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On the determination of optimal designs for an interference model

by J. Kunert' and R.J. Martin®

! Fachbereich Statistik, Universitidt Dortmund, D-44221 Dortmund, Germany.

2 Department of Probability and Statistics, University of Sheffield, Sheffield S3 7RH, U.K.
Abstract

This paper generalizes Kushner's (1997) method for finding optimal repeated measurements
designs to optimal designs under an interference model. The model we assume is for a one-
dimensional layout without guard plots and with different left and right neighbour effects. The
resulting optimal designs may need many blocks or may not even exist as a finite design. The

results give lower bounds for optimality criteria on finite designs, and the design structure can

be used to suggest efficient small designs.

Some key words: Interference model; Neighbour effect; Optimal design; Universal optimality.

AMS subject classification: Primary 62K05, 62K 10, Secondary 62P10

Abbreviated form of the title: Optimal designs for an interference model



1. Introduction

Many agricultural and horticultural trials are susceptible to treatment interference, that is the
treatment on one unit affecting the response on neighbouring units (see e.g. Besag and
Kempton, 1986). There is increasing interest in the practical use of models to analyse data
from such trials (e.g. David, Monod and Philippeau, 1998), and in the design of experiments
in which treatment interference may occur (e.g. David and Kempton, 1996). A wide variety of
possible models have been postulated (e.g. David and Kempton, 1996, David, Monod and
Philippeau, 1998). There are only very limited results on optimal designs under interference
models. Gill (1993) restricts the class of competing designs to those for which each treatment
appears once in each block. Druilhet (1999) avoids this restriction but considers the case of
very few blocks. Both papers assume a one-dimensional layout of plots within blocks, and
that each block has a guard plot at each end, so that each interior plot has two neighbours.
They concentrate on model (1) below, or its special case of equal left and right neighbour

effects.

The present paper presents a general approach to determine optimal designs for contrasts
among direct treatment effects that can be useful for many kinds of interference models. We
consider experiments for comparing ¢ treatments using b blocks of size k£ with a one-
dimensional arrangement of plots in each block. We demonstrate the theory for the model
with no guard plots, and the treatments having different left and right neighbour interference

effects. Similar results to the ones given here will be possible for many other related models.

Letd(, j) € {1, ..., t} be the treatment assigned to the plot (7, /) in the j-th position of the i-th

block. In our model the response at plot (i, j) can be written

Vi =HF Tt ld(i,j—l) Py T B+ €. - (1)



Here

M 1s the general mean,

Ty, j 1s the direct effect of treatment d(i, j),

Adai, j-1y and pgg j+1) are, respectively, the left and right neighbour effects, that is the
interference effect of the treatment assigned to, respectively, the left and right neighbour
plots (i, j-1) and (i, j+1),

[ is the effect of the i-th block, and e; ; is the random error, 1 <i< b, 1 <j<k.

We assume that the errors are i.i.d. with expectation 0. The generalization of the method to
correlated errors and generalized least squares estimation is straightforward, cf. Kushner

(1997). Since we assume there are no guard plots we have Ay 9) = Pag, x+1) = 0.

We seek the optimal design among designs d € €, , the set of all designs with b blocks of

size k and with ¢ treatments. Let 7y, be the treatment design matrix of the direct effects in

block u, 1 <u < b. Further define T, = [YZ,T],..., TdZ]T as the design matrix of direct effects.

Let Y = [yu ses Vigs VaroVos ]T be the vector of the observations, 1; be the k-vector of ones, 7,

the h-dimensional identity matrix, and ® denote the Kronecker product. Let V' denote the £ X k

left neighbour incidence matrix with (i, j)-th element v; ; equal to 1 if i —j =1, and 0

otherwise. For each u we define L, =VT,, and R, =V'T,, . Then L, = [Lgl,...,LZb]T =

(1, ®V)T, and R, = [Rfl,...,be]T = (Ib ® VT)Td are, respectively, the design matrices of the

left and right neighbour effects. Let e be the vector of the errors, and let 7, 4, p, and f be the
vectors of direct effects, of left neighbour effects, of right neighbour effects, and of block

effects, respectively. Then, we can write model (1) in vector notation as



Y=1, u+T,c+L,A+R,p+(I,®1,)B+e.

