983),
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Dasgupta, Mukhopadhyay and Studden (1992), and recently, Atkinson and Cook (1995) and Wiens

(1998) are among the few who address this issue. Schulz and Endrenyi (1983) found Bayesian

optimal designs for two nonlinear models when the error variance is a power of the mean. Dasgupta,

Mukhopadhyay and Studden (1992) derived Bayesian optimal designs under a normal prior for the

simple linear model when the error variance is a power function or an exponential function of the

mean. Atkinson and Cook (1995) gave information matrices for various subsets of the parameters

in a general heteroscedastic model and provided guidelines for �nding optimal designs.

Dette and Wong (1995) considered optimal designs supported on a �xed number of points and

found Bayesian optimal designs when the variance structure is partially known. When the mean

regression function is a polynomial model of degree n, such optimal designs are found from the

class of designs supported on n+1 points and they are called Bayesian D-optimal (n+1)-point

designs. These Bayesian designs are optimal within the class of (n+1)-point designs and they may

not be universally optimal, in the sense that they are also optimal within the class of all designs.

Analytical Bayesian D-optimal (n+1)-point designs when the error variance depends exponentially

on the design variable are given in Dette and Wong (1998).

The purpose of this paper is to �nd Bayesian D-optimal (n+1)-point designs for a broader class

of error variance structures and study the sensitivities of Bayesian D-optimal (n+1)-point designs

to model assumptions and the prior distribution. We also develop guidelines to ascertain if and

when such designs are likely to be universally optimal. Ideally, we would like to use a design that

is robust to both model and prior assumptions, and the design is eÆcient under a large class of

designs.

Section 2 introduces our terminology and our setup. Section 3 describes the scope of our work

and section 4 presents our numerical �ndings and a discussion of our results. Section 5 contains

summary remarks and the appendix contains theoretical results used in the paper.

2. BACKGROUND: MODEL ASSUMPTIONS AND TERMINOLOGY

The statistical model of interest is given by

y =

n

X

j=0

�

j

x

j

+ e(x; �); x 2 [0; b] (1)

where y is the response and e(x; �) is an unobservable error assumed to be normally distributed

with mean zero and variance given by 1=�(x; �). In the design literature, the interval [0; b] is

called the design space and �(x; �) is the eÆciency function (Fedorov 1972, p. 72). The full set of

parameters is denoted by �

T

= (�

T

; �) where � is the vector of parameters in the eÆciency function

and �

T

= (�

0

; �

1

; : : : ; �

n

) is the vector of structural parameters. We denote the regression function

by f `(x) = (1; x; x

2

; :::; x

n

) and it is assumed throughout that both n and b are given and �nite.

The goal here is to �nd an eÆcient design to estimate the vector of structural parameters � using

prior information on the nuisance parameters �. It is assumed that all observations are indepedent

in the experiment.

In this paper, we assume that �

T

= (�

1

; �

2

) is a two-dimensional vector of unknown parameters

and the form of �(x; �) can be adequately described by one of the following forms:

(i) �

1

(x; �) is a constant

(ii) �

2

(x; �) = �

1

exp(��

2

x); �

1

> 0

and (iii) �

3

(x; �) = x

�

1

(b� x)

�

2

; �

1

� 0 and �

2

� 0:

The �rst case corresponds to a homoscedastic model and it is a special case of the last two cases

when �

2

= 0 in (ii) and when �

1

= �

2

= 0 in (iii). The exponential eÆciency function �

2

(x; �)

was studied in Dette and Wong (1998) and �

3

(x; �) is the additional class of eÆciency functions
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to be studied here. Figure 1 shows several shapes of the eÆciency functions for di�erent values of

�. These variance structures are quite exible and so they are useful in practice.

Throughout, we are concerned only with approximate designs. If the total number of observa-

tions is �xed at N at the onset of the experiment, then an approximate design � with mass �

i

at

x

i

2 [0; b] allocates roughly N�

i

observations at x

i

; i = 1; 2; : : : ; k subject to N(�

1

+�

2

+ : : :+�

k

) =

N . Additional background information on the approximate designs, and their advantages, can be

found in design monographs, see Fedorov (1972) or Silvey (1980), for example.
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Figure 1: Di�erent shapes of the eÆciency functions on [0; 5]; (a) �

2

(x; �) with (�

1

; �

2

)

T

= (80; 1)

and �

3

(x; �) with (b) (�

1

; �

2

)

T

= (2; 2), (c) (�

1

; �

2

)

T

= (3; 0:25) and (d) (�

1

; �

2

)

T

= (1; 3).

The usefulness of a design is gauged by its expected Fisher information matrix. When this

matrix is multiplied by -1, its elements are means of the second derivatives of the log-likelihood

function with respect to the parameters. For example, suppose model (1) holds with �

2

(x; �) on

[0; b]. A direct calculation shows the information matrix for a single observation at x is independent

of � and is proportional to

I(�; x) =

�

1

�

1

I

1

(�

2

; x) 0

0

1

2�

2

1

I

2

(�

1

; x)

�

;

where I

1

(�

2

; x) = exp(��

2

x)f(x)f

T

(x) and I

2

(�

1

; x) =

�

1 �

1

x

�

1

x �

2

1

x

2

�

; see Dette and Wong (1998).

