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Abstract

In the Michaelis-Menten model we determine eÆcient designs by maximizing a mini-

mum of standardized E-eÆciencies. It is shown that in many cases the optimal designs are

supported at only two points and the support points and corresponding weights can be char-

acterized explicitly. Moreover, a numerical study indicates that two point designs are usually

very eÆcient, even if they are not optimal. Some practical recommendations for the design

of experiments in the Michaelis-Menten model are also given.
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1 Introduction

The Michaelis Menten model

E[Y j t] =

at

t+ b

; t 2 [0; t

0

](1.1)

is widely used to describe physical and biological phenomena [see Cressie and Keightley (1979),

Johansen (1984), Beverton and Holt (1957), Cornish-Browden (1979), Hay, Meznarich, DiGia-

como, Hirst, Zerbe (1988) among many others] and the problem of designing experiments for this

model has found considerable attention in the literature [see Duggleby (1979), Dunn (1988), Rasch

(1990), Boer, Rasch and Hendrix (2000) or Dette and Wong (1999)]. An approximate design � is

a probability measure with �nite support on the interval [0; t

0

] [see Kiefer (1974), Silvey (1980) or

Pukelsheim (1993)]. Here the support points t

1

; : : : ; t

k

represent the locations, where observations

are taken and the masses w

1

; : : : ; w

k

give the proportion of the total observations to be taken at

the particular points. If n independent observations with constant variance �

2

> 0 have been ob-

tained from the design � [possibly with an appropriate rounding of the quantities nw

j

; j = 1; : : : ; k;

see e.g. Pukelsheim and Rieder (1992)], then the covariance matrix of the maximum likelihood

estimate of the parameters (a; b)

T

is approximately equal to the matrix �

2

n

�1

M

�1

(�; a; b); where

M(�; a; b) =

Z

t

0

t

0

t

2

(b + t)

2

 

1 �

a

b+t

�

a

b+t

a

2

(b+t)

2

!

d�(t)(1.2)

denotes the information matrix of the design � in the Michaelis-Menten model (1.1). Note that

this matrix depends on the unknown parameters and following Cherno� (1953) we call a design

locally �-optimal if it maximizes a concave function of the information matrix (1.2). Locally

D-optimal designs [�(M) = log jM j; where j � j denotes the determinant] habe been determined

by Rasch (1990) and have equal weight at the points

b

2b+1

t

0

and t

0

: Locally E-optimal designs

[�(M) = �

min

(M); where �

min

denotes the minimum eigenvalue] have been found in Dette and

Wong (1999) and have weight 1�w and w at the points t

0

and (

p

2� 1)t

0

b � f(2�

p

2)t

0

+ bg

�1

;

respectively, where the weight w is given by

w =

p

2a

2

=bfb

p

2� (4� 3

p

2)t

0

g

2(t

0

+ b)

2

+ a

2

=b

2

fb

p

2� (4� 3

p

2)t

0

g

2

:(1.3)

These designs have critizised for several reasons. On the one hand the designs depend sensitively

on the unknown parameters and are in this sense not robust. On the other hand, even if prior

knowledge about the parameters is available, it was pointed out in Dette (1997a,b), that for

speci�c parameter constellations E-optimal designs can perform particulary bad. For example, if

a is small compared to b the weight in (1.3) is close to 0 and consequently the information matrix

of the corresponding design is nearly singular. In this case the E-optimal design is ineÆcient

for estimating both parameters in the Michaelis-Menten model (note that this problem does not

appear for the D-optimality criterion).

Some e�ort has been undertaken to construct robust designs with respect to the D-criterion [see

Song and Wong (1998) or Dette and Biedermann (2002)] but to the knowledge of the authors

robust designs based on the E-optimality criterion are not available in the literature. It is the

purpose of the present paper to construct some robust type designs for the E-optimality criterion.
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In order to determine these designs we use a maximin approach introduced by M�uller (1995) [see

also Dette (1997a)]. A design �

�

is called standardized maximin �-optimal if it maximizes the

function

 (�) = min

a2A;b2B

�(M(�; a; b))

max

�

�(M(�; a; b))

;(1.4)

where � is a concave function and the minimum is taken over certain subsets A and B of the

parameter space, which have to be speci�ed by the experimenter. In many applications such a

speci�cation is available; see for example Cressie and Keightley (1981), p.237, where a speci�c

range for the dissociation constant b for the receptor-estradiol interaction is given. Note that the

criterion  in (1.4) is a minimum of �-eÆciencies taken over a certain range of the parameters and

is in this sense very intuitive. We will not use the function �(M) = �

min

(M) corresponding to the

E-optimality criterion directly (because of its de�ciencies mentioned in the previous paragraph)

but a modi�ed version introduced in Dette (1997b), which uses a scaling of the elements in the

information matrix, similar to the transition from the covariance to the correlation matrix. The

new criterion is carefully de�ned in a more general context (containing the situation discussed so far

for the Michaelis-Menten model as a special case) in Section 2, which also gives some preliminary

results and an equivalence theorem for the standardized maximin optimality criterion. In Section

3 we determine optimal designs for the Michaelis-Menten model and prove that for a suÆciently

small set B for the parameter b the standardized maximin E-optimal design is always supported

at two points. To our knowledge a property of this type was conjectured by many authors in

the context of Bayesian or maximin optimality criteria [see Chaloner and Larntz (1989) or Haines

(1995)] but has never been proved rigorously in a non-trivial situation such as the Michaelis-

Menten model. Finally, some numerical results are presented in Section 4 which also gives some

practical recommendations and Section 5 contains an appendix with a technical result, which is

used for the proofs in Section 2 and 3.

