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Abstract

The aim of this paper is to �nd a modeling approach for spatially and

temporally structured data. The spatial distribution is considered to form

an irregular lattice with a speci�ed de�nition of neighborhood. Additional

to the spatial component, a temporal autoregressive parameter, and a time

trend are modeled within a multivariates Markov process. This Markov

process can be expressed on the basis of an innovation process, which allows

for statistical inference on various parameters.

Keywords: Lattice data, conditional autoregressive approach, spatio-temporal

linear model, innovation process, ML-estimation

1 Introduction and Structure of the Data

Modeling phenomena dependent on space and time can be done in several dif-

ferent manners. The challenge is to combine time series theory in a sensible

way with the analysis of spatial structures and suitable covariates. The distri-

bution in space and time needs to be modeled simultaneously, in order to gain

knowledge about the spatial and temporal parameters. The data that has guided

this investigation are stomach cancer mortality data among men for the Federal

Republic of Germany (west), provided by the German Cancer Institute in Hei-

delberg. They are counts data collected spatially on the basis of administrative

units called "Regierungsbezirke", of which there are 30 in former West Germany

and available for a 15-year time period from 1976 to 1990 on a yearly basis. Ad-

ditional to the response variable there are several possible variables of in
uence

available. As stomach cancer is mainly in
uenced by nutrition and living condi-

tions [1], p. 51, and since these variables are diÆcult to obtain, the population

density will be taken as a surrogate. According to Kafadar and Tukey [7], the
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population density can be considered as an indication of a region's level of urban-

ization. They showed that urban and rural areas di�er with respect to various

types of cancer, and they suggest to take the logarithm of the population density

in order to adjust the scale of the covariate to the one of the mortality rates.

1.1 Standardization

The pure stomach cancer mortality counts of every region need to be standardized

with respect to age group and gender, as the occurance of death due to cancer

depends on these variables to a great extent. A standardization guarantees the

comparability between regions and years, by assuming similar population struc-

tures within the study populations. For the analysis of the underlying data set, a

mixture between internal and external standardization has been chosen in a way

that the standard population has been calculated by summing up the population

numbers over 15 years from 1976 to 1990 for age group and gender. The advan-

tage of this kind of standardization is that the temporal trend within the data

can be conserved. A standardization of the regional counts using the yearly pop-

ulation automatically leads to a removal of that trend. Additionally the data will

be standardized indirectly, see Kreienbrock & Schach [9], p.36 �. Therefore, con-

sider the following notation, where k denotes age group, with k = 1; : : : ; K, i is

the spatial index and runs from i = 1; : : : ; D through the 30 regions of Germany,

and t = 1; : : : ; T is the temporal index.

M

kit

:= number of deaths of the de�ned cancer in the study population

N

kit

:= number of people in the study population

M

�

kit

:= number of deaths of the de�ned cancer in the standard population

N

�

kit

:= number of people in the standard population

As it is the aim to calculate the standardized mortality ratio (SMR), an

indirect method of standardization needs to be used. The SMR can be interpreted

as a natural ratio of observed cases divided by expected cases, as the SMR can

be expressed as

SMR

it

=

MR

it

MR

ind

it

;

with

MR

it

=

P

K

k=1

N

kit

MR

kit

P

K

k=1

N

kit

: (1)

MR

kit

is calculated as the quotient of M

kit

divided by N

kit

. Then (1) can be

simpli�ed to

MR

it

=

K

X

k=1

W

kit

MR

kit

:
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The indirectly standardized rates are obtained as follows

MR

ind

it

=

K

X

k=1

W

kit

MR

�

kit

with W

kit

=

N

kit

P

K

k=1

N

kit

: (2)

Again, the mortality rate MR

�

kit

of the standard population is given by the

quotient

M

�

kit

N

�

kit

. Since the SMR's show a strong linear dependence of the stan-

dard deviation on the mean, a logarithmic transformation has been chosen. This

transformation leads to a reduction of this dependence, so that theoretical model

assumptions have more validity. Later on, the overall mean will be subtracted

from the data, as an expected value of 0 is required for the modeling approaches.