For an n X p matrix M define @*(M)=1,— M(M" M)  M", where (M'M)™ is a generalized
inverse (g-inverse) of M"M. Then (see e. g. Kunert, 1983) the information matrix for the least

squares estimate of 7, with zero row and column sumes, is

C, =T 0" (I,®1,,L,,R,]T,.

A t X t matrix M is said to be completely symmetric, if all its diagonal elements are equal and

all its off-diagonal elements are equal. A completely symmetric information matrix is a scalar

multiple of the matrix B, =1, — 11,1/ . Assume we have a design d* € Q,,, such that Cy« is

completely symmetric and that tr Cy+ is maximal over €, , , . Then the design d* is universally

optimum, i.e. it is optimal under all the optimality criteria considered by Kiefer (1975).

2. Determination of an upper bound for tr C,.

For a partitioned matrix M = [S, U], we can write

0" ([S.U) =0 ($)- o (S U{U 0" (U} UTw" (). )

Applying this formula twice and defining

Cdll = ETCOL(I;, ® lk)7:i > Cd12 = 7:iTa)l(Ib ® lk)Ld > Cd13 = ETwL(Ib ® lk)Rd >

Cip = ngl (Ib ®1, )Ld s Cips = LZwL (Ib ®1, )Rd y Gy = RdTwl (Ib ®1, )Rd



we get that

Cd = Cdll _Cdlzc;zzc;lz -

_ 3)
(Cd13 - Cd12ca722Cd23 )(Cd33 - C523C;22Cd23) (Cd13 - Cd12C;22Cd23 )T'

Note that @ (1, ®1,) =1, ® B, . The formula for C, contains g-inverses of C,,, and of

C,,—C,,,C;,,C,,;, both of which depend on the design d. This makes the determination of

tr C, for an arbitrary design d difficult. Hence, we try to find a simple upper bound for tr C.

The derivation of this bound is inspired by the convexity argument of Pukelsheim (1993, p.
75), see also Kushner (1997, Lemma 5.1). We give a slightly different proof, which is also

valid if the matrices do not have full rank. We begin with a technical proposition.

Proposition 1:

Assume 4,,...,4,,D,,...,D, are matrices, 4, € IR"",D, € [R",1<i<n. Then

S A4 ~(X D) DD, (X 07 4)2 S {474 - 47D,(D7D,) DT 4}

in the Loewner-ordering.

Proof:

Consider the partitioned matrices

The column-space of M is contained in the column-space of the block diagonal matrix M.

Hence,



o™ (D))
wl(Ml)Zwl(Mz) =

w"(D,)
and
Al ! Al
Sal4-(X 4 D)X DD) (XD 4)=| | @'(M)
A, A,
A7 e (D) A
>| : = Z(AiTAi—AI.TDi(DI.TDI.)DiTAi). 0
4 w*(D,) | 4,

Note that 7,1, is in the column-space of ,®1, while R;1, and L,1, are not. This implies (see
Kunert, 1983) that Cy;; has row and column sums zero, that C;; and Cy3 have column sums
zero, but not necessarily row sums zero, and that Cp,, Czp3 and Cy33 need not have zero row
sums or column sums. For our bound, we use the traces of B; Cy; B;, and define

Cy =trBCyB, for1 <i<j<3.

dij Pt

Since the matrix

B.C,,B, B,.C,,B, B.C,;B, BtTdT
BtCaZ;IZBt BthZZBt Btcd23Bt = BtLi' wL(1b®lk)[TdBt L,B
Bt C§13Bt Bt C;ZS Bt Bt Cd33Bt Bt R;

RdBt]

t

is nonnegative definite, this also holds for

Cat Caiz Canz
Carz Can Cynz |-

Cas Cux Cyzs



This implies directly that ¢;; >0, 1 <i <3 and that c,,,c 5, —C.,; 2 0. It also follows that (see,

e.g. Rao and Toutenburg, 1995, Theorem A74)

|:Cd22 Cd23:| . |:Cd12} |:Cd12:|
0= , satisfies QQ = , 4)

Caz Cyz3 Ca1z Ca1z

and, consequently, that

[Cd12 Ca1z ]Q7 [Cdlz}

Ca13
does not depend on the choice of the g-inverse Q.

