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Incremental Learning with Support Vector Ma-
chines�

Stefan Rüping��

��Department of Computer Science, AI Unit University of Dortmund, Germany.
stefan.rueping@uni-dortmund.de

Abstract. Support Vector Machines (SVMs) have become a popular tool for learning with
large amounts of high dimensional data. However, it may sometimes be preferable to learn
incrementally from previous SVM results, as computing a SVM is very costly in terms of time
and memory consumption or because the SVM may be used in an online learning setting. In
this paper an approach for incremental learning with Support Vector Machines is presented,
that improves existing approaches. Empirical evidence is given to prove that this approach
can effectively deal with changes in the target concept that are results of the incremental
learning setting.

Keywords. Support Vector Machines, Incremental Learning

1 Introduction

The ability to incrementally learn from batches of data is an important feature that makes a
learning algorithmmore applicable to real-world problems. Incremental learning may be used to
keep memory and time consumption of the learning algorithm at a manageable level or because
one needs to make predictions at a time when the whole data is not yet available (online setting).

The most important question of incremental learning is, whether the target concept may change
between the learning steps or is assumed to be constant. The first case is called concept drift, the
second case is true incremental learning. The practical difference between both kinds of learning
is, that in the concept drift setting, old examples may be misleading, as they are examples of
an old target concept, that may be quite different from the concept one is trying to learn. In the
case of true incremental learning, all examples contain the same information about the target
concept (more specific: one cannot judge the information of an example from its age). As a
consequence, one can judge the performance of an incremental learning algorithm simply by
comparing its results to the results of the learning algorithm trained an all data simultaneously
as the gold standard. This paper will deal with incremental learning.

�A short version of this paper has appeared in the Proceedings of the ICDM 2001, San Jose, CA, USA



Support Vector Machines (SVMs) have been successfully used for learning with large and high
dimensional data sets. This is because of the fact that the generalization property of an SVM
does not depend on all the training data but only a subset thereof, the so-called Support Vectors
[Vapnik, 1998]. Unfortunately, the training of Support Vector Machines itself can very time
consuming, especially when dealing with noisy data.

As the number of Support Vectors typically is very small compared to the number of training
examples, SVMs promise to be an effective tool for incremental learning by compressing the
data of the previous batches to their Support Vectors. This approach to incremental learning
with Support Vector Machines has been investigated in [Syed et al., 1999b] where it has been
shown that incrementally trained Support Vector Machines compare very well to their non-
incrementally trained equivalent.

The problem of drifting concepts in incremental Support Vector Machine learning has been
addressed in [Syed et al., 1999a] where it has been experimentally validated that SVMs handle
drifting concepts well with respect to the criteria of stability of the result during the learning
steps, improvement of the prediction accuracy during the progress of the training and recov-
erability from errors resulting of the drifting concepts. Another approach to the handling of
drifting concepts has been pursued in [Klinkenberg and Joachims, 2000], where a performance
estimator [Joachims, 2000] has been used to detect whether a drift in the underlying concept
did occur, at which point the old data was being discarded and training took place only on the
new data.

This paper deals with the setting of incremental learning, i.e. the data is presented to the algo-
rithm in several batches, such that the algorithm should produce a preliminary result after each
training step and is not allowed to directly use all the data in the last training step, to keep down
time and space consumption. Nevertheless, we will keep an eye on the idea of concept drift,
because in real-life problems there may occur a change in the target concept between different
batches of data, which is simply an artifact of the way the data is presented to the learning
algorithm.

When, for example, the learning examples are being generated by a controlled experiment, the
experimenter may find it favorable to follow a test plan which changes the process parame-
ters successively. If these examples are used for incremental learning, earlier batches contain
examples from very different regions of the parameter space than later batches. One may also
observe changes in the training data which have no correspondence to controllable parameters
of the experiment, e.g. if in applications in engineering the quality of a machine deteriorates
over the course of its life-cycle or if in medical applications the algorithm learns on the data of
one patient at a time. In all these examples, one is interested in a result which is optimal with
respect to all data (all parameters / points in time / patients), i.e. although there are observable
and significant changes in the data from batch to batch, no concept drift occurs.