Figure 1 shows the temporal trend of the transformed standardized stomach

cancer mortality data. Each box stands for the summarized data of all sites

within one year. Clearly, one can see the downward trend. For further analyses,

this trend needs to be estimated and removed since especially the small scale

variation within the data is of interest. In �gure 2, the logged SMR's of the 30

sites are displayed. Here, the data have been aggregated over 15 years in order

to build the boxes. Obviously there is still a considerable amount of variation

between the sites. Especially the sites with the numbers 24 to 29 show relatively

high rates. These sites are all located in the south of Germany, and according to

cancer specialists it is not well understood what causes this behaviour.
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Figure 1: Temporal distribution of

logged stomach cancer SMR's of men

aggregated over the 30 regions of

Germany
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Figure 2: Spatial distribution of

logged stomach cancer SMR's of men

aggregated over the 15 year time

period
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1.2 Lattice Data

The data underlying this analysis are so called lattice data as they form an

(irregular) lattice in IR

2

, where the data of a certain region within that lattice

consists of the logged stomach cancer SMR's. Figure 3 shows the spatial structure

for the three years of 1976, 1983 and 1990.

Figure 3: Spatial structure of stomach cancer mortality rates for the years 1976,

1983 and 1990

The most important feature of lattice data is the de�nition of neighborhood

structures. Two regions are considered to be neighbors, if they share a common

border. A di�erent approach can be obtained from so called geostatistical data,

where the location of the data and the distance between them is of special inter-

est. A neighborhood structure can be de�ned which considers two locations as

neighbors, if they lie within a certain distance. If this theory is transferred to lat-

tice data, the center of every region, represented either by the "gravity" center or

the main city of it, is considered to contain all the information about the region.

Thus, two regions are neighbors, if their centers lie within a certain distance of

each other. For further information on geostatistical theory, see Markus et al.

[10]. A typical feature of geographical data, collected in adjacent regions, is the

dependence of the observations, i.e. the mortality rates in this case. The depen-

dence of the data can either be caused by similar environmental conditions in

neighboring areas or through a real in
uence of one area on its neighbors. So the

de�nition whether two sites are neighbors is particularly important for (spatially)

dependent data, as it allows to account for the dependence structure, i.e. model

it.
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1.3 Conditional Modeling Approaches

Let fZ

i

: i 2 Dg be a pure spatial process. Such processes are analogues of

time series models [3], therefore time series theory can be applied to some extent.

Especially, transformation of a notion of the Markov dependence is of great im-

portance for spatial processes. In time series, a random process has the Markov

property if its future observations given the observations at present do not de-

pend on the observations in the past. With respect to the spatial lattice and a

de�nition of neighborhood, the spatial Markov property can be de�ned as follows:

the outcome of region i given the outcome of its adjacent regions does not depend

on the outcomes of all the non contiguous regions of the lattice. A model based

on this assumption is called conditionally autoregressive (CAR). A di�erent ap-

proach, which is not persued here, uses the simultaneous distribution of the data

on the lattice, as described by Besag [2].

However, the data does not only have a spatial but also a temporal struc-

ture, the cancer mortality rates for every site are available for a period of 15

years from 1976 to 1990. Therefore the underlying stochastic system can either

be considered as a family of spatial distributions ffZ

i;t

: i 2 Dg; t 2 Tg with a

temporal index t = 1; : : : ; T . Or it can be expressed through a family of time

series ffZ

t;i

: t 2 Tg; i 2 Dg with a spatial index i = 1; : : : ; N , see Pfei�er &

Deutsch [11].

2 Spatio-Temporal Gaussian Models

2.1 Spatial and Temporal Dependence

The aim is to model data dependent on space and time by using the theory of

stochastic processes. The simplest model separates spatial and temporal e�ects

additively and can be written as

Z

t

= � Z

t�1

+ � B Z

t�1

+ �

t

; t = 1; : : : ; T: (3)

� and � are the parameters of the temporal respectively the spatial autocor-

relation of order one. B is the neighborhood matrix, i.e. B � (n; n) is of the

following form: the (i; j)th element of B is 0, if site i and site j are not neighbors,

or if i = j. Else, if i and j are neighbors, the (i; j)th element of B is

1

n

i

, where

n

i

is the number of neighbors of site i. This kind of "weighting" is necessary to

ensure that every site is in
uenced by its neighbors to the same extent. �

1

; �

2

; : : :

are an iid. innovation sequence, and especially �

t

is independent of Z

1

; : : : ; Z

t

.

Using C = C

��

= � I + � B the process in (3) can be rewritten as
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Z

t

= C Z

t�1

+ �

t

t = 1; : : : ; T; (4)

where C contains both the spatial and the temporal information.