We are therefore in a position to define

C
_| Car2
* _ _
974 =Cin [Cd12 Cdl}]Q[ :|

Canz

Then ¢g*; depends on the following four cases (i) to (iv):

(i) If ¢;5,C 55 —Cipy >0, then Q is nonsingular and

2 ) pe

* _ CunCasz ~ 4Ca12€a013Ca3 T Ca13Can

q d — %dll P .
CunCazz ~Cans

.o 2 _ _ 2
(i1) If ¢;5,C 33 —Cyps =0and ¢y, >0, then g*, =c, ) —cy,/ Cpy -
(111) If Ci22 = 0 and Caz3 > O, then Cp3 = 0 and q*d =Cyy — 0513 /Cd33 .

(iv) If cipr = ¢33 = 0, then ¢p3 = 0 and q*d =Cyy-



With these definitions we can show

Proposition 2:

Every design d € Q,,, has tr C; < g*,. If a design fhas all Cp;, 1 <i<j <3, completely

symmetric, then tr Cy= g*z.

Proof:

Using formula (2), C, can also be written as

~ ~

C, =T o"((L,,R,DT,, (5)

where T, = 0" (I, ®1,)T,, L, = 0* (I, ®1,)L,,and R, =0 (I, ® 1,)R,.

In Proposition 1 let n = ¢! and consider {S1=1,, S, ..., S,,}, the set of all ¢ X ¢ permutation

matrices. Then define 4, = T.,S,, D, =[L,S,,R,S,], 1 <i<n. It can be shown with straightfor-

1

ward algebra, using (3) and (4), that 4/ @*(D,)4, = S'C,S, for all 1 <i < n. On the other hand

S 44 -(S A DNS ) (S074)

:zSindedSi -

(3 ST zsfms][zs LiLS ZS"TZ”CE”’S"]_FS"TZ;ES"]
i 7d d~i» i 7d d™~i

DSIRIL,S, YSIRIRS, | | X S/RIT,S,

= zSiTCdILSi -

T T - T ~T
[2 SiTCduSw ZSiTCdBSi] |:z Si Cd22Si ZSI‘ Cd23Si:| |:z Si CdlZSi:|

z SiTCdTBSi z SiTCd33S1’ z SiTCdTnSi
Since the summations are over all permutations of the numbers {1, ..., ¢}, Z s'c,.sS, is
completely symmetric for all 1 <7 <5< 3. As Cy11, Ca12, and Cyi3 have column sums zero, we

conclude that ZSiTCdei ={c, n/(t—1)}B, +z,1,1], for some z,, with z,, = 0 if r = 1.

rs ottt 0



To proceed, we need a g-inverse of

[{chZn/(t_l)}Bt+2221tltT {CdZSn/(t_l)}Bt-'_ZZSltltT} -1 |:222 Zy3

’ | =—(O®B, - ®11").
{cinn/(t=1}B, +z11;  {c,sn/(t=1)}B, +z311, n

Zy3 Iy

One such g-inverse, for appropriate wy;, 1s

F =tL(Q‘ ® B, —[W” WB]@LI,T).

Wy Wi

Therefore

S 44 -(S A DNS ) (S074)

2

C
=tLC B n—z([cdl2’ cd13]®Bt)F_([ dlz]@Bt]:tnqu*d Bt.

—1 M (-

Then Proposition 1 implies that trC, <g*,

Finally note that for design f'we have C = ZSI.TCﬁ‘SSi /n forevery 1 <r<s<3. d

3. Methods for determination of a maximal ¢*,.
An optimal design d* should have a completely symmetric Cy+, with tr Cyg« = g* 4+, and it
should have the right proportions of blocks assigned to the treatment sequences such that g* ;«

is maximal. Therefore, we need to maximize the bound ¢ *,. Define

Cylt)l = tr(TdZBk 7)), Cc(;l’)z = tr(TdZBk L), 027)3 = tr(TdZBdeu) > CG(IZ)Z = tr(BtLguBk L,B,),

Ci5y = r(B, Ly, B.R,,B,) , and ¢y = tr(B,R;,BR,,B,).

We then get that



b
— (u)
cdm—zcdm , 1 <r<s<3.
u=1

Note that each cf,fs) remains unchanged if the treatments are relabelled, i.e. if T, Ly, and Ry,
are replaced by 7,,S, L4,S and R4S, respectively, where S is any ¢ X ¢ permutation matrix. We
call two sequences of treatments equivalent if one can be transformed to the other by
relabelling the treatments. Hence, two equivalent treatment sequences give the same ¢! .

Therefore, for given # and k, we can divide the set of all possible treatment sequences into K
equivalence classes sy, ..., sk. If, for example, £ = 3 and ¢ > 3, then there are the K =5

equivalence classes given in Table 1.