2 The standardized maximin E-optimality criterion

Consider the regression model

E[Y j t] =

k

X

i=1

a

i

'(t; b

i

); t 2 I;(2.1)

where '(t; b) is a given function, I an interval and a = (a

1

; : : : ; a

k

)

T

; b = (b

1

; : : : ; b

k

)

T

denote

the vectors of the unknown parameters. Note that the Michaelis-Menten model discussed in the

introduction is obtained by the choice k = 1; I = [0; t

0

] and '(t; b

1

) = t=(t + b

1

): The Fisher

information matrix in the model (2.1) is given by

M(�; a; b) = D

a

Z

I

f(t; b)f

T

(t; b)d�(t)D

a

2 R

2k

;(2.2)

where

f(t; b) = (f

1

(t; b); : : : ; f

2k

(t; b))

T

= ('(t; b

1

); '

0

(t; b

1

); : : : ; '(t; b

k

); '

0

(t; b

k

))

T

2 R

2k

(2.3)
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denotes the vector of regression functions, derivatives of ' are taken with respect to its second

argument and the matrix D

a

2 R

2k�2k

is de�ned by

D

a

=

0

B

B

B

B

B

B

B

B

@

1 0 0 : : : 0 0

0 a 0 : : : 0 0

0 0 1 : : : 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 : : : 1 0

0 0 0 : : : 0 a

1

C

C

C

C

C

C

C

C

A

:(2.4)

Dette (1997b) points out several drawbacks of E-optimal designs maximizing �

min

(M(�; a; b)): In

particular he showed that in many regression models these designs become ineÆcient for estimat-

ing the complete vector of parameters and proposed a standardized version of the E-optimality

criterion, which avoids these problems. We will use this criterion for the construction of robust

designs. To be precise let e

j

= (0; : : : ; 0; 1; 0; : : : ; 0)

T

denote the jth unit vector and �

�

j

the locally

e

j

-optimal design minimizing the expression

e

T

j

M

�

(�; a; b)e

j

(j = 1; : : : ; 2k), where M

�

denotes a generalized inverse of the matrixM and we assume that the

jth parameter in the model (2.1) is estimable by the design �; that is e

j

2 range(M(�; a; b)) (for

all a; b): A standardized E-optimality criterion is de�ned as follows [see Dette (1997a,b)]. Let

K

a;b

= diag

n

(e

T

1

M

�

(�

�

1

; a; b)e

1

)

�1=2

; : : : ; (e

T

2k

M

�

(�

�

2k

; a; b)e

2k

)

�1=2

o

(2.5)

denote a diagonal matrix with jth entry proportional to the inverse square root of the best

\variance" obtainable by the choice of an experimental design for estimating the jth coeÆcient in

the model (2.1), and de�ne the matrix

C(�; b) = (K

T

a;b

M

�

(�; a; b)K

a;b

)

�1

:(2.6)

Following Dette (1997) we call a design maximizing the function

�

min

(C(�; b)) = �

min

((K

T

a;b

M

�

(�; a; b)K

a;b

)

�1

) = �

min

((K

T

1;b

M

�

(�; 1; b)K

1;b

)

�1

)(2.7)

locally standardized E-optimal (in the last equality we use the notation 1 = (1; : : : ; 1)

T

2 R

k

):

Recalling the de�nition of the matrices in (2.2), (2.3), (2.4) and Theorem 3.2 in Dette (1997b) it

follows that the matrix in (2.6) does not depend on the linear parametes a

1

; : : : ; a

k

of the model

(2.1), which justi�es the last equality and our notation C(�; b): The robust standardized maximin

E-optimality criterion is now de�ned as follows.

De�nition 2.1. A design �

�

is called standardized maximin E-optimal design if it maximizes the

function

min

b2B

�

min

(C(�; b))

max

�

�

min

(C(�; b))

;(2.8)
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where the matrix C(�; b) is de�ned in (2.6) and B � R

k

is a given set.

Throughout this paper we assume that the functions f

1

; : : : ; f

2k

de�ned in (2.3) generate a Cheby-

shev system on the interval I (for any b): A set of functions f

1

; : : : ; f

m

: I ! R is called a weak

Chebyshev system (on the interval I) if there exists an " 2 f�1; 1g such that

" �

�

�

�

�

�

�

�

f

1

(x

1

) : : : f

1

(x

m

)

.

.

.

.

.

.

.

.