Of course, all these problems could be effectively solved by randomly sampling the data, but in
practice a main reason to use incremental learning in the first place is, that one does not have
control over the way the examples are generated or cannot wait until all examples are ready.
The question in this paper will be, how much the learning algorithm will be influenced by this
effect, which we will call pseudo-concept drift.

Section 2 will present a brief introduction to Support Vector Machines and the their important
properties for this paper. Section 3 will discuss the drawbacks of the existing approach to in-
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cremental SVM learning and develop an improved incremental learning algorithm. In section 4
the new algorithm will be experimentally evaluated. A summary and outlook in section 5 will
conclude the discussion.

2 Support Vector Machines

Support Vector Machines (SVMs) are based on the work of Vladimir Vapnik in statistical learn-
ing theory [Vapnik, 1998]. Statistical learning theory deals with the question, how a function �
from a class of functions ������� can be found, that minimizes the expected risk

��� � �

� �
���� ������� ������� ��� (1)

with respect to a loss function �, when the distributions of the examples � ��� and their classi-
fications � ����� are unknown and have to be estimated from finitely many examples ���� ������ .

The SVM algorithm solves this problem by minimizing the regularized risk �reg�� �, which is
the weighted sum of the empirical risk �emp�� � with respect to the data ���� ���������� and a
complexity term ������

�reg�� � � �emp�� � � ��������

In their basic formulation, SVMs find a linear decision function � � ���� � sign�� � � � ��
that both minimizes the prediction error on the training set and promises the best generalization
performance. Given the examples ���� ���� � � � � ���� ��� this is done by solving the following
optimization problem:

���� �� ��� �
�

�
����� � �

��

���

�� (2)

� ���

subject to

����
��� � �� � �� ��� � � �� � � � � � (3)

�� � �� � � �� � � � � � (4)

The hyperplane vector � has a representation in terms of the training examples ���� ������ and
their lagrangian multipliers ������� , that are calculated during the optimization process:

� �

�

���

�������

Examples with non-zero lagrangian multiplier are called Support Vectors. A key property of
Support Vector Machines is, that training a SVM on the Support Vectors alone gives the same
result as training on the complete example set.

The optimal constant � for the learning problem at hand is usually determined by some model
selection technique, e.g. cross-validation.

In equation (2), the empirical risk of the SVM solution is measured with respect to a linear loss
function. It is important to notice that the theory of the Support Vector algorithm is not restricted
to the case of linear loss functions, but can be extended to broader classes of loss functions (e.g.
see [Smola et al., 1998]).
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3 Incremental Learning with Support Vector Machines

In principle, all working set methods to train SVMs, especially shrinking, (see
[Osuna et al., 1997], [Joachims, 1999]) can be considered as incremental learning algorithms,
as only a small part of the examples is actually used for optimization in each step. But this
approaches are not useful to true incremental learning, as none of the examples are discarded
during training and therefore will have to be reconsidered in each working set selection step.
Therefore, no improvement in terms of space and time consumption can be expected here.

3.1 Existing Approaches

The approach to incremental learning with SVMs presented in [Syed et al., 1999b] is this: For
each new batch of data a Support Vector Machine is trained on the new data and the Support
Vectors from the previous learning step. In the following this approach will be called the SV-
incremental algorithm.

The reasoning behind this is as follows: The resulting decision function of an SVM depends
only on its Support Vectors, i.e. training an SVM on the Support Vectors alone results in the
same decision function as training on the whole data set. Because of this, one can expect to get
an incremental result that is equal to the non-incremental result, if the last training set contains
all examples that are Support Vectors in the non-incremental case.