Since ¢! is the same for each u receiving a treatment sequence in a given equivalence class
K .
s,, 1 <€ <K, we can define ¢, (/) =c! and get ¢, = bzi_l 7 ¢, (0), where my is the

proportion of blocks assigned to the class s¢. This, however, implies that the bound ¢ *; of any
design d € Q,; is determined by the proportions 7. Note that the cy; are linear in the 7z, but
that g*, is a quotient, where the 7, are third order in the numerator and second order in the

denominator. This makes the maximization of ¢*, difficult.

The situation is similar to the models (with carryover effects) for repeated measurements
designs. For these Kushner (1997) showed how to use the linearity of the ¢, to maximize

q*q. This idea can be generalized to interference models.

Proposition 3:

For any design d € Q, ;. define the function ¢, : IR* = IR as

2 2
q,(x,y)=cy +2c,,X+2¢,,Y +2C,3XV +C X" +C 33y



Then for every x and y, we have g,(x, y) = g*,. There is at least one point (x4, y4) such that

qd(xd,yd) = q*d-

Proof:

We can write

(]d(xay)zcdn"'z[cdlz Cdl}:[x:|+[x y]Q|:x:|
y

y

=Ccmt 2[cd12 Ca13 ](“ - Q|:Cd12:|) - (UT - [Ca,12 Cais ]Qf)Q(u -0 |:cd12 :|)

Cann Cain

where

y Canz
Then equation (4) implies that

e
qd(x’y)zcdll_[cdu Cd13]Q |: d12:|+”TQ”'

Ca1z

Therefore, g4(x, y) is minimal iff Qu = 0, i.e. iff

o))

This, however, holds if and only if the partial derivatives of g, with respect to x and y are both

0. The minimum of g, equals g *,. d
From the proof of Proposition 3, we immediately get

Corollary 1:

Consider a point (x4, vz)_such that the partial derivatives 0q.(x, y) / dx_.and 0q.(x, y) / Oy are

both 0 for (x, y) = (x4, ya). Then q,(x,,y,) = g%, -

10



The elegance of g4(x, ) is that it can be written as a linear combination of functions 4,(x, y),

which depend on the equivalence classes of treatment sequences. Define
h(x,3)=c (D) +2¢,,(D)x+2¢3(0)y +2¢,(£)xy + ¢y (0)x* + C33 (0)y*,

for every 1 </ < K. Then

K
4,5, »)=b> 7uh,(x,y).

=1

Proposition 4:

For a design d € Q,,, consider a point (x4, y4)_for which g(x4, ys) = g*a.

It bh,(x,,y,)<q,(x,,y,)=q*; for every 1 </ <K, then for every f'e€ €, we have

tr CfS q*d = a*;,b,k, say.

Proof:

For any f'we have
K K K
%= bY myh (X, y,) S D bh (500 S X7y q*a=qFa
/=1 /=1 =1

The rest follows from Prop. 2. d

Note that the proportions 7z, must be such that the partial derivatives of Zﬂ oh(x,y) at

(x4, yq) are both 0, and that only such classes € of sequences are included for which Z(x4, v4) =

max <<k hf(x4, y4). Therefore (x4, y;) must be either at the minimum of an /4, or at the

11



intersection of two or more of the /4.

In many situations there is no design fulfilling both the conditions of Proposition 4 and of
Proposition 2. In that case, however, one practical use of the a*;;  is the lower bound which it

provides for the optimality criteria.

As an example, consider the A-criterion ¢4(Cy), which is the trace of the Moore-Penrose

generalized inverse of Cr. From Prop. 2 we get

q*, . t=1 . (t-1)
(I)A(Cf)Z%(:Bt)—tr(EBt)— pr

With Prop. 4 it follows that

(t-1)°

*
t,b.k

P,(Cr)2

4. Some examples
In this section we demonstrate the methods derived in this paper by finding optimal or
efficient designs for £ = 3 and 4 for all # > 2. Note that, to save space, blocks are represented

as columns in Examples 1 to 4.

4.1 The case of 3 plots per block
Table 1 lists the equivalence classes and the corresponding c,,(?) for the case that there are k =

3 plots per block. If =2, then only the first four sequences are possible.

