
Dette, Holger; von Lieres und Wilkau, Carsten

Working Paper

On a test for constant volatility in continuous time
financial models

Technical Report, No. 2001,10

Provided in Cooperation with:
Collaborative Research Center 'Reduction of Complexity in Multivariate Data Structures' (SFB
475), University of Dortmund

Suggested Citation: Dette, Holger; von Lieres und Wilkau, Carsten (2001) : On a test for
constant volatility in continuous time financial models, Technical Report, No. 2001,10,
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten
Datenstrukturen, Dortmund

This Version is available at:
https://hdl.handle.net/10419/77264

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/77264
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


On a test for constant volatility in continuous time

�nancial models

Holger Dette

Ruhr-Universit�at Bochum

Fakult�at f�ur Mathematik

44780 Bochum

Germany

email: holger.dette@ruhr-uni-bochum.de

FAX: +49 2 34 32 14 559

Carsten von Lieres und Wilkau

Ruhr-Universit�at Bochum

Fakult�at f�ur Mathematik

44780 Bochum

Germany

email: carsten.von.lieres@ruhr-uni-bochum.de

March 13, 2001

Abstract

A new speci�cation test for homoscedasticity in di�usion processes is proposed, which

does not require speci�c knowledge of the functional form of the model. The corresponding

test statistic has an asymptotic normal distribution under the null hypothesis of constant

volatility and diverges at an appropriate rate under the alternative. In contrast to recent

work the approach of the present paper does not require the speci�cation of particular

time points at which the hypothesis of homoscedasticity is checked. Moreover, the new

test does not use nonparametric estimation techniques for estimating the variance function

and is therefore independent of the speci�cation of a particular smoothing parameter. The

results are illustrated by a small simulation study and a data example is analyzed.

Keywords: model diagnostics, di�usion process, heteroscedasticity, pseudo residuals

1 Introduction

Itô di�usions are commonly used for representing asset prices, because the strong Markov

property and the nondi�erentiability of the paths capture the idea of no arbitrage opportunities

[see e.g. Merton (1990)]. In general the di�usion (X

t

)

t

is a solution of the stochastic di�erential

equation

dX

t

= b (t; X

t

) dt+ � (t; X

t

) dW

t

(1.1)

where (W

t

)

t

is a standard Brownian motion. An appropriate pricing of derivative assets requires

a correct speci�cation of the functional form of the drift and variance and di�erent models have

been proposed in the literature for the di�erent types of options [see e.g. Black and Scholes

(1973), Vasicek (1977), Cox, Ingersoll, Ross (1985), Karatzas (1988), Constantinides (1992)
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or DuÆe and Harrison (1993) among many others]. Parametric models are attractive among

practioners, because they often admit a direct interpretation of the observed e�ects in terms

of the parameters and the available information of the observations is increased by applying

more eÆcient methods. However, economic theory typically does not give much information of

the drift and variance and misspeci�cation of such a model may lead to serious errors in the

subsequent data analysis. For these reasons many authors propose to test the goodness-of-�t of

the postulated model [see e.g. Azzalini and Bowman (1993), Ait-Sahalia (1996b), Zheng (1996)

or Dette and Munk (1998a) among many others]. If the assumption of a parametric model

cannot be justi�ed nonparametric estimates for the drift and variance of the di�usion should

be used, which are less eÆcient from an asymptotic point of view [see e.g. Genon-Catalot,

Laredo and Picard (1992), Ait-Sahalia (1996a), Florens-Zmirou (1993) or Jiang and Knight

(1997)].

It is the purpose of the present paper to develop a test for homoscedasticity or a speci�c

parametric form of the variance function in a di�usion model of the form (1.1). This prob-

lem is of importance in theoretical �nance because several continuous-time �nancial models

considered in the literature assume a constant volatility [see e.g. Merton (1973) or Vasicek

(1977)] or a speci�c parametric form of heteroscedasticity [see e.g. Cox, Ingersoll, Ross (1985)

or Constantinides (1992)], and it is reasonable to check this assumption by a statistical test.

Moreover, speci�c information about the structure of the variance function (for example a con-

stant volatility) allows the application of more eÆcient procedures for analyzing the observed

data.