.

f

m

(x

1

) : : : f

m

(x

m

)

�

�

�

�

�

�

�

� 0(2.9)

for all x

1

; : : : ; x

m

2 I with x

1

< x

2

< : : : < x

m

: If the inequality in (2.9) is strict, then ff

1

; : : : ; f

m

g

is called Chebyshev system. It is well known [see Karlin and Studden (1966), Theorem II 10.2]

that if ff

1

; : : : ; f

m

g is a weak Chebyshev system, then there exists a unique function

m

X

i=1

c

�

i

f

i

(t) = c

�T

f(t);(2.10)

with the following properties

(i) jc

�T

f(t)j � 1 8 t 2 I

(2.11)

(ii) there exist m points s

1

< : : : < s

m

such that c

�T

f(s

i

) = (�1)

i�1

i = 1; : : : ; m:

The function c

�T

f(t) is called Chebyshev polynomial and gives the best approximation of the

function f

0

(t) � 0 by normalized linear combinations of the system f

1

; : : : ; f

m

with respect to the

sup-norm. The points s

1

; : : : ; s

m

are called Chebyshev points and need not to be unique. They

are unique if 1 2 spanff

1

; : : : ; f

m

g and I is a bounded and closed interval, where in this case

s

1

= min

x2I

x; s

m

= max

x2I

x:

It is well known [see Studden (1968), Pukelsheim and Studden (1993) or Imhof and Studden (2001)

among others] that in many cases the E- and c-optimal designs are supported at the Chebyshev

points. Our �rst lemma shows that this is also the case for the locally e

j

-optimal designs and the

locally standardized E-optimal design which maximizes the function de�ned by (2.7).

Lemma 2.2. Assume that (for �xed b) the function f

1

(�; b); : : : ; f

2k

(�; b) in (2.3) generate a

Chebyshev system on the interval I with Chebyshev polynomial f

T

(t; b)c

�

and Chebyshev points

t

�

1

< t

�

2

< : : : < t

�

2k

: If any subsystem of 2k � 1 of the functions f

1

(�; b); : : : ; f

2k

(�; b) is a weak

Chebyshev system on the interval I; then the following assertions are true:

(a) For every j = 1; : : : ; 2k the design

�

�

j

=

 

t

�

1

: : : t

�

2k

w

1;j

: : : w

2k;j

!

5



is e

j

-optimal for the model (2.1), where the weights are de�ned by

w

i;j

=

(�1)

i

e

T

i

F

�1

e

j

P

2k

`=1

(�1)

`

e

T

`

F

�1

e

j

i = 1; : : : ; 2k

and the matrix F is given by

F = (f

i

(t

�

j

; b))

2k

i;j=1

:

Moreover,

e

T

j

M

�1

(�

�

j

; 1; b)e

j

= (c

�

j

)

2

;

where c

�

j

is the jth coeÆcient of the Chebyshev polynomial de�ned by (2.10).

(b) The design

�

�

E

=

1

2k

2k

X

`=1

�

�

`

is locally standardized E-optimal in the model (2.1) and

�

min

(C(�

�

E

; b)) =

1

2k

:

Proof. Note that the optimal designs do not depend on the parameters a

1

; : : : ; a

k

and we put

a

j

= 1 (j = 1; : : : ; k) without loss of generality. For a proof of the �rst assertion (a) consider a

�xed j 2 f1; : : : ; 2kg and let

h

�2

j

= e

T

j

M

�1

(�

�

j

; 1; b)e

j

=

�

2k

X

`=1

(�1)

`

e

T

`

F

�1

e

j

�

2

;

then it is easy to see that

JFw

j

= h

j

e

j

;

where w

j

= (w

1;j

; : : : ; w

2k;j

)

T

and the matrix J is de�ned by

J = diag

�

1; (�1); 1; : : : ; (�1)

�

2 R

2k�2k

:

The functions f

1

; : : : ; f

j�1

; f

j+1

; : : : ; f

2k

(for any j = 1; : : : ; 2k) generate a Chebyshev system on

the interval I and consequently the quantities (�1)

i

e

T

i

F

�1

e

j

have the same sign, which implies

that the weights w

i;j

are all nonnegative. It now follows from Elfving's theorem [see Elfving (1952)]

that the design �

�

j

is e

j

-optimal and from the results of Studden (1968) that h

j

= c

�

j

:

Finally, the statement (b) is a consequence of recent results of Imhof and Studden (2001) [see

Theorem 2.1(a) and the proof of Theorem 2.1(b) in this paper] and its proof is therefore omitted.

2

Note that Lemma 2.2 yields for all b

max

�

�

min

(C(�; b)) = �

min

(C(�

�

E

; b)) =

1

2k

6



and the standardized maximin optimality criterion in (2.8) reduces to the maximization of the

function

min

b2B

�

min

(C(�; b)):(2.12)

The remaining part of this section is devoted to an equivalence theorem for the optimality criterion

(2.12). To this end let � denote the set of all probability measures de�ned on a �-�eld on B; which

contains all one-point sets. For a pair (�; �) (where � is a design on I and � 2 � is a probability

measure on B); for which the minimum eigenvalue of the matrix C(�; b) has multiplicity one, we

de�ne the vector p

b

= p

b

(�) by the relation

p

T

b

C(�; b)p

b

= �

min

(C(�; b))(2.13)

and introduce the function

	(t; �) =

Z

B

jp

T

b

f(t; b)j

2

�(db):(2.14)

Theorem 2.3. Assume that B � R

k

is a compact set and that the assumptions of Lemma 2.2

are satis�ed for all b 2 B: If for any design � with at least 2k support points and all b 2 B the

minimum eigenvalue of the matrix

C(�; b) = K

�1

1;b

M(�; 1; b)K

�1

1;b

(2.15)

is simple and positive, then a design �

�

is standardized maximin E-optimal in the model (2.1) if

and only if there exists a probability measure �

�

2 � such that

max

t2I

	(t; �

�

) = min

b2B

�

min

(C(�

�

; b));(2.16)

where the function 	 is de�ned by (2.14).