This implies that the total information matrix of an approximate design � for estimating the full

set of parameters � is proportional to

M(�; �) =

Z

b

0

�

1

�

1

I

1

(�

2

; x) 0

0

1

2�

2

1

I

2

(�

1

; x)

�

�(dx) =

�

1

�

1

M

1

(�

2

; �) 0

0

1

2�

2

1

M

2

(�

1

; �)

�

;

where M

i

(�

3�i

; �) =

R

b

0

I

i

(�

3

� i; x) �(dx); i = 1; 2:

A popular criterion for estimating model parameters is D-optimality, which seeks to maximize

the determinant of the information matrix. For normally distributed errors, this criterion is equiv-

alent to minimizing the volume of the con�dence ellipsoid for the parameters of interest. When
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prior knowledge is available, the researcher elicits a prior distribution for the parameters and the

design criterion is to maximize the logarithm of the determinant of the information matrix, after

averaging it with the prior distribution. When the interest is on estimating the structural parame-

ters � only, as is the case here, we �rst �nd the marginal distribution � of the nuisance parameters.

For instance, if the eÆciency function is �

2

(x; �) and the support of the prior is the set B, the

Bayesian D-optimality criterion for estimating � in model (1) is to maximize

�(�) =

Z

B

logjM

1

(�

2

; �)j�(d�

2

)

over the set of all designs on [0; b]. The resulting optimal design is called a Bayesian D-optimal

for estimating � and they are increasingly used in the literature (Dasgupta, Mukhopadhyay and

Studden 1992; Chaloner and Verdnelli 1995). Most of the results in this area are based on numerical

work because it is notoriously diÆcult to �nd Bayesian optimal designs analytically. Frequently,

equivalence theorems, such as the one given in the appendix, are used to �nd the optimal design,

or to check the optimality of the design. For instance, to check if a design � is Bayesian D-optimal

for estimating � in model (1) and the eÆciency function is �

2

(x; �), we plot the function on the

left hand side of the inequality (2) versus values of x in [0; b] and check if the conditions (2) in the

appendix are met. If so, the design � is Bayesian D-optimal for estimating �; otherwise it is not.

The design problem for model (1) is simpli�ed if the maximization is restricted to the set of all

(n+ 1)-point designs; the resulting design is called a Bayesian D-optimal (n+ 1)-point design for

estimating �. Dette and Wong (1998) found analytical Bayesian D-optimal (n+ 1)-point designs

for estimating � when the eÆciency function is �

2

(x; �). They found that these optimal designs

depend only on n; b and the mean of the marginal distribution of �

2

. The technical arguments are

based on the theory of canonical moments and continued fraction expansion. A nice illustration of

this technique is given in Studden (1982), where he sought to obtain constrained optimal designs

in homoscedastic polynomial models. In the appendix, we state a new result for constructing the

Bayesian D-optimal (n+1)-point designs for estimating � in model (1) when the eÆciency function

is �

3

(x; �). As will be shown, the Bayesian D-optimal (n + 1)-point designs also depend only on

n; b and the means of the marginal distributions of �

1

and �

2

. In what is to follow, we usually

denote the means of the marginal distribution of �

1

and �

2

by E1 and E2 respectively.

3. SCOPE OF OUR STUDY

Except in a few simple instances like those described in Dette andWong (1998), it seems a numerical

study is the only feasible way to gain insight into the robustness properties of Bayesian D-optimal

(n+1)-point designs. The plan here is to compute many such optimal designs for various situations

and afterwards, deduce robustness properties of the designs. Speci�cally, we provide answers to

the following questions:

(i) How robust are these Bayesian D-optimal (n+1)-point designs to speci�cation of the degree

(n) of the polynomial ?

(ii) How do Bayesian D-optimal (n+ 1)-point designs perform when the means of the marginal

distributions of � are misspeci�ed?

(iii) How do Bayesian D-optimal (n + 1)-point designs perform under a variation of eÆciency

functions?

(iv) Are there general conditions that suggest Bayesian D-optimal (n+ 1)-point designs are uni-

versally optimal ?
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These questions have practical importance. Polynomial models are widely used but the degree

of the model is usually not known with certainty. There might also be disagreement on the form

of the prior distribution and/or the values of the means of the marginal distributions of �. It is

thus desirable to �nd some answers to the above questions to understand the robustness properties

of the optimal designs. The recommended design should perform reasonably well when the model

assumptions are slightly changed. Question (iv) is relevant because we have con�ned our search

for the optimal design to the set of all (n+1)-point designs and it is of interest to know if we have

unduly restricted the search and strayed too far from the universally optimal design.

The performance of a design is measured by its eÆciency relative to the optimal design under

the assumed setup. For example, suppose model (1) holds, the eÆciency function is �

2

(x; �), and,

as before, the goal is to estimate � using � as the marginal distribution of �

2

. The eÆciency of

an arbitrary design � for estimating � relative to the optimal design �

�

is de�ned by expf[	(�)�

	(�

�

)]=(n+1)g. Here the optimal design �

�

can be the Bayesian D-optimal (n+1)-point design or

the Bayesian D-optimal design, as appropriate. The former is used if we wish to study robustness

properties of the Bayesian D-optimal (n + 1)-point design (Questions (i), (ii) and (iii)), and the

latter is used if we wish to ascertain if the Bayesian D-optimal (n + 1)-point design is close to

the Bayesian optimal design (Question (iv)). In practice, designs with eÆciencies close to 1 are

sought because they require fewer number of observations to achieve a given level of precision

in the estimates. It is interesting to note that the Bayesian D-optimal (n + 1)-point design for

estimating � in model (1) depends only on the mean(s) of the marginal prior distribution(s) of �

but its eÆciency depends on the marginal prior distributions.

We give some answers to the above questions by considering a simple setup so that the compu-

tation is manageable. There are many parameters to vary in the study; di�erent design space (b),

di�erent polynomial degree (n), types of prior distributions and di�erent means of the marginal

prior distributions. We focus on low order polynomial with degree n = 1, 2, 3 and 4 because these

are the most frequently used in practice. For simplicity, we consider priors indexed by a single

parameter Æ and they are equally-spaced discrete priors, symmetric about its mean E. The mass

distribution for each prior has a form similar to that used in Cook and Nachtsheim (1982). The

prior distributions take on the following form:

support . . . E-2Æ E-Æ E E+Æ E+2Æ . . .

weight . . .