But how to decide whether an examples will end up as an Support Vector in the non-incremental
case without actually training on all data? If a batch of data is a good sample, i.e. if the statistical
properties of that batch and the whole data set do not differ very much, one can expect the
resulting decision function to be roughly similar to the final decision function. Therefore, a
Support Vector in the final set is likely to be a Support Vector in previous iterations too.

The problem with this approach is the assumption that the batch of data will be an appropriate
sample of the data. While this may be likely if the data is collected beforehand and presented to
the SVM in randomly drawn batches, there is no way to tell if this is the case if the examples
are generated online during the training.

The theoretical problem behind this is, that the Support Vectors are a sufficient description of
the decision boundary between the examples, but not of the examples themselves. As there are
typically only very few Support Vectors, their influence on the decision function in the next
incremental learning step may be very small if the new data is distributed differently.

See for example the 200 examples in figure 1 and imagine the data is presented to the SVM in
two batches, such that the first batch contains all the examples with � � �. Training an SVM on
the first batch of data will lead to relatively few Support Vectors (18 for � � ����). Now train
an SVM with the Support Vectors of the first batch and the rest of the examples. Figure 2 shows
the resulting decision function, together with the decision function learned on all data.

It is obvious that SVM results largely ignores the old Support Vectors and almost corresponds
to the decision function that would have been learned on the second batch of examples alone.
Usually this is a desired property of the SVM algorithm, because it means that the SVM is
robust against outliers in the data - only in this case the outliers are the old Support Vectors one
would wish to take into account for the new decision function.
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Figure 1 Example data set (Plusses = positive examples, crosses = negative examples) with
SVM decision function (C=1000).
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Figure 2 Second batch of data including old SVs (= stars), resulting decision function and
desired overall decision function.
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Figure 3 Comparison of the results of the SV-incremental algorithm and the SV-L-incremental
algorithm on the example problem.

3.2 A New Incremental Learning Algorithm

As stated above, the SV-incremental algorithm suffers from the problem, that the Support Vec-
tors do not describe the whole set of data but only the decision function induced by it. To make
up for this problem in the incremental learning algorithm, one needs to make an error on the
old Support Vectors (which represent the old learning set) more costly than an error on a new
example.

Fortunately, this can easily be accomplished in the Support Vector algorithm. Let ���� ������ be
the old Support Vectors and ���� ������ be the new examples. Then replace definition (2) by

���� �� ��� �
�

�
����� � �

��
���

�� � �
�
���

��

�
�

This modification of the SVM problem can be viewed as training the SVM with respect to a
new loss function.

A natural choice for � is to let � be the number of examples in the previous batch divided by
the number of Support Vectors.

� �
#examples
#SVs

This comes from the idea to approximate the average error of an arbitrary decision function
over all examples by the average error over just the Support Vectors. In other words: Every
Support Vector stands for a constant fraction of all examples. This algorithm will be called the
SV-L-incremental algorithm.

Figure 3 shows the result of the SV-L-incremental algorithm on the example problem of the last
section. It is obvious that its result lies much closer to the overall result than the SV-incremental
algorithm.
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Figure 4 Two example set A and B with equal � ����� but different � ���.

3.3 Interpretability of Support Vectors

The results so far give interesting insight into the question, how Support Vectors can be in-
terpreted. It is often argued, that the Support Vectors provide a sufficient representation of the
examples for the given classification task, because training an SVM on the Support Vectors
gives the same decision function as training on the whole data set. But of course, this only
means that the Support Vectors are a sufficient representation of the decision function on the
examples, not the examples themselves.

The important difference is, that in terms of the Statistical Learning Principle as formalized in
equation 1, the Support Vectors provide an estimate of � �����, but not of � ���. In figure 4,
both set A and B have the same � �����, but different � ���. If the Support Vectors are used to
represent the entire data set, like in the incremental learning algorithm, this has to be taken into
account.