Moreover, if �

�

and �

�

satisfy the relation (2.16), then the maximum on the left hand side is

attained for any t 2 supp(�

�

) and the minimum on the right hand side is attained for any b 2

supp(�

�

):

Proof. The proof is based on certain standard arguments of approximate optimal design theory

and for the sake of brevity we only indicate one direction. Let �

�

denote a standardized maximin

E-optimal design and de�ne for � 2 (0; 1)

�

�

= (1� �)�

�

+ ��

t

;

where �

t

puts all mass at the point t 2 I: Introducing the notation

�(�; b) = �

min

(C

K

(�; b))

we obtain from the optimality of the design �

�

min

b2B

�(�

�

; b)�min

b2B

�(�

�

; b) � 0:(2.17)

7



Next de�ne

B

�

=

n

b 2 B

�

�

�

min

�2B

�(�

�

; �) = �(�

�

; b)

o

(2.18)

as the set of points, where the minimum of the function �(�

�

; �) is attained (note that B

�

depends

on the design �

�

; which is not re
ected by our notation) and introduce the function

Q(�) = min

�2�

Z

B

�(�

�

; b)�(db)

(again the dependence on � is not re
ected by our notation). De�ning

�

�

= Q(0) = min

b2B

�(�

�

; b)

we obtain from (2.17)

1

�

fQ(�)�Q(0)g =

1

�

fQ(�)� �

�

g � 0;

which gives in the limit

@

@�

Q(�)

�

�

�

�=0+

= min

�2

~

�

Z

B

@

@�

�(�

�

; b)

�

�

�

�=0+

�(db) � 0;(2.19)

where the set

~

� is de�ned by

~

� =

n

� 2 � j

Z

B

�(�

�

; b)�(db) = �

�

o

:

Now

�(�; b) = p

T

b

C(�; b)p

b

where p

b

is the eigenvector of the matrix C

K

(�; b) corresponding to the minimum eigenvalue (which

has multiplicity 1, by assumption) and therefore we obtain from (2.19)

min

�2

~

�

Z

B

(p

T

b

f(t; b))

2

�(db) � �

�

(2.20)

for any t: On the other hand we have

Z

B

Z

I

(p

T

b

f(t; b))

2

�

�

(dt)�(db) =

Z

B

�(�

�

; b)�(db) = �

�

(2.21)

for any � 2

~

�; which implies

max

t2I

Z

B

(p

T

b

f(t; b))

2

�(db) � �

�

for any � 2

~

�: Comparing this inequality with (2.20) and observing (2.21) shows the existence

of a probability measure �

�

such that (2.16) holds. The remaining assertions of the theorem are

shown similary and the proofs are left to the reader.

2
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3 Standardized maximin E-optimal designs for the Michaelis-

Menten model

Recall the de�nition of the Michaelis-Menten model in equation (1.1), which is a special case of

the general model (2.1) considered in Section 2 [k = 1; '(t) = t=(t + b)]: It is easy to see from

(2.9) that the functions

f

1

(t; b) =

t

t+ b

; f

2

(t; b) =

�t

(t+ b)

2

(3.1)

generate a Chebyshev system on the interval (0; t

0

] and any single function has the same property

on the interval (0; t

0

]: Note that the point t = 0 is obviously not a support of an optimal design for

the Michaelis-Menten model (independent of the optimality criterion). Therefore it is suÆcient

to consider this model only on the interval (0; t

0

] and all assumptions of Lemma 2.2 and Theorem

2.3 are satis�ed. A straightforward calculation shows that the Chebyshev polynomial is given by

c

�

1

f

1

(t; b) + c

�

2

f

2

(t; b);(3.2)

where the functions f

1

and f

2

are de�ned in (3.1) and the coeÆcients are given by

c

�

1

= c

�

1

(b) =

t

�2

1

� b

2

(t

�

1

)

2

;

(3.3)

c

�

2

= c

�

2

(b) = �

c

�

1

b(t

�

1

+ b)

t

�

1

� b

;

and

t

�

1

= t

�

1

(b) =

p

2t

0

b

2t

0

+ 2b +

p

2b

; t

�

2

= t

0

(3.4)

are the Chebyshev points. Moreover, from the Cauchy-Binet formula we obtain that for any design

� with at least n � 2 support points the information matrix C(�; b) de�ned in (2.15) is positive

de�nite. Because it is a 2 � 2 matrix and the element in the position (1; 2) does not vanish it

must have a minimum eigenvalue of multiplicity one. The following result is now an immediate

consequence of Lemma 2.2.

Theorem 3.1.

(a) For j = 1; 2 the locally e

j

-optimal design for the Michaelis-Menten model is given by

�

�

j

=

 

t

�

1

t

0

w

�

j

1� w

�

j

!

j = 1; 2;(3.5)

where the point t

�

is de�ned in (3.4) and the weight at this point is given by

w

�

j

=

8

>

>

>

>

<

>

>

>

>

:

(2

p

2 + 3)b

(3

p

2 + 4)b +

p

2t

0

if j = 1

1

p

2

if j = 2

9



(b) A standardized locally E-optimal design for the Michaelis-Menten model is given by

�

�

E

=

 

t

�

1

t

0

w

�

1� w

�

!