1

2

2Æ

1

2

Æ

1

1

2

Æ

1

2

2Æ

. . .

The normalized prior distributions are uniquely determined by the number of support points

and the values of E and Æ. For instance, for a 3-point prior with E = Æ =1, the prior distribution

is supported at 0, 1 and 2 with mass 0.25, 0.5 and 0.25 respectively. Table 1 shows the types of

priors used in our study; in each case, the prior �

2

is more concentrated around its mean when

compared with the corresponding prior �

1

.

To answer question (iv), we investigate distributional properties of the prior density (other

than its mean) that may a�ect whether a Bayesian D-optimal (n + 1)-point design is Bayesian

D-optimal. In particular, we consider several prior distributions with the same means but have

di�erent spread and number of support points. Because Bayesian D-optimal designs are diÆcult

to determine, we cannot directly evaluate the performance of the Bayesian D-optimal (n+1)-point

design. In this case, the proximity of the Bayesian D-optimal (n+1)-point design to the (unknown)

Bayesian D-optimal design is assessed by an eÆciency lower bound. This lower bound is obtained

from an equivalence theorem given in the appendix for an illustrative case when the eÆciency

function is �

2

(x; �). A useful property of the bound is that it has a value of 1 if and only if the

candidate design is Bayesian D-optimal.
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Table 1: Priors with di�erent shapes and number of support points used in our study.

3-point priors 5-point priors 9-point priors

�

1

�

2

�

1

�

2

�

1

�

2

E Æ Æ Æ Æ Æ Æ

1 1 0.2 0.5 0.1 0.25 0.06

4 2 0.5 1.0 0.2 0.50 0.10

7 4 1.0 2.0 0.5 1.00 0.30

4. NUMERICAL RESULTS AND DISCUSSION

All the computations in this paper are accomplished using Mathematica

TM

(Wolfram, 1988).

There are 7 tables in this section, with the �rst set of tables (Tables 2 and 3) showing Bayesian

D-optimal 2, 3, 4 and 5-point designs for estimating � in model (1) when �(x; �) is non-constant.

The subsequent tables present results useful for answering the four questions in the order they

were raised. Because of space consideration, we include only a sample of our numerical results.

The Bayesian D-optimal (n + 1)-point designs are constructed as follows. When �(x; �) is

constant, it is clear that the Bayesian D-optimal (n + 1)-point designs for estimating � in model

(1) coincide with the Bayesian D-optimal designs and they are the well known D-optimal designs

described in Fedorov (1972, p. 88). The Bayesian D-optimal (n+ 1)-point designs for estimating

� in model (1) with eÆciency function �

2

(x; �) are constructed from Theorem 3.1 in Dette and

Wong (1998). This result is restated as Theorem 1 in the appendix for convenience. The Bayesian

D-optimal (n+1)-point designs for estimating � in model (1) with �

3

(x; �) are found from Theorem

3 in the appendix.

Table 2 and Table 3 show the support points of the Bayesian D-optimal 2, 3, 4 and 5-point

designs for estimating � when �(x; �) is non-constant and b = 1 or 5. Table 2 and 3 show,

respectively, the optimal designs when the eÆciency function is �

2

(x; �) or �

3

(x; �). The priors

used here are degenerate distributions. In both tables, the �rst column lists the values of the means

of the marginal prior distributions of �, and the support points of the Bayesian D-optimal 2, 3,

4 and 5-point designs are shown on the same row. All optimal designs are equally supported in

accordance with the theory. Note that in Table 3, we can deduce the support points of the Bayesian

D-optimal (n+1)-point design on [0; b] for estimating � from the corresponding optimal design on

[0; 1]. This is because of the invariance of the design problem under linear transformations; see the

proof of Theorem 3 in the appendix.

Table 4 and Table 5 display the eÆciencies of the Bayesian D-optimal (n + 1)-point designs

when b = 1 and the degree of the polynomial is misspeci�ed. The asssumed degree is n

0

and the

true degree is n. The Bayesian (n

0

+ 1)-point D-optimal designs �

�

n

0

;E

and Bayesian (n+ 1)-point

D-optimal designs �

�

n;E

are �rst constructed for 4 = n

0

> n = 1. When n

0

> n, the robustness

of the Bayesian (n

0

+ 1)-optimal design �

�

n

0

;E

relative to �

�

n;E

is measured by expf(�(�

�

n

0

;E

) �

�(�

�

n;E

))=(n + 1)g. The results when n

0

< n or n

0

= n are not displayed because the eÆciencies

of the Bayesian D-optimal (n+ 1)-point design for these situations are 0 and 1 respectively.