12



A design d* which has half of its sequences from s, and half of its sequences from s4 has

4 1 1 4t -2 3t-2 3t-2
Ay =b lh , +ih , =h| ———x——ypy— + 2+ 2 )
q4 (X y) {2 Z(x y) 2 4(x y)} (3 3x 3)/ 3 Xy 3 X 3 y J

If x =y =1/{2(¢-1)}, then the derivatives of gs«(x, y) with respect to x and y are both 0.

Therefore from Corollary 1, we have

Xp =Yg =

Tt—8
and ¢*» = qd*('xd*’yd*)z( ]b.

t
2(1-1) 6(t—1)

Table 1

The classes s, of sequences and adjusted ¢,4(¢) for k=3,1>2

Repre-

/ sentative 3 C]](f) 3 012(5) 3 013(5) 3 sz(f)“‘% 3 6‘23“)-% 3 C33(€)+%
sequence

1 [111] 0 0 0 2 -1 2

2 [112] 4 -1 0 2 -2 4

3 [121] 4 -3 -3 4 1 4

4 [122] 4 0 -1 4 -2 2

5 [123] 6 -2 -2 4 -1 4

To prove the optimality of g*;+ we have to calculate 4 (x;+, y4+) for every 1 </ <5, and to
verify that g*;+ / b - h, (x4+, y4+) is nonnegative for every /. Some algebra shows that g*;+ / b -
h(xq+, va+) equals (3t—4) / (4t—4) > 0, 0, (32—5¢) / (3£—6t+3) > 0, 0, (+-2) / (3—6t+3) >0

(since t>2) for / =1, ..., 5, respectively.

Hence, we have shown

13



Theorem 1:

If k=3_and r > 2, then for any design d € €2,,3 we have

trC, <a*,,, =[ 18 Jb.

6(t—1)

If a design d* has half of its blocks with treatment sequences which are equivalent to [1 1 2]

and half of its blocks with treatment sequences equivalent to [1 2 2], and if Cy+1, Cy12, Cy*13,

Ca2, Cgr3, and Cy+33_are completely symmetric, then d* is universally optimal over €, ; 3.

Example 1:

If =2, then a 4 block example of a design fulfilling the conditions of Theorem 1 is

1 21 2
d* =1 2 2 1leQ,,,.
21 2 1

If # =3 then a 12 block example of a design fulfilling the conditions of Theorem 1 is

12233
3013 1 2(eQ,,,.
3131 2

d*, =

N — =
— NN

3 3
33
1 2

[N SR

1
1
3

[SSTEN \S T O]

If t = 4, then a 24 block example is

111222333444111222333444
d*;=|111222333444234134124123|€Q,,,;.
234134124123234134124123

4.2 The case of 4 plots per block

14



If k=4 and ¢ > 4, then we have 15 equivalence classes. The representative sequences and the
crs(f) for the 15 classes are given in Table 2. For ¢ = 3, only the 14 classes s; to s14 are

possible. For = 2, only the 8 classes s, 52, 53, 54, S6, 57, 9 and s are possible.

We start with the case # = 2. Then consider a design d* with half of its blocks from s4 and half

of its blocks from s9. In that case
11 , 11 ,
Q4= (X, ) =b {3 h, (x, )+ 3he(x,¥)} =b 24X — 2ty >2b,

with equality holding iff x =y = 0. Now, %, (0, 0) = ¢11(£) <2 for all 8 possible classes s; of

sequences, with equality for £ =4, 7 and 9. Thus we have shown

Theorem 2:

If t =2 and k = 4, then for every design d € £ 4 we have tr Cy< a*;,4=2 b.

If a design d* has b/4 of its blocks with each of the sequences [1 122],[2211],[1221]

and [2 1 1 2], then d* is universally optimal over €, 5 4.

Note that sequences [1 1 2 2] and [2 2 1 1] are from s4, while [1 22 1] and [2 1 1 2] are from
s9. Because £7(0, 0) = 2, it is possible to show that there is another design fthat has g*,=

a*sp . Design f'has 3b/4 of its blocks with sequences from s4 and b/4 with sequences from s7.

Example 2:

Theorem 2 requires that b is divisible by 4. Suppose b = 2 and consider the two designs

15



and f =

N N = =
—_— N DN
N N — =
—_— N = DN

While g*;=a*;,4 =4, for d we have tr C; = 16/7 <4, because Cy33 is not completely
symmetric. Design f, for which the Cg;, except for Cy»3, are completely symmetric, has
tr C; = 3. Calculating the information matrix for all 256 possible designs, we find that f'is

universally optimal (since rank C; = 1).