2.2 Representation of Z

t

on the Basis of an Innovation

Process

Let Z

t

be a multivariate stochastic process with the following characteristics:

i) fZ

1

; : : : ; Z

T

g � Gau(0;

~

�)

ii) fZ

t

g has the Markov property

iii) fZ

t

g is second order stationary.

De�ne � := cov(Z

t

). This is possible, since the covariance matrices do not

depend on t, due to the second order stationarity of the process Z

t

. It follows

from assumption i) that E(Z

t

) = 0. Additionally de�ne � := cov(Z

t

; Z

t�1

) =

E(Z

t

Z

0

t�1

). According to Fahrmeir [4], p. 27 , it can be shown that

E(Z

t

j Z

t�1

) = � �

�1

Z

t�1

(5)

and

cov(Z

t

j Z

t�1

) = cov(Z

t

)� cov(Z

t

; Z

t�1

) cov(Z

t�1

)

�1

cov(Z

t�1

; Z

t

)

= ����

�1

�

0

: (6)

Let a sequence of multivariate normal random vectors �

t

, �1 < t < 1, be

given with E(�

t

) = 0 and cov(�

t

) = � �� �

�1

�

0

=: �

0

, where �

0

; �

1

; : : : ; �

t

are

independently and identically distributed. De�ne

~

Z

t

as

~

Z

t

=

1

X

j=0

(� �

�1

)

j

�

t�j

:

Obviously E(

~

Z

t

) =

P

1

j=0

(� �

�1

)

j

E(�

t�j

) = 0 and

cov(

~

Z

t

) =

1

X

j=0

(� �

�1

)

j

(��� �

�1

�

0

) (� �

�1

)

0j

=

1

X

j=0

(� �

�1

)

j

� (�

�1

�

0

)

j

�

1

X

j=0

(� �

�1

)

j+1

� (�

�1

�

0

)

j+1

= �:
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Since

~

Z

t

has the same moments as Z

t

, and since Z

t

and

~

Z

t

are normally

distributed, the two processes are identical with C

��

= � �

�1

. Thus Z

t

can be

written as

Z

t

= ��

�1

Z

t�1

+ �

t

:

It becomes clear now that Z

t

can be expressed recursively through the constant

matrix C containing the spatial and temporal structure of the process, based on

the initial distribution at time t = 0, plus the innovation term �

t

, t = 1; : : : ; T .

However, there need to be speci�ed some conditions for the parameters � and �,

to guarantee that the process Z

t

converges. It follows from C

��

= � �

�1

that

�

0

= �� C � C

0

. Then � can be written as follows

� = cov(Z

t

) =

1

X

j=0

C

j

�

0

(C

0

)

j

: (7)

A suÆcient condition for convergence of cov(Z

t

) is that a suitable matrix

norm of C is smaller than 1. This criterion is dependent on the parameters �

and �, as they determine C. The spectral matrix norm, with

kDk := maxf

p

� : � is an eigenvalue of D

0

Dg

has been chosen for this problem. According to Horn & Johnson [6], p. 295f.,

the spectral norm satis�es the triangle inequality and hence

kCk = k� I + � Bk � k� Ik+ k� Bk

� j � j kIk+ j � j kBk:

The spectral norm of matrix B

0

B is 1.089. The spectral norm of the identity

matrix is 1. Therefore, the following suÆcient condition for convergence of � on

the parameters � and � can be given by

j � j +1:089 j � j< 1:

In that case, convergence of � follows from the convergence of the geometric

series as is shown below:

k

n

X

j=m

C

j

�

0

(C

0

)

j

k �

n

X

j=m

kC

j

�

0

(C

0

)

j

k

�

n

X

j=m

kC

j

k k�

0

k k(C

0

)

j

k

= k�

0

k

n

X

j=m

kCk

j

kC

0

k

j

! 0; for m;n!1:
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3 Data Analysis

Considering the underlying model for Z

t

, given by assumptions i) to iii)

Z

t

= � Z

t�1

+ � B Z

t�1

+ �

t

of interest are the parameters � and � and matrix �. Taking the underlying data

set into consideration, assumptions i) to iii) need to be examined. The normality

assumption of i) can be justi�ed for the following reason: a weighted sum of

independent random variables is asymptotically normal under suitable regularity

conditions by the central limit theorem. In formulas (1) and (2) quantities arising

from the standard population are considered to be constant. Only the mortality

counts of the age groups are random variables; and the SMR's can easily be seen

to consist of weighted sums of these variables. Hence approximate normality

follows. The expected value of this normal distribution can be taken as 0, since

the overall mean has been subtracted from the data. The Markov property, see

ii), has been assumed since the partial autocorrelation of the data indicates a

lack of dependence of future and past given the present. Figure 4 shows the

autoregressive structure of order one for three selected German regions using

partial autocorrelation functions.