Di�erent priors are used for di�erent eÆciency functions for model (1) to assess the impact of

the misspeci�cation of the degree of the polynomial. When the eÆciency function is �

2

(x; �), the

6



Table 2: Support points of equally weighted Bayesian D-optimal (n+1) point designs for estimating

� in model (1) with n = 1, 2, 3 or 4, b = 1(5) and the eÆciency function is �

2

(x; �). The prior for

�

2

is degenerate at �

2

= E.

n = 1 and b = 1 (b = 5)

x

1

x

2

E=1 0(0) 1(2)

E=4 0(0) 0.5(0.5)

E=7 0(0) 0.286(0.286)

n = 2 and b = 1 (b = 5)

x

1

x

2

x

3

E=1 0(0) 0.439(1.268) 1(4.732)

E=4 0(0) 0.293(0.317) 1(1.183)

E=7 0(0) 0.181(0.181) 0.676(0.676)

n = 3 and b = 1 (b = 5)

x

1

x

2

x

3

x

4

E=1 0(0) 0.245(0.782) 0.688(2.629) 1(5)

E=4 0(0) 0.174 (0.234) 0.567(0.826) 1(1.934)

E=7 0(0) 0.129(0.134) 0.451(0.472) 1(1.108)

n = 4 and b = 1 (b = 5)

x

1

x

2

x

3

x

4

x

5

E=1 0(0) 0.156(0.535) 0.469(1.769) 0.808(3.535) 1(5)

E=4 0(0) 0.117(0.186) 0.380(0.643) 0.736(1.433) 1(2.739)

E=7 0(0) 0.091(0.106) 0.306(0.367) 0.645(0.819) 1(1.565)
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Table 3: Support points of equally weighted Bayesian D-optimal (n+1) point designs for estimating

� in model (1) with n = 1, 2, 3 or 4, b = 1(5) and the eÆciency function is �

3

(x; �). The prior for

� = (�

1

; �

2

) is degenerate at (�

1

; �

2

) = (E1, E2).

n = 1 and b = 1 (b = 5)

x

1

x

2

E1=0, E2=0 0(0) 1(5)

E1=0.5, E2=3 0.063(0.313) 0.483(2.413)

E1=3, E2=0.5 0.517(2.587) 0.937(4.686)

n = 2 and b = 1 (b = 5)

x

1

x

2

x

3

E1=0.5, E2=3 0.036(0.178) 0.292(1.461) 0.672(3.361)

E1=0.5, E2=0.5 0.067(0.335) 0.500(2.500) 0.933(4.665)

E1=3, E2=0.5 0.328(1.639) 0.708(3.539) 0.964(4.822)

n = 3 and b = 1 (b = 5)

x

1

x

2

x

3

x

4

E1=0.5, E2=3 0.023 (0.115) 0.195(0.974) 0.479(2.395) 0.777(3.884)

E1=1.0, E2=1 0.069(0.347) 0.330(1.650) 0.670(3.350) 0.931(4.653)

E1=3.0, E2=0.5 0.223(1.116) 0.521(2.605) 0.805(4.026) 0.977(4.885)

n = 4 and b = 1 (b = 5)

x

1

x

2

x

3

x

4

x

5

E1=0.5,E2=3 0.016(0.081) 0.139(0.694) 0.354(1.770) 0.608(3.041) 0.839(4.196)

E1=3.0,E2=0.5 0.161(0.804) 0.392(1.958) 0.646(3.230) 0.861(4.306) 0.984(4.920)

E1=3.0, E2=3 0.115(0.576) 0.290(1.448) 0.500(2.500) 0.711(3.552) 0.885(4.424)
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prior distributions are as described at the end of section 3 with 3, 5 or 9 support points and the

marginal prior means are 1, 4 or 7. The �rst line in the Table 4 gives the eÆciencies of the optimal

designs constructed under the prior distribution �

1

and the second line gives the corresponding

eÆciencies for the prior distribution �

2

. When the eÆciency function is �

3

(x; �), the priors are

degenerate at the marginal means E1 and E2. Table 5 lists the eÆciencies of the optimal designs

when each value of E1 or E2 is either 0, 0.5, 1 or 3.

Table 4: EÆciencies of the Bayesian (n

0

+ 1)-point D-optimal design on [0; 1] assuming the true

model is (1) of degree n, n = 1, 2, 3 and �

3

(x; �) = �

1

exp(��

2

x). The numbers on the �rst (second)

line are the results for the priors of the form �

1

(�

2

) with di�erent prior means (E2) and di�erent

number of support points (s).

n = 1 n = 2 n = 3

n

0

E2 s=3 s=5 s=9 s=3 s=5 s=9 s=3 s=5 s=9

1 0.837 0.835 0.834

1 0.828 0.828 0.828

2 4 0.828 0.824 0.821

4 0.796 0.794 0.794

7 0.766 0.774 0.775

7 0.753 0.751 0.752

1 0.794 0.793 0.792 0.872 0.871 0.870

1 0.788 0.788 0.788 0.866 0.866 0.866

3 4 0.800 0.798 0.795 0.902 0.901 0.899

4 0.778 0.776 0.776 0.886 0.885 0.885

7 0.663 0.670 0.670 0.882 0.895 0.897

7 0.650 0.649 0.650 0.864 0.862 0.863

1 0.776 0.774 0.773 0.833 0.832 0.831 0.900 0.899 0.899

1 0.770 0.770 0.769 0.829 0.829 0.829 0.896 0.896 0.896

4 4 0.780 0.777 0.775 0.866 0.864 0.863 0.909 0.907 0.829

4 0.759 0.758 0.758 0.854 0.853 0.853 0.898 0.898 0.898

7 0.632 0.639 0.639 0.862 0.871 0.872 0.927 0.934 0.935

7 0.620 0.619 0.619 0.847 0.846 0.846 0.915 0.914 0.915

There are a few immediate implications from the tables. They suggest that the performance

of the Bayesian D-optimal (n + 1)-point designs are quite robust when the polynomial degree is

not too misspeci�ed. The eÆciencies are roughly between 0.62 and 0.92 in Table 4 and between

0.66 to 0.90 in Table 5, with greater misspeci�cation resulting in greater loss in eÆciency. The

eÆciencies are nearly the same when the number of support points in the prior distribution is

changed but overall they tend to vary when the means of the marginal distributions are changed.