4 Experiments

To compare both algorithms, some experiments, both on artificial data and on real-world data
sets were made. A version of mySVM [Rüping, 2000], that was modified to handle loss func-
tions defined per example, was used 1.

4.1 Artificial Data

To compare the performance of the SV-incremental and the SV-L-incremental algorithm, two
experiments with artificial data sets were made. The performance of both algorithms were com-
pared to that of non-incremental learning in the settings with and without concept changes.
As the principle practicability of incremental learning with SVMs has already be en shown in
[Syed et al., 1999b], the experiments here were restricted to the case of incremental learning in
two steps.

Each training set consisted of three subsets, each of which had a size of 100 examples (50
positive and 50 negative). The first two subsets were used to incrementally train the SVM and
the third subset was used as a test set to determine the accuracy of the resulting classifiers. All

1The modified version of mySVM is available from the author on request
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the results printed are the averages of 10-fold cross-validation.

In the case without concept changes, all the positive examples were drawn randomly from a
two-dimensional normal distribution with center ��� �� and variance �. The negative examples
were drawn from a similar normal distribution with center �������. The following table shows
the accuracy of the training with different values of �.

C non-inc. SV-inc. SV-L-inc.
1e-06 0.893 0.896 0.895
1e-05 0.916 0.787 0.796
1e-04 0.919 0.799 0.839
0.001 0.926 0.928 0.878
0.01 0.919 0.799 0.795
0.1 0.926 0.927 0.805
1 0.916 0.882 0.916
10 0.925 0.921 0.923
100 0.938 0.932 0.937
1000 0.921 0.896 0.923
1e04 0.920 0.881 0.904
1e05 0.922 0.878 0.874
1e06 0.909 0.892 0.783

To simulate a concept change in the data, another set of data was created. This time the first
training set consisted of positive examples drawn randomly from a two-dimensional normal
distribution with center ��� �� and negative examples normally distributed with center �������.
The second training set had positive examples centered at ������ and negative examples cen-
tered at ���� ��. The variance was � in all cases. The test set consisted of 50 variables from the
distribution of the first training set and another 50 variables from the distribution of the second
training set, such that the distribution of the variables in the test set and the distribution in the
union of the first and second training set were identical. The next table shows the accuracy of
the resulting classifiers with different values of �.

C non-inc. SV-inc. SV-L-inc.
1e-06 0.835 0.555 0.812
1e-05 0.823 0.636 0.749
1e-04 0.852 0.599 0.812
0.001 0.835 0.553 0.784
0.01 0.854 0.562 0.844
0.1 0.835 0.684 0.814
1 0.836 0.758 0.837
10 0.834 0.755 0.819
100 0.845 0.743 0.759
1000 0.844 0.689 0.734
1e04 0.834 0.689 0.788
1e05 0.834 0.678 0.746
1e06 0.847 0.620 0.684
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As can be seen, the SV-incremental and the SV-L-incremental algorithm perform comparable
in the absence of a concept change, whereas in the setting with concept changes the SV-L-
incremental algorithm performs better than the original SV-incremental algorithm.

4.2 Real-World Data

4.2.1 Data Set To check the performance on real-world data sets, several data sets from
the UCI Repository of Machine learning Databases [Murphy and Aha, 1994] were used. Before
the training, nominal variables have been binarized and the attributes have been scaled to ex-
pectancy 0 and variance 1. All results have been obtained by 10-fold cross-validation, i.e. or
each test set, a classifier has been trained incrementally on the 9 other batches of data and the
performance of the final classifier on the test set has been recorded.

For each data set, the optimal kernel function has been determined for the non-incremental case
by 10-fold cross-validation on the complete data set. In all experiments, the value � � � has
been used. The following table shows these data sets and the kernel function that were used in
the experiments.