Table 2

The classes s, of sequences and adjusted c,4(¢) for k=4

Repre-
/ sentative 4 cn(f) 4 c1a(0) dep(l)  4en(l) den(l)  4en(d)

sequence +3 -7 "
I [1111] 0 0 0 3 1 3
2 [1112] 6 1 1 3 2 7
3 [1121] 6 3 3 7 -1 7
4 [1122] 8 2 2 7 4 7
5 [1123] 10 . 0 7 -3 9
6 [1211] 6 3 3 7 -1 7
7 [1212] 8 6 6 7 4 7
8 [1213] 10 5 4 7 1 9
9 [1221] 8 2 =) 7 5 7
10 [1222] 6 1 -1 7 ) 3
1 [1223] 10 - -1 7 4 7
12 [1231] 10 4 4 9 3 9
13 [1232] 10 4 s 9 1 7
14 [1233] 10 0 -1 9 3 7
15 [1234] 12 3 3 9 2 9

As h14(0, 0) = ¢11(14) = 10/4 > 2, an optimal design for # = 3 must have other sequences than

just s4, s7 and s9. The case k£ = 3 suggests the candidate design d* with Tzs = T4 = %2, In
fact, we find that g,.(x,y)=bE—-1x—1y—2xy+Ix*+1?), with a minimum at x« = yg« =

3/26. Therefore g* s+ = qa+(xg+, yax) = (**"/104) b. It is easy to check that for every /, 1 </ < 14,

we have 257/104 - h (x4+, va+) 2 0, with equality holding only for / =5 and 7 = 14. Hence, we

16



have shown

Theorem 3:

If k=4 and r = 3, then for any design d € Q3,4 we have tr Cy< a*; 4= (257/104) b.

If a design d* has b/2 blocks with treatment sequences which are equivalent to each of

[1 12 3] m[l 23 3] and if Cd*ll, Cd*12, Cd*13, Cd*22, Cd*23, and Cd*33 arc completelv

symmetric, then d* is universally optimal over €3 4.

Example 3:
The design
1 23312123231
1 232311233172
d*= €€y
231123312123 o
312123231123

fulfils the conditions of Theorem 3. The first 6 blocks of d* form a design d which maximizes
q*a1n Q36 4 but for which tr C; < g*,, since Cy12 and Cy13 are not completely symmetric.
However, when we calculate the A-criterion @a(C,) of d and compare it to the unattainable
lower bound @*s=(t — 1)* / a*; 4, then we find that @*s/@a(Cy) = 0.996, i.e. d has an

efficiency of 99.6% and is likely to be A-optimal.

Finally, we consider the case k =4 and ¢ =2 4. We try a design with a proportion 1 of sequences

from the class 5,5 and proportions (1-1)/2 of classes ss5 and 514, each. The three 4,(x,y) intersect

atx:y=(5—\/ﬁ)/4 =x*, say. For x = y = x*, we have

(135-23/17)¢ = (42-10/17)

hS(x’y):h14(x’y):hlS(xay): 16¢
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Note that /;5(x, y) = h15(y, x). Thus the derivative of /;5(x+06, x-0) with respect to dis zero if

0= 0. The same holds for % As(x, y) + %2 h14(x, y). It hence remains to find a 7 such that

Jd -7z -7z
%(ﬂ his(x,x) +Th5(x,x) +Thl4(x,x))

is zero for x = x*~ 0.219. Therefore, set

ﬁ=(23—5\/ﬁ)z—(10—2\/ﬁ)=

T*, say.
217 ¢
It is easy to see that the differences As(x*, x*) — h,(x*, x*), for /= 1,2, ..., 15 are all positive,

except for / =4, 5, 14 and 15, when they are 0.

Hence we have an optimal design using sequence classes ss, 514 and s;5. Since /5 (x*,x*)

—h,(x*,x*) =0, we can construct an optimal design with some sequences from the class s4.