Table 4 also suggests that a more spread out prior distribution results in lower eÆciencies when

misspeci�cation occurs. Overall, the Bayesian D-optimal (n + 1)-point designs are quite robust
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Table 5: EÆciencies of the Bayesian (n

0

+1)-point D-optimal design on [0; 1] when the true model

is (1) of degree n, n = 1, 2, 3, �

3

(x; �) = x

�

1

(b� x)

�

2

and the priors for �

1

and �

2

are degenerate

at E1 and E2 respectively.

n n

0

E1 E2=0 E2=0.5 E2=1 E2=3

0 0.817 0.815 0.805 0.782

1 2 0.5 0.815 0.817 0.810 0.790

1 0.805 0.810 0.805 0.790

3 0.782 0.790 0.790 0.785

0 0.775 0.773 0.753 0.706

1 3 0.5 0.773 0.777 0.762 0.722

1 0.753 0.762 0.753 0.721

3 0.706 0.722 0.721 0.709

0 0.756 0.754 0.727 0.664

1 4 0.5 0.754 0.761 0.741 0.685

1 0.727 0.741 0.727 0.683

3 0.664 0.685 0.683 0.664

0 0.865 0.866 0.863 0.852

2 3 0.5 0.866 0.868 0.865 0.855

1 0.863 0.865 0.863 0.855

3 0.852 0.855 0.855 0.852

0 0.828 0.830 0.822 0.796

2 4 0.5 0.830 0.833 0.827 0.804

1 0.822 0.827 0.822 0.803

3 0.796 0.804 0.803 0.794

0 0.895 0.896 0.895 0.888

3 4 0.5 0.896 0.897 0.896 0.890

1 0.895 0.896 0.895 0.890

3 0.888 0.890 0.890 0.888
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with respect to the model misspeci�cations; if the misspeciation of the degree is not o� by more

than unity, the eÆcieny lost is at most 25% for all the cases considered in the table and, this

amount decreases as the true degree n increases. Our suggestion is that if we are uncertain about

the degree of the polynomial, the optimal design should be constructed for the polynomial model

of the highest anticipated degree.

Table 6 and Table 7 display the eÆciencies of the Bayesian (n+ 1)-point D-optimal design, n

= 1, 2, 3 and 4, when the prior mean of the marginal distribution of �

2

is misspeci�ed to be E

0

.

Model (1) is assumed with �

2

(x; �) as the eÆciency function on [0; 1] (Table 6) and [0; 5] (Table

7). The prior distributions have the form of �

1

with three possible marginal means (E2 = 1, 4, 7)

for �

2

. Corresponding results for �

3

(x; �) are more complicated and are omitted.

Table 6 and Table 7 assume that the eÆciency function is �

2

(x; �) but the mean of the prior

distribution E2 for �

2

is misspeci�ced and b = 1 or b = 5. It is clear that the e�ect of misspecifying

E2 can be signi�cant; if E2 = E is the true value and E2 = E

0

was assumed, the drop in eÆciency

can be as large as 99% (see Table 7 when E

0

= 1 and E = 7). The corresponding decline in eÆciency

when a smaller design space is used (b = 1) is much reduced; for the same case just discussed,

the drop is only about 21%. Although the design problem is not scale invariant, this di�erence is

intuitively clear, because a misspeci�cation of the mean of the prior distribution on the interval

[0; 5] corresponds to a 5 times larger misspeci�cation on the interval [0; 1]. Thus for relatively

large design spaces, extra care is necessary with respect to the choice of the prior distribution; this

problem is less cruical if the design space is not too large.

There also appears to be no e�ect of the number of support points in the prior distribution on

the performance of the optimal designs when the prior mean is misspeci�ed. The tables show that

the eÆciencies are usually increased when the number of support points of the prior distributions

is also increased.

Table 8 reports the eÆciencies of the Bayesian 2 and 3-point D-optimal designs on [0; 1] when

model (1) holds and the eÆciency function is misspeci�ed. For space consideration, we display only

the eÆciencies of the Bayesian D-optimal 2 and 3-point designs when �

2

(x; �) is the true eÆciency

function and �

3

(x; �) is wrongly assumed. Only degenerate prior distributions are used; the prior

distribution for �

2

in �

2

(x; �) is degenerate at E = 1, 4 or 7 and the prior distributions for � in

�

3

(x; �) are degenerate at E1 = 0, 0.5, 1 or 3 and E2 = 0, 0.5, 1 or 3.

The results suggest that loses from a misspeci�ed eÆciency function can vary substantially.

We note that if the roles of �

2

(x; �) and �

3

(x; �) are reversed, the misspeci�cation becomes very

costly. Most of the cells in the table are now zero because the information matrices of the Bayesian

D-optimal (n+ 1)-point designs are now singular due to the location of the support points of the

optimal designs and the form of the eÆciency function �

3

(x; �) (see Table 2 and 3).

Table 9 shows the values of the eÆciency lower bounds of the Bayesian D-optimal (n

0

+1)-point

designs for the model (1) and �

2

(x; �) is the eÆciency function. When there is no misspeci�cation

in the degree of the polynomial, i.e. n = n

0

, the values of the eÆciency lower bounds are unity

for the priors described in Table 1. This means that the Bayesian D-optimal (n+ 1)-point design

is also Bayesian D-optimal. It is evident from the table that the number of support points in

the prior distributions does not inuence whether the Bayesian D-optimal (n+ 1)-point design is

Bayesian D-optimal. The table does not give the exact eÆciencies but only a lower bound for the

eÆciency of the Bayesian D-optimal (n

0

+ 1)-point designs. So if n = 3, n

0

= 4, s = 5 and E2

= 4, the Bayesian D-optimal 4-point design has at least 82.0% eÆciency under two types of prior

distributions �

1

and �

2

. The exact eÆciency cannot be calculated because the Bayesian D-optimal

design is not known, but the actual eÆciency could be substantially larger; see Dette (1995) for

an example, where the lower bound and the exact eÆciency can be calculated.