;(3.6)

where the point t

�

1

is de�ned in (3.4) and the weight at this point is given by

w

�

=

2(3 + 2

p

2)b+ t

0

2

p

2((3 + 2

p

2)b + t

0

)

:

Moreover,

�

min

(C(M(�

�

E

; b)) =

1

2

:

We now concentrate on the standardized maximin E-optimality criterion, where the parameter

space B is a \small" interval. In this case it can be proved that the standardized maximin

E-optimal design �

�

is always supported at two points. Note that this fact is intuitively clear

because in this case the standardized maximin E-optimal design �

�

should be close to a locally

standardized E-optimal design. We mention that this fact has also been observed numerically

for Bayesian D-optimal designs [see Chaloner and Larntz (1989) or Haines (1995)], but to our

knowledge a rigorous proof of this property in a non-trivial context is not known.

Lemma 3.2. Consider the standardized maximin E-optimality criterion de�ned by (2.8) with

B = [b

0

��; b

0

+�] � R

+

;� > 0 in the Michaelis-Menten model (1.1). If � is suÆciently small,

the following assertions are true.

(a) Any standardized maximin E-optimal design for the Michaelis-Menten model on the interval

[0; t

0

] is supported at two points including the point t

0

:

(b) Any measure �

�

de�ned by the identity (2.16) in Theorem 2.3 satis�es

supp(�

�

) = @B = fb

0

��; b

0

+�g:

Proof. For a proof of the �rst part (a) we assume the contrary. This means that there exists a

sequence (�

n

)

n2N

of positive constants converging to zero such that for any n 2 N there exists

a standardized maximin E-optimal design �

�

n

for the Michaelis-Menten model (with B

n

= [b

0

�

�

n

; b

0

+�

n

]); which has either at least three support points or two support points in the interval

[0; t

0

): Because 0 cannot be a support point, �

�

n

has at least two support points, say t

�

1;n

and t

�

2;n

;

in the interval (0; t

0

): Recalling the de�nition of the function 	 in (2.14) and Theorem 2.3 we

obtain for each n 2 N a probability measure �

�

n

such that supp(�

�

n

) � B

n

= [b

0

��

n

; b

0

+�

n

]

	(t

i;n

; �

�

n

) = �

�

n

i = 1; 2;

(3.7)

	

0

(t

i;n

; �

�

n

) = 0; i = 1; 2;

10



where the derivative of 	(�; �

�

n

) is taken with respect to the �rst argument and

�

�

n

= min

b2B

n

�

min

(C(�

�

n

; b)):

A standard argument shows that there exists a subsequence (also denoted by �

n

) such that

lim

n!1

t

i;n

=

�

t

i

i = 1; 2; lim

n!1

�

�

n

=

�

�:

From (3.7) and (2.14) we obtain (note that �

�

n

converges weakly to the Dirac measure Æ

b

0

)

	(

�

t

i

; Æ

b

0

) = (p

T

b

0

f(

�

t

i

; b

0

))

2

=

�

�; i = 1; 2

(3.8)

	

0

(

�

t

i

; Æ

b

0

) =

@

@t

(p

T

b

0

f(t; b

0

))

2

�

�

�

t=

�

t

i

= 0; i = 1; 2:

Now the identity f(0; b

0

) = 0 shows that

�

t

i

6= 0; i = 1; 2: Moreover, if

�

t

1

=

�

t

2

then we would obtain

the equations

	

0

(

�

t

1

; Æ

b

0

) = 	

00

(

�

t

1

; Æ

b

0

) = 0;

	(

�

t

1

; Æ

b

0

) =

�

�;

	(t; Æ

b

0

) �

�

� 8 t 2 I;

which is impossible, because p

T

b

0

f(t; b

0

) is the Chebyshev polynomial. A similar argument shows

that

�

t

2

< t

0

: Consequently, we obtain 0 <

�

t

1

<

�

t

2

< t

0

and equation (3.8) yields a contradiction

to the Chebyshev property of the system ff

1

(t; b); f

2

(t; b)g on the interval (0; t

0

): Therefore any

standardized maximin E-optimal design with B = [b

0

� �; b

0

+ �] has at most two supports

including the point t

0

if � is suÆciently small.

For a proof of the second part of the assertion we will use Proposition 5.1 in the Appendix. To

be precise let s = 2; x = (x

1

; x

2

)

T

= (t; w)

T

; y = b and de�ne for a design

�

t;w

=

 

t t

0

w 1� w

!

the function

G(t; w; b) = �

min

(C(�; b));

then it is easy to see that G is twice continuously di�erentiable and assumption (a) of Proposition

5.1 is obviously satis�ed. For a proof of condition (b) we note that

G(t; w; b) = �

min

(C(�

t;w

; b)) = �

min

(K

�1

b

M(�

t;w

; 1; b)K

�1

b

)

= w(�p

b

f

1

(t; b))

2

+ (1� w)(�p

b

f

2

(t

0

; b))

2

;

where �p

b

= K

�1

b

p

b

; p

b

is an eigenvector of the matrix C(�

t;w

; b) = K

�1

b

M(�

t;w

; 1; b)K

�1

b

; corre-

sponding to its minimum eigenvalue, the matrix M(�

t;w

; 1; b) is de�ned in (2.2) and the matrix

K

b

= K

1;b

is given by

K

�1

b

=

 

c

�

1

(b) 0

0 c

�

2

(b)

!