Finally, the process can be considered to be stationary, because stomach can-

cer mortality rates have existed a long time before the year of 1976, when the

time series of this analysis starts and the process has been documented. There-

fore, the process is in its equilibrum already. As fZ

t

g is second order stationary

and Gaussian, it follows that Z

t

is strongly stationary. Z

1

; : : : ; Z

T

are identically

distributed and the covariance between two points in time only depends on their

distance.

3.1 Likelihood Function

Due to the Markov property of the stochastic process Z

t

, the likelihood function

can be written as a product of the conditional transition probabilities, although

they are not independent. A so far unknown matrix is �, the covariance matrix

of Z

t

. This, however, does not turn out to be a problem, since � can be expressed

through matrix C and a simpli�cation of the covariance of the innovation �

0

. It

is assumed from here, that �

0

= �

2

0

I. Then � can be expressed by

� = cov(Z

t

) =

1

X

j=0

C

j

�

0

(C

0

)

j

=

1

X

j=0

C

j

�

2

0

I (C

0

)

j

= �

2

0

1

X

j=0

C

j

(C

0

)

j

:
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Figure 4: Partial temporal autocorrelation for the regions Schleswig-Holstein,

D�usseldorf and Schwaben

As a justi�cation for this, �

t

can be considered as noise, perhaps due to mea-

surement and observation errors, which acts on the components of the process.

It is reasonable to assume, that all components have the same variance and are

independent of each other. Thus, with starting values for �, �, and �

2

0

, and a

reasonable number of replications (terminated by a stopping rule dependent on

the spectral norm of matrix C), a matrix � will be obtained, that can be con-

sidered as a close approximation to the covariance matrix of the process at time t.

Based on the modi�cation of the covariance matrix, the likelihood function

can be expressed as

l(�; �; �

2

0

j Z

1

; : : : ; Z

T

) =

1

(2�)

N

2

p

det�

expf�

1

2

Z

0

1

�

�1

Z

1

g

T

Y

t=2

1

(2�)

N

2

(�

2

0

)

N

2

expf�

1

2

1

�

2

0

kZ

t

� C Z

t�1

k

2

g:
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3.2 Generalization of the Likelihood to the Case of Co-

variates

When including a matrix of covariates and a vector 
 = (


0

; : : : ; 


p

)

0

of regression

coeÆcients in the model and the likelihood function belonging to it, two di�erent

cases can be formulated. In the �rst case, the covariates are constant over the

observed period of time. So the likelihood function can be generalized to

l(�; �; 
; �

2

0

j Z

1

; : : : ; Z

T

) =

1

(2�)

N

2

p

det�

expf�

1

2

(Z

1

�X 
)

0

�

�1

(Z

1

�X 
)g

T

Y

t=2

1

(2�)

N

2

(�

2

0

)

N

2

expf�

1

2

1

�

2

0

kZ

t

� C Z

t�1

�X 
k

2

g;

where 


0

; : : : ; 


p

are the unknown regression coeÆcients and X is the constant re-

gressor matrix. In the second case, even the covariates have a temporal structure.

They can be considered to form a separate stochastic process over the observed

time period. In that case, the likelihood will be written as

l(�; �; 
; �

2

0

j Z

1

; : : : ; Z

T

) =

1

(2�)

N

2

p

det�

expf�

1

2

(Z

1

�X

(1)


)

0

�

�1

(Z

1

�X

(1)


)g

T

Y

t=2

1

(2�)

N

2

(�

2

0

)

N

2

expf�

1

2

1

�

2

0

kZ

t

� C Z

t�1

�X

(t)


k

2

g:

As described in section 1, the underlying covariates are constant in this anal-

ysis and therefore the likelihood of the �rst case will be used for future analyses.

Additionally, the temporal trend of the SMR's will be estimated within the model.