It is instructive to consider two new symmetric priors of �

2

about its mean E2 with a larger

spread: �

3

is supported at 0, 4 and 8 with mass at 4 equal to 0.6, and �

4

is equally supported at
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Table 6: Relative eÆciency of the Bayesian (n+ 1)-point D-optimal design on [0; 1] for model (1)

with n = 1, 2, 3 and �

2

(x; �) as the eÆciency function. The prior distribution has the form �

1

with s = 3, 5 or 9 points. The true prior mean for �

2

is E2 = E but the assumed mean is E

0

.

n = 1 E=1 E=4 E=7

E

0

s=3 s=5 s=9 s=3 s=5 s=9 s=3 s=5 s=9

1 1 1 1 0.736 0.736 0.736 0.287 0.287 0.287

4 0.642 0.642 0.642 1 1 1 0.827 0.827 0.827

7 0.408 0.408 0.408 0.877 0.877 0.877 1 1 1

n = 2 E=1 E=4 E=7

E

0

s=3 s=5 s=9 s=3 s=5 s=9 s=3 s=5 s=9

1 1 1 1 0.924 0.924 0.927 0.656 0.656 0.658

4 0.935 0.935 0.945 1 1 1 0.821 0.821 0.814

7 0.477 0.477 0.524 0.788 0.788 0.821 1 1 1

n = 3 E=1 E=4 E=7

E

0

s=3 s=5 s=9 s=3 s=5 s=9 s=3 s=5 s=9

1 1 1 1 0.929 0.929 0.931 0.755 0.755 0.762

4 0.931 0.931 0.941 1 1 1 0.939 0.939 0.938

7 0.780 0.780 0.806 0.944 0.944 0.954 1 1 1

n = 4 E=1 E=4 E=7

E

0

s=3 s=5 s=9 s=3 s=5 s=9 s=3 s=5 s=9

1 1 1 1 0.942 0.942 0.944 0.788 0.788 0.794

4 0.942 0.942 0.951 1 1 1 0.943 0.943 0.942

7 0.793 0.793 0.818 0.945 0.945 0.955 1 1 1
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Table 7: Relative eÆciency of the Bayesian (n+ 1)-point D-optimal design on [0; 5] for model (1)

with n = 1, 2, 3 and �

2

(x; �) as the eÆciency function. The prior distribution has the form �

1

with s = 3, 5 or 9 points. The true prior mean for �

2

is E2 = E but the assumed mean is E

0

.

n = 1 E=1 E=4 E=7

E

0

s=3 s=5 s=9 s=3 s=5 s=9 s=3 s=5 s=9

1 1 1 1 0.199 0.199 0.199 0.017 0.017 0.017

4 0.529 0.529 0.529 1 1 1 0.827 0.827 0.827

7 0.337 0.337 0.337 0.877 0.877 0.877 1 1 1

n = 2 E=1 E=4 E=7

E

0

s=3 s=5 s=9 s=3 s=5 s=9 s=3 s=5 s=9

1 1 1 1 0.040 0.040 0.048 0 0 0

4 0.280 0.280 0.352 1 1 1 0.683 0.683 0.681

7 0.113 0.113 0.159 0.769 0.769 0.810 1 1 1

n = 3 E=1 E=4 E=7

E

0

s=3 s=5 s=9 s=3 s=5 s=9 s=3 s=5 s=9

1 1 1 1 0.095 0.095 0.106 0.001 0.001 0.001

4 0.182 0.182 0.238 1 1 1 0.565 0.565 0.561

7 0.047 0.047 0.073 0.675 0.675 0.729 1 1 1

n = 4 E=1 E=4 E=7

E

0

s=3 s=5 s=9 s=3 s=5 s=9 s=3 s=5 s=9

1 1 1 1 0.178 0.178 0.189 0.003 0.003 0.003

4 0.169 0.169 0.221 1 1 1 0.467 0.467 0.463

7 0.028 0.028 0.045 0.592 0.592 0.657 1 1 1
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Table 8: EÆciencies of the Bayesian 2(3)-point D-optimal design on [0; 1] when the true model is

(1) for n = 1(2) with �

2

(x; �) but �

3

(x; �) was wrongly assumed with a degenerate prior at �

2

at

E = 1, 4 or 7. the prior distributions for � in �

3

(x; �) are degenerate at E1 = 0, 0.5, 1 or 3 and E2

= 0, 0.5, 1 or 3.

E=1

E2=0 E2=0.5 E2=1 E2=3

E1=0 1(0.990) 0.884(0.877) 0.789(0.768) 0.540(0.462)

E1=0.5 0.724(0.785) 0.707(0.742) 0.672(0.682) 0.527(0.462)

E1=1 0.564(0.629) 0.583(0.623) 0.577(0.594) 0.498(0.443)

E1=3 0.296(0.301) 0.335(0.331) 0.357(0.345) 0.378(0.330)

E=4

E2=0 E2=0.5 E2=1 E2=3

E1=0 1(0.860) 0.878(0.901) 0.955(0.901) 0.977(0.763)

E1=0.5 0.395(0.578) 0.520(0.645) 0.613(0.679) 0.767(0.662)

E1=1 0.252(0.405) 0.346(0.472) 0.425(0.516) 0.604(0.560)

E1=3 0.089(0.137) 0.125(0.174) 0.159(0.206) 0.278(0.287)

E=7

E2=0 E2=0.5 E2=1 E2=3

E1=0 1(0.574) 0.463(0.710) 0.615(0.811) 0.938(0.968)