Name Dim. Examples Kernel
australian 38 690 RBF, � � ������

diabetes 8 768 RBF, � � ����

german 24 1000 RBF, � � ������

heart 20 270 RBF, � � ������

ionosphere 34 351 RBF, � � ���

liver-disorders 6 345 RBF, � � ���

monks-1 15 556 RBF, � � ���

monks-2 15 601 RBF, � � �

monks-3 15 554 RBF, � � �����

mushrooms 112 8124 linear
promotor-gene 228 106 linear
sonar 60 208 RBF, � � ����

4.2.2 Comparison of the SV-incremental and SV-L-incremental Algorithm The follow-
ing table compares the Accuracy of the classifier trained on all available data (non-inc.), the
SV-incremental algorithm and the SV-L-incremental algorithm.
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Dataset non-inc. SV-inc. SV-L-inc.
australian 85.21 85.50 85.50
diabetes 70.94 70.80 70.42
german 74.90 75.80 76.70
heart 77.03 75.92 79.62
ionosphere 94.02 94.02 94.88
liver-disorders 69.61 69.92 71.05
monks1 100.00 100.00 100.00
monks2 85.03 85.03 85.03
monks3 96.38 96.38 96.38
mushroom 100.00 100.00 100.00
promoter-genes 93.63 93.63 93.63
sonar 85.59 85.59 86.07

4.2.3 Choice of L In section 3.2, the constant � in the SV-L-incremental algorithm has been
heuristically determined as

� �
#examples
#SVs

�

To check the influence that this value has on the learning results, some other tests were made
where half, double and five times this value was used. The next table shows, that in most cases
the value

� � �
#examples
#SVs

shows even better results.

Dataset � � ��� � � � � � � �

australian 74.63 85.50 86.66 85.36
diabetes 66.64 70.42 70.55 69.64
german 73.70 76.70 77.50 76.40
heart 55.55 79.62 83.33 84.07
ionosphere 94.59 94.88 95.45 94.87
liver-disorders 68.74 71.05 70.78 69.93
monks1 100.00 100.00 100.00 100.00
monks2 65.72 85.03 85.03 85.03
monks3 62.46 96.38 96.38 96.38
mushroom 100.00 100.00 100.00 100.00
promoter-genes 93.63 93.63 93.63 93.63
sonar 83.16 86.07 85.07 88.88

4.2.4 Experiments with Pseudo-Concept Drift So far, in all experiments in this section,
the examples were distributed to the batches randomly. This is quite fortunate for an incremental
algorithm, as the chance of a pseudo-concept drift occurring in the data is small. Now we want
to see what happens, if the examples are distributed into the batches in an ordered way.

To do that, the examples have been sorted with respect to their first attribute value and were
presented to the incremental algorithm in that order. As a result of the last experiment, the value
of L has been doubled.
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Dataset non-inc. SV-inc. SV-L-inc.
australian 85.21 85.65 86.37
diabetes 70.94 71.09 70.69
german 74.90 75.89 77.89
heart 77.03 69.25 83.33
ionosphere 94.02 94.58 95.15
liver-disorders 69.61 70.48 70.75
monks1 100.00 100.00 100.00
monks2 85.03 84.02 84.02
monks3 96.38 96.38 96.38
mushroom 100.00 100.00 100.00
promoter-genes 93.63 93.45 90.72
sonar 85.59 80.85 84.21

5 Summary and Future Work

In this paper, a new algorithm for incremental learning with Support Vector Machines was pre-
sented. The method was especially designed to deal with problems that arise when the training
data contains changing concepts, either real ones or ones that are artifacts arising from the
specific order of the examples. It was experimentally shown that the performance of the new
algorithm is comparable to an existing approach in the case of learning without concept changes
and performs significantly better in the case of changing concepts in the training data.

An interesting question for future work is to find out, if the trick of individually assigning a
weight to the examples can also be applied to the problem of learning in situations with real
concept drift. Instead of increasing the weights for old Support Vectors, one could also decrease
the weight of the old examples to make the SVM more sensitive to changes in newer examples.

It also remains to be investigated, whether this algorithm also works for regression SVMs.
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