In fact, a second optimal design exists which consists of s4 and s;5 only having a proportion

_(23-3417)t-(10-217)
4171

5*

of sequences from the class 515 and a proportion of 1 — ¢* of sequences from s4. Any convex

combination of these two designs is also optimal. Hence, we have shown

Theorem 4

If k=4 and > 4, then for every design d € €, 4 we have

18



A (135-2317)t = (42-10+/17)

trCy<a*ips=
b 16t

To achieve this bound, we would need to construct a design d* as follows:

Define

”*2(23—5\/ﬁ)r—(10—2\/ﬁ) _(23-3J17)1-(10-2417)
2171 4171 '

Choose 0 < o < 1. _Let proportions (1-a) (1-6%), o (1-nt*)/2, ot (1-n*)/2_and {arm* +

and o*

(1-a) 6%} of the blocks of d* have treatment sequences which are equivalent to [1 1 2 2],

[1123],[1233]and[1 23 4], respectively, such that Cy«11, Cy#12, Cg#13, Caran, Ca+23, and

C +3.are completely symmetric.

Remark: The design d* in Theorem 3 cannot exist for finite 5. To see this, note that 1 - &* =
(1 = m*) / 2, which is irrational. Therefore, (1 — @)(1 — 6*) = (1 — &)(1 — ©*) / 2 and there is

no o such that both (1 — &)(1 —*) /2 and A1 — v*) / 2 are rational.

Despite the non-existence of d*, Theorem 4 has two useful aspects. Firstly, it suggests the
structure of an efficient design, and secondly a*, ;4 gives a lower bound for the A-value. This

is demonstrated in Example 4.

Example 4

It is possible to construct highly efficient designs if we can approximate reasonably well the
fractions 1t* or 0* from Theorem 4. If ¢ = 4, then the upper bound a*4 4 for tr C; is
approximately 5x2.49852. To construct an efficient design, we select &= 0. We would need a
proportion of &* = 0.617995 of blocks with a sequence from s;5. We use 2/3 instead and

construct the 36 block design
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111222333444123412431432123412431432
111222333444241323144213241323144213

€82, 504-
234134124123314241323124314241323124 o

234134124123432134212341432134212341

It is easy to verify that Cp, ..., Cp3 are completely symmetric, and that tr Cr = 89.8064... .

This is extremely close to the upper bound which is approximately 36x2.49852 = 89.94672,

so that f'is highly efficient (efficiency = 0.9984).

With 12 blocks, a design similarly constituted to fis

g =

N N = =
W W NN
>~ B~ LW W

—_ = A A

1
2
3
4

W —= N DN

4
3
2
1

N A =W

W B~ o =

2
3
1
4

4
1
3
2

€ 94,12,4.

— N R W

Its C, is not completely symmetric. However, its relative A-efficiency with respect to the

bound (¢ — 1)*/a*y 124 is 0.968.

If we prefer not to repeat treatments, we have the universally optimal binary design using a

type I orthogonal array with efficiency 0.924:

h

W = N
o o= W

1
RE
12

4

4
2
3
1

1
2
3
4

W —= N DN

4
3
2
1

N R~ =W

W KN =

2
3
1
4

— NN W

D W =

With 6 blocks, a design with relative A-efficiency 0.885, similarly constituted to f'is

[\ T NS T

1
2
&> 3
4

B~ B~ W W

W = AN

(S

4
3
2
1

€Qy64.
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For 8 treatments, and 24 blocks similar ideas lead to the design g3 € €2g44, where

1 23 456 7 81136 226547282835 47
|rz23 456 728241758363 2061287354
g3—5 6 7812 3 432618754241 75 2836
56 781234478835 47113%622°635

This design has a relative A-efficiency of 0.910. Note that each treatment is replicated 12

times in the design g3, as in g;.

The methods of the present paper can be used for blocks with £ > 4 as well. However, with

larger k the number K of equivalence classes increases rapidly. For k=5 and ¢ = 5 there are 52

classes of sequences. It is possible, though, to show that a design d with a proportion

*

4\/_(251 3411~ 7+\/_)

of blocks with a sequence equivalent to [1 2 3 4 5] and the other blocks with a sequence
equivalent to [1 1 2 3 3] has a maximal ¢*, = a*; 5. In the special instance ¢ = 5 (with 7* =

0.6643), then a binary type I orthogonal array 4, which uses only sequences equivalent to

[1 234 5], has an efficiency of g*, / a*s s = 0.959. This is slightly higher than for & = 4.

Further work is aimed at obtaining bounds on the c;(£) to get results for a general k. We
conjecture that a*,,; is achieved by a design with a majority of sequences from the class
containing [1 2 3 ... k-2 k—1 k] and the rest of the sequences equivalent to

[112..4-3 k=2 k-2]. We also conjecture that for > k> 5, a binary type I orthogonal array

will have an efficiency of more than 0.95.
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