=

 

c

�

1

0

0 c

�

2

!

(3.9)
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with c

�

1

= c

�

1

(b) and c

�

2

= c

�

2

(b) de�ned by (3.3) (see Lemma 2.2a). Now the equations

@

@t

G(t; w; b) =

@

@w

G(t; w; b) = 0(3.10)

yield the system

w((�p

T

b

f(t; b))

2

)

0

= 0

(3.11)

(�p

T

b

f(t; b))

2

= (�p

T

b

f(t

0

; b))

2

:

But this means that �p

b

f(t; b) must be equal (up to a sign) to the Chebyshev polynomial

c

�T

f(t; b) = c

�

1

f

1

(t; b) + c

�

2

f

2

(t; b)

de�ned by (3.3). Therefore we obtain �p

b

= c

�

and the solution of the �rst equation in (3.10) with

respect to t is uniquely determined by the interior Chebyshev point t = t

�

1

de�ned in (3.4). On

the other hand we have

K

�1

b

M(�

t;w

; 1; b)�p

b

= �

min

(C(�

t;w

; b))K

b

�p

b

and inserting �p

b

= c

�

this also determines the weight w uniquely. This proves the second as-

sumption (b) in Proposition 5.1. In fact it follows by these arguments that the unique solution

t

�

= t

�

(b); w

�

= w

�

(b) of the system (3.10) is precisely the interior support point and its cor-

responding weight of the locally standardized E-optimal design given in part (b) of Theorem

3.1.

Finally, for a proof of the third assumption (c) introduce x

�

(b) = (t

�

(b); w

�

(b))

T

and calculate in

a straightforward manner

V = (x

�

0

(b))

T

J(b)x

�

(b)

= 2w

�

(b)

�

@

@b

t

�

(b)

�

2

h

�p

T

b

f(t; b)

@

2

@

2

t

�p

T

b

f(t; b)

i

�

�

�

t=t

�

(b)

:

Observing the Chebyshev property of the functions f

1

; f

2

and that the Chebyshev polynomial

�p

T

b

f(t; b) = c

�T

f(t; b) is maximal at t = t

�

(b) we obtain V < 0; which yields the third assumption

of Proposition 5.1. Now this proposition shows that for suÆciently small � and any two point

design �

t;w

the function

Q(�

t;w

; b) =

�

min

(C(�

t;w

; b))

max

�

�

min

(C(�; b))

= 2�

min

(C(�

t;w

; b))

is concave as a function of b 2 B

n

= [b

0

��; b

0

+ �] (here the last identity follows from Lemma

2.2). Consequently, observing part (a) we obtain for suÆciently small � > 0 that supp(�

�

) =

fb

0

��; b

0

+�g; which proves the second part of the assertion.

2
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We conclude this section with a more explicit characterization of the standardized maximin E-

optimal designs for the Michaelis-Menten model in the situation of the previous lemma.

Theorem 3.3. Consider the Michaelis-Menten model (1.1) and the standardized maximin E-

optimality criterion (2.8) with B = [b

1

; b

2

] where 0 < b

1

< b

2

:

(a) For suÆciently small b

2

� b

1

a standardized maximin E-optimal design is of the form

�

�

=

�

t

�

1

t

0

�w 1� �w

�

and the corresponding probability measure �

�

in Theorem 2.3 is of the form

�

�

=

�

b

1

b

2

�� 1� ��

�

:

Here t

�

1

is the Chebyshev point de�ned in (3.4), and (��; �w) is a solution of the optimization

problem

max

w2[0;1]

min

�2[0;1]

g(w; �);

where the function g is de�ned by

g(w; �) = �

�

u

b

1

�

q

u

2

b

1

� v

b

1

�

+ (1� �)

�

u

b

2

+

q

u

2

b

2

� v

b

2

�

;

u

b

=

1

2

tr (K

�1

b

M(�

t

�

1

;w

; 1; b)K

�1

b

)

v

b

= (detK

b

)

�2

jM(�

t

�

1

;w

; 1; b)j

and the matrices K

�1

b

and M(�; 1; b) are de�ned in (3.9) and (1.2), respectively.

(b) The design �

�

de�ned in part (a) is standardized maximin E-optimal if and only if

max

t2[0;t

0

]

��(p

T

b

1

f(t; b

1

))

2

+ (1� ��)(p

T

b

2

f(t; b

2

))

2

= min

b2[b

1

;b

2

]

(u

b

�

q

u

2

b

� v

b

)

Proof. Observing the notation C(�

�

; b

i

) = K

�1

b

i

M(�

�

; b

i

)K

�1

b

i

(i = 1; 2) it is easy to see that

�

min

(C(�

�

; b

i

)) = u

b

i

�

q

u

2

b

i

� v

b

i

:

The proof now follows by a direct application of Lemma 3.2 and Theorem 2.3.