We assume discretely observed data on a �xed time span, say [0; 1]; with increasing sample

size. As pointed out by Corradi and White (1999) this model is appropriate for analyzing the

pricing of European, American or Asian options. Following Dette and Munk (1998b) we use

an appropriate estimator of the integrated variance function

M

2

=

Z

1

0

n

�

2

(t; X

t

)�

Z

1

0

�

2

(s;X

s

)ds

o

2

dt(1.2)

as a measure of heteroscedasticity in the di�usion model (1.1) and prove its asymptotic nor-

mality under the null hypothesis of homoscedasticity. It is also demonstrated that the method

can be generalized to the problem of testing for a parametric form of the volatility function

and a simulation study is presented which illustrates excellent �nite sample properties of \a

bootstrap" version of the proposed test.

We conclude this introduction with a brief discussion of the work of Ait-Sahalia (1996b) and

Corradi and White (1999), which is most similar in spirit with the present paper. In contrast

to the method proposed by Ait-Sahalia (1996b), who compared the density implied by a joint

parametric speci�cation for the drift and variance against a nonparametric estimate of the

density, our approach does not require such a speci�cation of the parametric model. Moreover,

the test of Ait-Sahalia (1996b) requires a time span approaching in�nity for an increasing sample

size, while for our method the time span has to be �xed and the length of the discrete sampling

interval converges to zero as the sample size increases. Thus in this sense the two methods are

complementary. Corradi and White (1999) consider a similar model as discussed in this paper

and compare a nonparametric estimator of the variance function [see Florens-Zmirou (1993)]

with an estimator under the null hypothesis of homoscedasticity at a �xed number of speci�ed

points. Consequently, the �nite sample size and power of the test of Corradi and White (1999)
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depend on the evaluation points and the test proposed by these authors is in fact a test for a

constant variance of the di�usion at a �xed number of speci�ed points in the time scale [see

e.g. M�uller (1992) for a similar method in the context of checking the functional form of the

mean in a nonparametric regression model]. In contrast to this work the test proposed in the

present paper is consistent against any alternative, for which the process (�

2

(t; X

t

))

t2[0;1]

is not

constant. Moreover, our method does neither require the speci�cation of particular evaluation

points at which the variance function has to be estimated, nor uses a smoothing parameter for

a nonparametric estimator of the variance function, because only estimates of the integrated

variance function are required.

2 The test statistic and its asymptotic distribution

Let (W

t

;F

t

)

t�0

denote a standard Brownian motion [F

t

= �(W

s

; 0 � s � t)] de�ned on an

appropriate probability space (
;F ; P ) and assume that the drift and variance function in the

stochastic di�erential equation (1.1)

b : [0; 1]� R ! R

� : [0; 1]� R ! R

are continuous functions satisfying

jb (t; x)� b (t; y)j+ j� (t; x)� � (t; y)j � K jx� yj(2.1)

for all t 2 [0; 1]; x; y 2 R; and

jb (t; x)j

2

+ j� (t; x)j

2

� K

2

(1 + jxj

2

)(2.2)

for all t 2 [0; 1]; x 2 R; where K > 0 is a �xed constant. It is well known that for a F

0

measurable square integrable random variable �; which is independent of the Brownian motion

(W

t

)

t2[0;1]

; the assumptions (2.1) and (2.2) admit a unique strong solution (X

t

)

t2[0;1]

of the

stochastic di�erential equation (1.1), with initial conditon X

0

= �; which is adapted to the

�ltration generated by the Brownian motion (W

t

)

t2[0;1]

; see e.g. Karatzas and Shreve (1991) p.

289. Moreover, the solution can be represented as

X

t

= � +

Z

t

0

b (s;X

s

) ds+

Z

t

0

� (s;X

s

) dW

s

a:s:;(2.3)

X

t

is F

t

measurable for all t 2 [0; 1] and the paths t! X

t

are almost surely continuous.

Assume that we observe the di�usion only on the time span [0; 1] at discrete points t

i

= i=n (i =

1; : : : ; n): We are interested in testing the hypothesis of homoscedasticity

H

0

: �

2

(t; x) = �

2

8 t 2 [0; 1] ; 8 x(2.4)

in the stochastic di�erential equation (1.1) under assumptions (2.1) and (2.2). For this purpose

we note that the hypothesis of constant volatility in (2.4) holds if and only if

M

2

= 0 a.s.,(2.5)

3



where the random variable M

2

is de�ned in (1.2). Therefore it is reasonable to reject the

hypothesis of homoscedasticity for large values of an appropriate estimator of M

2

. In order to

estimate M

2

from the observed data we de�ne

T

pn

:= n

p�1

n�1

X

i=1

(X
i+1

n

�X
i

n

)

2p

; p = 1; 2;(2.6)

and a test statistic by

T

n

:=

1

3

T

2n

� T

2

1n

:(2.7)

We assume that the drift and variance function satisfy a Lipschitz condition of order  >

1

2

; i.e.

jb (t; x)� b (s; x)j+ j�(t; x)� �(s; x)j � L jt� sj



(2.8)

for all s; t 2 [0; 1] and for some �xed constant L > 0: Moreover, if the initial condition � has an

existing eighth moment, i.e.