E1=0.5 0.114(0.326) 0.203(0.431) 0.297(0.520) 0.592(0.728)

E1=1 0.060(0.200) 0.109(0.275) 0.166(0.344) 0.389(0.544)

E1=3 0.014(0.048) 0.025(0.071) 0.038(0.094) 0.109(0.191)
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Table 9: Values of the eÆciency lower bounds of the Bayesian (n

0

+1)-point D-optimal designs for

estmating � in model (1) when the eÆciency function is �

2

(x; �) = �

1

exp(��

2

x) and 1 = n < n

0

= 4. The �rst(second) line in each block shows the values of the eÆciency lower bounds when the

priors have the form �

1

(�

2

), each with s = 3, 5 or 9 support points and marginal mean E2 = 1, 4

or 7.

n = 1 n = 2 n = 3

n

0

E2 s=3 s=5 s=9 s=3 s=5 s=9 s=3 s=5 s=9

2 1 0.773 0.772 0.771

2 1 0.768 0.768 0.768

2 4 0.717 0.716 0.716

2 4 0.710 0.709 0.709

2 7 0.702 0.777 0.704

2 7 0.699 0.698 0.699

3 1 0.701 0.700 0.700 0.810 0.809 0.809

3 1 0.699 0.699 0.699 0.808 0.808 0.808

3 4 0.613 0.613 0.612 0.791 0.791 0.790

3 4 0.610 0.610 0.610 0.787 0.787 0.787

3 7 0.567 0.569 0.569 0.775 0.777 0.778

3 7 0.565 0.565 0.565 0.773 0.773 0.773

4 1 0.667 0.667 0.667 0.731 0.730 0.730 0.839 0.838 0.838

4 1 0.665 0.665 0.665 0.729 0.730 0.729 0.837 0.837 0.837

4 4 0.559 0.559 0.559 0.691 0.690 0.690 0.908 0.830 0.829

4 4 0.557 0.557 0.557 0.689 0.689 0.689 0.827 0.827 0.827

4 7 0.504 0.505 0.505 0.664 0.665 0.665 0.822 0.824 0.824

4 7 0.502 0.502 0.502 0.663 0.663 0.663 0.821 0.821 0.821
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1, 4 and 7. Consider also the prior �

1

in Table 1 with three support points at 2, 4 and 6 (i.e. Æ

= 2 and mean equal to 4). The variance of �

3

is 6.4, the variance of �

4

is 6.0 and the variance

of �

1

is 1.33. So, �

3

is a bit more spread out than �

4

which in turn has a much wider spread

than �

1

. Because all these priors have the same marginal mean E2 = 4, the Bayesian D-optimal

(n + 1)-point designs are identical. However, the Bayesian D-optimal (n + 1)-point designs can

lose their universal D-optimality if the priors are more spread out. This is seen in Table 10 where

the values of the eÆciency lower bounds for the more spread out priors �

3

and �

4

are now less

than unity when n = n

0

= 1, 2. This implies the Bayesian D-optimal (n + 1)-point designs for

the linear and quadratic models are no longer Bayesian D-optimal, even though the models are

correctly speci�ed. As pointed out earlier, this is not the case if the less spread out prior �

1

is

used.

Table 10 also suggests that if a Bayesian D-optimal (n + 1)-point design is not universally

optimal for the polynomial of degree n, the Bayesian D-optimal k-point design is not likely to be

universally optimal for the model of degree k if k = n� 1. This is because in each of the cases in

Table 10, the Bayesian D-optimal k-point design is also Bayesian D-optimal when k = 3 but not

if k is 1 or 2. This rule can be helpful if we wish to ascertain if a Bayesian D-optimal (n + 1)-

point design is also Bayesian D-optimal because the computation for �nding a Bayesian D-optimal

(n+ 1)-point design can be laborious. In summary, our results suggest that if concentrated priors

are used with more mass concentrated around its mean, the Bayesian D-optimal (n + 1)-point

design is more likely to be universally optimal for the models considered here.

Table 10: First rows: EÆciencies of Bayesian D-optimal (n

0

+ 1)-point designs on [0; 1] relative

to the Bayesian D-optimal (n + 1)-point designs on [0; 1] using priors �

3

and �

4

. Second rows:

Values of the eÆciency lower bounds of the Bayesian D-optimal (n

0

+ 1)-point designs when the

true model is of degree n and the assumed degree is n

0

.

prior distribution �

3

prior distribution �

4

n

0

n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4

1 1 1

0.741 0.863

2 0.947 1.000 0.951 1.000

0.740 0.892 0.742 0.936

3 0.895 0.967 1.000 0.891 0.965 1.000

0.627 0.804 1.000 0.625 0.805 1.000

4 0.865 0.922 0.953 1.000 0.862 0.917 0.951 1.000

0.568 0.699 0.839 1.000 0.567 0.699 0.839 1.000

We now compare the performance of Bayesian D-optimal (n + 1)-point designs with uniform

designs. Table 11 lists the eÆciencies of uniform designs supported on 2, 3 and 4 points on [0; 1]

and [0; 5] relative to the Bayesian D-optimal (n + 1)-point designs when �

2

(x; �) is the eÆciency
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function and n = 1, 2 and 3. The priors used in the comparison have the form of �

1

with the mean

of the marginal prior distribution of �

2

equal to E2 = 1, 4 or 7 and are supported at s = 3, 5, or

9 points. The relative eÆciencies do not change much when the number of support points in the

prior distribution is changed and so we display only the eÆciencies when s = 5.

For �

2

(x; �), the error variance is increasing over the design space; this increase is more dramatic

especially when the marginal prior mean of �

2

, E2, is large. The Bayesian D-optimal (n+1)-point

design puts more support points near 0 while keeping the range of its support as large as possible.