2
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4 A numerical example

In this section we consider the Michaelis-Menten model on the interval [0; t

0

] = [0; 10] and calculate

standardized maximin E-optimal designs for various sets of the form

B = [1; b

2

](4.1)

in De�nition 2.1. As it was shown in Theorem 3.3 the optimal designs are supported at two points

if b

2

is close to b

1

= 1: We calculated the optimal two point designs with the aid of the �rst part

of Theorem 3.3 and checked its optimality in the class of all designs by an application of part

(b) of this theorem. If b

2

= 1; 2; 3; : : : ; 7 the standardized maximin E-optimal design is in fact

supported at only two points and the corresponding designs are depicted in Table 4.1. The table

also contains the standardized maximin E-optimal designs in the class of all standardized locally

optimal designs that is

�

�

loc

= argmax

n

min

b2B

�

min

(C(�; b))

max

�

�

min

(C(�; b))

�

�

�

� 2 �

o

;(4.2)

where � denotes the class of all designs de�ned in part (b) of Theorem 3.1 by equation (3.6).

Note that the determination of these designs is substantially simpler compared to the calculation

of the standardized maximin E-optimal design within the class of all designs and it is of interest

to investigate the corresponding eÆciencies for these designs. The designs are compared by

Table 4.1: The standardized maximin E-optimal designs for the Michaelis-Menten model on the

interval [0; 10] with B = [1; b

2

]: The table contains the support points x

1

; x

2

and weights w

1

; w

2

of

the design �

�

and �

�

loc

de�ned by (2.8) and (4.2), while the minimum eÆciency is de�ned by (4.3).

In all cases the standardized maximin E-optimal design is supported at two points.

b

2

1 2 3 4 5 6 7

x

1

10 10 10 10 10 10 10

�

�

loc

x

2

0.6040 0.8134 0.9602 1.0708 1.1579 1.2286 1.2874

w

1

0.5163 0.4856 0.4670 0.4543 0.4450 0.4378 0.4321

w

2

0.4837 0.5144 0.5330 0.5457 0.5550 0.5622 0.5679

x

1

10 10 10 10 10 10 10

�

�

x

2

0.6040 0.8169 0.9693 1.0847 1.1757 1.2498 1.3111

w

1

0.5163 0.4880 0.4727 0.4625 0.4550 0.4494 0.4449

w

2

0.4837 0.5120 0.5273 0.5375 0.5450 0.5506 0.5551

�

�

loc

e� 1 0.9544 0.8946 0.8448 0.8050 0.7728 0.7465

�

�

e� 1 0.9544 0.8947 0.8451 0.8053 0.7733 0.7471

evaluating its minimal standardized (locally) E-eÆciency

e�(�) = min

b2B

�

min

(C(�; b))

max

�

�

min

(C(�; b))

:(4.3)
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Obviously this quantity is decreasing with increasing values of b

2

; but it is remarkable that even in

the case b

2

= 7 the standardized maximin E-optimal design is extremely robust and yields in the

worst case an eÆciency of 75 %. Moreover, the standardized maximin E-optimal design �

�

and

the design �

�

loc

obtained by maximizing (2.8) in the subclass � of all designs de�ned in Theorem

3.1(b) have nearly the same performance and are not distinguishable from a practical point of

view.

Table 4.2: The standardized maximin E-optimal designs for the Michaelis-Menten model on the

interval [0; 10] with B = [1; b

2

]: The table contains the support points x

i

and weights w

i

of the

design �

�

and �

�

loc

de�ned by (2.8) and (4.2) and the best two-point design �

�

two

de�ned in the �rst

part of Theorem 3.3, while the minimum eÆciency is de�ned by (4.3). In all cases the standardized

maximin E-optimal design is supported at three points.

z

2

8 10 12 14 16 18 20 50 100

x

1

10 10 10 10 10 10 10 10 10

�

�

loc

x

2

1.3371 1.4166 1.4777 1.5262 1.5657 1.5984 1.6261 1.8030 1.8753

w

1

0.4275 0.4203 0.4151 0.4111 0.4079 0.4053 0.4032 0.3902 0.3853

w

2

0.5725 0.5797 0.5849 0.5889 0.5921 0.5947 0.5968 0.6098 0.6147

x

1

10 10 10 10 10 10 10 10 10

�

�

two

x

2

1.3630 1.4464 1.5103 1.5610 1.6023 1.6367 1.6660 1.8508 1.9266

w

1

0.4413 0.4358 0.4317 0.4286 0.4262 0.4243 0.4228 0.4130 0.4094

w

2

0.5587 0.5642 0.5683 0.5714 0.5738 0.5757 0.5772 0.5870 0.5906

x

1

10 10 10 10 10 10 10 10 10

x

2

1.0985 0.9278 0.8757 0.8396 0.8105 0.7965 0.7974 0.8647 0.9119

�

�

x

3

2.3340 2.8343 3.1096 3.3276 3.5114 3.6534 3.7205 4.0054 4.1907

w

1

0.4262 0.4002 0.3835 0.3711 0.3603 0.3520 0.3487 0.3362 0.3320

w

2

0.4060 0.3549 0.3456 0.3398 0.3363 0.3350 0.3341 0.3353 0.3377

w

3

0.1678 0.2449 0.2709 0.2890 0.3034 0.3130 0.3172 0.3285 0.3303

�

�

loc

e� 0.7246 0.6904 0.6649 0.6452 0.6295 0.6167 0.6060 0.5417 0.5172

�

�

two

e� 0.7253 0.6911 0.6657 0.6461 0.6304 0.6176 0.6070 0.5429 0.5185

�

�

e� 0.7270 0.7034 0.6906 0.6829 0.6779 0.6745 0.6720 0.6562 0.6499

If b

2

� 8 it follows from the second part of Theorem 3.3 that the best two point design is not

optimal within the class of all designs and the standardized maximin E-optimal design has at least

3 support points. Some representive results are depicted in Table 4.2, which also contains the two

point designs obtained from the �rst part of Theorem 3.3 and the designs �

�

loc

de�ned by (4.2).