3.3 Maximum Likelihood Estimation

The idea of maximum likelihood (ML) estimation is to �nd those estimators of

the unknown parameters � = (�

0

; : : : ; �

k

)

0

, that have their maximum probability,

given the data. The ML method will be used here, because it has good asymp-

totic behaviour under relatively weak regularity assumptions. It can be shown

that the ML estimator is asymptotically normal, consistent and suÆcient for the

unknown parameters �, given independent and identically distributed data. Even

in this case, where the data underlying the process are indentically distributed,

but not independent, as described in section 3.1, the ML estimators are opti-

mal. Using Martingale limit theory it can be shown that the ML estimators are

asymptotically normal, consistent and suÆcient estimators, see Hall & Heyde,

[5], p. 156. So the aim is to �nd a local or global maximum of the likelihood

function, or the logarithm of the likelihood function for a faster calculation. A

necessary condition for that is
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@l

@�

(

^

�;Z) = 0:

However, it is not always possible to solve the above equation analytically,

especially considering a multivariate problem. Therefore the estimates sometimes

have to be calculated using a numerical or iterative procedure as the quasi-Newton

method, which is used by S-Plus in order to avoid calculating the Hessian matrix

of second derivatives. As the quasi-Newton method is endangered to provide

local instead of global extrema, di�erent starting values will be given, to obtain

reliable results.

3.4 Tests and Con�dence Intervals

Having calculated the ML estimates for the unknown parameters, it is of interest,

to test for their signi�cance and build con�dence intervals. Therefore, consider

the Hessian at the estimated points. It contains the estimated variances of the es-

timated parameters on the diagonal and their estimated covariances o� diagonal.

As stated above, it can be shown that the ML estimators are asymptotically nor-

mal. This will be used for the construction of con�dence intervals and statistical

tests.

4 Application to the Data

The application of the described model to the data has been done for the case

without covariates. The results of the parameter estimation for �, �, �

0

and the

temporal trend are displayed in table 1.

Parameters estimates

Temporal AC � Spatial AC � �

0

Temporal trend

0.7029 0.2915 0.0931 -0.0041

Table 1: Results of the parameter estimation without covariates

The estimated parameters of table 1 seem to be global maxima as they are

reproducible, independently of their di�erent starting values. With an average

number of 40 iterations, the estimated parameters are identical up to the 7th

decimal number. With a considerable amount of calculation, it is possible to

�nd the estimated variance-covariance matrix of these parameters. Especially, if

the Hessian is not supplied, the variance-covariance matrix is diÆcult to obtain.

Table 2 gives the values of the test statistic for each parameter.
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Values of the test statistics

Temporal AC � Spatial AC � �

0

Temporal trend

17.19 6.91 29.71 -8.39

Table 2: Test statistic values for the estimated parameters

Obviously, all four parameters are signi�cant at a 5 percent level and con�-

dence intervals can be given as follows.

� : ( 0.7029 � 0.080 )

� : ( 0.2915 � 0.083 )

�

0

: ( 0.0931 � 0.006 )

temp. trend : ( -0.0041 � 0.001 )

Table 3: 95% con�dence intervals for the estimated parameters

5 Discussion

The examination of male stomach cancer mortality rates in Germany over the

15 year time period from 1976 to 1990 shows a relatively strong temporal auto-

correlation of 0.7029. The estimated spatial autocorrelation with 0.2915 is much

smaller. The estimation of the regression coeÆcients (for an overall trend, the

logged population densitiy, the unemployment rate and the logged gross domes-

tic product) has lead to enormous numerical problems, which have so far been

unable to solve. Especially when trying to maximize the Likelihood function

using the quasi-Newton method, convergence is not easy to obtain. Therefore,

the parameter estimate for � must be viewed with caution. Parts of the spatial

autocorrelation � will be caused by underlying covariables with a spatial correla-

tion structure, that are yet unaccounted. The estimation of the temporal trend is

presumably not a�ected by missing covariates, as the covariates are considered to

be constant over the 15 year time period. Future research should be undertaken

in the direction of covariates with a temporal trend, if they can be obtained.

Furthermore, the temporal and spatial autoregressive structure of the described

model is of order one. Several other approaches are imaginable, such as to in-

clude a dependence of higher order, or to model the spatial autocorrelation with

no temporal lag.

Di�erent models for the same problems can be found with a Bayesian point

of view. Especially by simulating from the a posteriori distribution using MC-

methods instead of calculating it, computation times can be shortened, see Krause

[8], p.1 �., which is of great advantage compared to classical modeling.
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