As can be seen from the table, the uniform design generally has lower eÆciency if E2 is large (E2=7,

for example). In addition, when the design space is enlarged from [0; 1] to [0; 5], we observe there

is generally a substantial drop in the eÆciencies of the uniform designs, with some approaching

zero. This implies that Bayesian D-optimal (n+ 1)-point designs can outperform uniform designs

by a wide margin when the design space is large.

Table 11: EÆciencies of a 2-point uniform design (�

2

), 3-point uniform design (�

3

) and 4-point

uniform design (�

4

) on [0; 1] and [0; 5] relative to the Bayesian D-optimal (n+1)-point design for

model (1) for n = 1, 2 or 3 and �

2

(x; �) holds. The priors have the form �

1

with s = 5 support

points and the mean of the marginal distribution of �

2

is E2 = 1, 4 or 7.

n = 1 n = 2 n = 3

E2 b = 1 b = 5 b = 1 b = 5 b = 1 b = 5

1 1.000 0.558

�

2

4 0.736 0.001

7 0.287 0.000

1 0.841 0.848 0.990 0.796

�

3

4 0.849 0.061 0.860 0.007

7 0.593 0.003 0.574 0.000

1 0.769 0.847 0.907 0.948 0.951 0.782

�

4

4 0.801 0.163 0.896 0.066 0.841 0.023

7 0.618 0.023 0.784 0.001 0.650 0.000

5. SUMMARY

We investigated the robustness properties of the Bayesian D-optimal (n + 1)-point designs for

the polynomial regression model when the error variance depends on the explanatory variable.

Our main interest was to �nd eÆcient designs for estimating the structural parameters using prior

information of the nuisance parameters in the eÆciency function. Our results provided some insight

into the Bayesian D-optimal (n+1)-point designs for the polynomial regression model. In essence,

these designs are robust if the degree is not completely misspeci�ed. The designs have moderate

performance if the means of the marginal distributions are nearly correct. This is especially so if

the design space is small, or if the design space is large. Our results also suggest that the designs

17



are less eÆcient if the variance of the prior distribution is increasing and they can perform much

better than the widely used uniform designs when the design space is large. We conclude with a

note that if there is interest in estimating all the model parameters � or a subset of the parameters

of �, a similar approach may be used; some analytical results are given in Dette and Wong (1998).

6. APPENDIX

Here, we provide information for carrying out the numerical study. Details and proofs for Theo-

rems 1 and 2 are available in Dette and Wong (1998).

Theorem 1. Suppose model (1) holds on the design space [0; b] and the eÆciency function is

�

2

(x; �) = �

1

exp(��

2

x); �

1

> 0: Let E = E

�

(�

2

) > 0 and z

max;n

denote the largest zero of the nth

Laguerre polynomial L

n

(x).

a. If bE � z

max;n

, the Bayesian D-optimal (n+1)-point design for estimating � has equal mass

at the zeros of the polynomial xL

n

(xE).

b. If bE < z

max;n

, the Bayesian D-optimal (n+1)-point design for estimating � is determined by

its canonical moments p

1

; p

2

; :::; p

2n�1

2 (0; 1); p

2n

= 1, which solve the system of equations:

(q

0

= 0)

n� k + 1

p

2k�1

�

n� k + 1

q

2k�1

� bE

q

2k�2

+ bE

p

2k

= 0; k = 1; : : : ; n

n� k + 1

p

2k

�

n� k + 1

q

2k

� bE

q

2k�1

+ bE

p

2k+1

= 0; k = 1; : : : ; n� 1:

Moreover, this design has equal mass at its support points.

Theorem 2. Under the setup in Theorem 1, the design � is Bayesian D-optimal for estimating �

if and only if

Z

B

exp(��

2

x)f

T

(x)M

�1

1

(�

2

; �)f(x)�(d�

2

) � n+ 1 8 x 2 [0; b]: (2)

Moreover, equality holds in the inequality if x is a support point of the Bayesian D-optimal design.

If the design �is not Bayesian D-optimal, the proximity of � to the Bayesian D-optimal design �

�

can be quanti�ed by a lower bound for expf(�(�)��(�

�

))=(n+ 1)g. This bound is given by

expf(�(�)��(�

�

))=(n+ 1)g �

n+ 1

sup

x2[0;b]

R

B

exp(��

2

x)f

T

(x)M

�1

1

(�

2

; �)f(x)�(d�

2

)

:

Theorem 3. Suppose model (1) holds on [0; b] and the eÆciency function is �

3

(x; �) = x

�

1

(b �

x)

�

2

; �

T

= (�

1

; �

2

); �

1

� 0 and �

2

� 0. If �(�

1

; �

2

) is the prior distribution for �, the Bayesian D-

optimal (n+1)-point design for estimating � puts equal masses at the n+1 zeros of the polynomial

P

(��1;��1)

n+1

((2x=b) � 1). Here P

(�;�)

n+1

(t) is the (n + 1)th Jacobi polynomial orthogonal with respect

to the measure (1� x)

�

(1 + x)

�

dx and the parameters (�; �) are the means of the �rst and second

marginal distributions of � respectively, i.e.

� =

Z

1

0

Z

1

0

�

1

d�(�

1

; �

2

) and � =

Z

1

0

Z

1

0

�

2

d�(�

1

; �

2

) :

Proof. The design problem is invariant under linear transformations, and in particular, to the

transformation from x to 2x=b� 1. After the transformation, the design problem is equivalent to

18



�nding a Bayesian D-optimial (n + 1)-point design on [�1; 1] for estimating � in model (1) with

�

3

(x; �). The solution to the latter problem was given in Theorem 3.4 of Dette and Wong (1998).
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