Our numerical results show that for b

2

� 8 the standardized maximin E-optimal design is always

supported at three points. We observe that the two point designs are very eÆcient compared to

standardized maximin E-optimal designs supported at 3 points. For example, in the case b

2

= 20

the two point designs yield for the minimal eÆciency de�ned in (4.3) approximately 60%, while
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the standardized maximin E-optimal design �

�

gives a minimal eÆciency of approximately 67 %.

Only for very large values the di�erence between the two and three point designs is notable [see

the columns with b

2

= 50 and b

2

= 100 in Table 4.2].

From these results (and similar numerical results, which are not depicted for the sake of brevity)

we draw the following conclusions. Only in cases with nearly no prior information about the

unknown parameter the e�ort of calculating the standardized maximin E-optimal design within

the class of all designs can be justi�ed. In all other cases the two point designs obtained in

the �rst part of Theorem 3.3 and the two point designs de�ned in (4.2) have a very similar

performance as the standardized maximin E-optimal designs. In many cases the designs from

the �rst part of Theorem 3.3 are already standardized maximin E-optimal and this optimality

can be checked by the second part of Theorem 3.3. On the other hand the designs de�ned by

(4.2) are practically not distinguishable from the designs in Theorem 3.3 and substantially simpler

to calculate. Therefore, if it can be assumed that the parameter b varies in an interval [b

1

; b

2

];

which is not too large, these designs provide a reasonable compromise between the di�erent goals

of eÆciently designing an experiment for the Michaelis-Menten model and the complexity of a

non-di�erentiable optimization problem.

5 Appendix

Proposition 5.1. Let

G :

(


� I ! R

(x; y) ! G(x; y)

denote a function, where 
 � R

s

is a compact set and I � R an arbitrary interval, and assume

that the following conditions are satis�ed

(a) The function G is positive and twice continuously di�erentiable.

(b) For any y 2 I the equation

@

@x

G(x; y) =

�

@

@x

1

G(x; y); : : : ;

@

@x

s

G(x; y)

�

T

= 0

has a unique solution x

�

= x

�

(y) in 
:

(c) For all y 2 I we have

(x

�

0

(y))

T

J(y)x

�

0

(y) < 0;

where for �xed y 2 I

J(y) =

�

@

2

@x

i

@x

j

G(x; y)

�

�

�

x=x

�

(y)

�

s

i;j=1

is the Jacobian of G evaluated at the point (x

�

(y); y):
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For any �xed x 2 
 the function

Q(y) = Q(x; y) =

G(x; y)

max

�x2


G(x; y)

is twice continuously di�erentiable with respect to y and if �x is suÆciently close to x

�

(y) we have

Q

00

(y) < 0:

Proof. A straightforward calculation shows

@

@y

G(x

�

(y); y) =

@

@y

G(x; y)

�

�

�

x=x

�

(y)

(5.1)

+

s

X

i=1

@

@x

i

G(x; y)

�

�

�

x=x

�

(y)

�

@

@y

(x

�

i

(y)):

Observing condition (b) we obtain

@

2

@

2

y

G(x

�

(y); y) =

@

2

@

2

y

G(x; y)

�

�

�

x=x

�

(y)

(5.2)

�

s

X

i;j=1

@

2

@x

i

@x

j

G(x; y)

�

�

�

x=x

�

(y)

@

@y

x

�

i

(y)

@

@y

x

�

j

(y)

and an immediate calculation gives for the second derivative of the function Q (with respect to y)

@

2

@

2

y

Q(y) =

@

2

@

2

y

Q(x; y) = Q

1

(x; y) +Q

2

(x; y);

where the functions Q

1

; Q

2

are de�ned by

Q

1

(x; y) =

@

2

@

2

y

G(x; y)H(y)�G(x; y)H

00

(y)

H

2

(y)

;

Q

2

(x; y) = �

2H

0

(y)f

@

@y

G(x; y)H(y)�G(x; y)H

0

(y)g

H

3

(y)

;

and

H(y) = max

�x2


G(�x; y) = G(x

�

(y); y):

From (5.1) and condition (b) we have

H

0

(y) =

@

@y

G(x; y)

�

�

�

x=x

�

(y)

;
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which implies Q

2

(x

�

(y); y) = 0: Similary, using (5.2) it follows that

Q

1

(x

�

(y); y) =

(x

�

0

(y))

T

J(y)x

�

0

(y)

H

2

(y)

< 0

by assumption (c). Consequently for any x 2 
 the function Q is twice continuously di�erentiable

and if �x is suÆciently close to x

�

(y) it follows that

Q

00

(y) = Q

00

(�x; y) < 0:

2
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