E[j�j

8

] <1;(2.9)

then the following theorem shows that the statistic T

n

consistently estimates the measure of

heteroscedasticity M

2

: The proof is deferred to the appendix.

Theorem 2.1. If the assumptions (2.1), (2.2), (2.8) and (2.9) are satis�ed, then the statistic

T

n

de�ned in (2.7) is a consistent estimator of M

2

: More precisely, if n!1; we have

T

n

�M

2

= O

p

(n

�1=2

logn);(2.10)

where the random variable M

2

is de�ned in (1.2).

Recall that the variance function �(t; X

t

) in the stochastic di�erential equation (1.1) is a.s.

constant (as a function of t) if and only if (2.5) holds and consequently the hypothesis of

homoscedasticity is rejected for large values of the statistic T

n

: Our second main result speci�es

the asymptotic distribution of T

n

under the additional assumption that the variance function

in (1.1) does not depend on X

t

; i.e.

�(t; x) = �(t) 8 x 2 R:(2.11)

Note that this assumption includes the situation of homoscedasticity (�(t; x) = � > 0 8 t 2

[0; 1] ; 8x) and that (2.11) implies that M

2

is a nonnegative constant random variable.

Theorem 2.2. If (2.1), (2.2), (2.8), (2.9) and (2.11) are satis�ed, then the statistic T

n

de�ned

in (2.7) is asymptotically normal distributed, i.e.

p

n(T

n

�M

2

)

D

�! N (0;

32

3

s

8

� 16s

2

s

6

+ 8s

2

2

s

4

);(2.12)

where

s

2j

=

Z

1

0

�

2j

(t)dt; j = 1; 2; 3; 4:(2.13)
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Especially, if (X

t

)

t2[0;1]

is a di�usion de�ned by (1.1) with constant variance �

2

(t; x) = �

2

> 0;

then

p

nT

n

D

�! N (0;

8

3

�

8

):(2.14)

Note that Theorem 2.2 provides a simple test for the hypothesis of homoscedasticity, by rejecting

the hypothesis (2.4) whenever

r

3n

8

T

n

T

2

1n

> u

1��

;(2.15)

where u

1��

is the (1 � �) quantile of the standard normal distribution and T

4

1n

is used as an

estimator of �

8

in (2.14). By Theroem 2.2 this test has asymptotic level � and its consistency

follows directly from Theorem 2.1. The performance of the test will be illustrated in the

following section.

Remark 2.3. It is worthwhile to mention that the approach for testing homoscedasticity

can easily be extended to the problem of testing for a more general structure of the variance

function. For the sake of simple notation we assume (2.11) and only consider the problem of

testing the hypothesis

H

�

0

: �

2

(t; x) =

d

X

j=1

�

j

�

2

j

(t) 8 t 2 [0; 1] 8 x(2.16)

in the stochastic di�erential equation (1.1), where �

2

1

; : : : ; �

2

d

are given nonnegative, linearly

independent functions [note that the hypothesis of homoscedasticity corresponds to the case

d = 1; �

2

1

(t) � 1]: De�ne pseudo residuals

�

i

= n(X
i+1

n

�X
i

n

)

2

i = 1; : : : ; n� 1;(2.17)

� = (�

1

; : : : ;�

n�1

)

T

; � = (�

1

; : : : ; �

d

)

T

and a design matrix

X =

�

�

2

j

(

i

n

)

�

j=1;:::;d

i=1;:::;n�1

2 R

n�1�d

:

Consider the least squares problem

�̂ = argmin

�2R

d

(��X�)

T

(��X�) = (X

T

X)

�1

X

T

�

(note that the linear independence of the functions �

2

1

; : : : ; �

2

d

implies that X has rank d) and

de�ne a test statistic for the hypothesis in (2.16) by

^

T

n

=

1

n

f

1

3

�

T

���

T

X(X

T

X)

�1

X

T

�g:

Observing the de�nition of the pseudo residuals �

i

in (2.17) it follows from the arguments

given in the appendix that

E[

1

3n

�

T

�] =

1

3

n�1

X

i=1

E[(X
i+1

n

�X

1

n

)

4

] �

Z

1

0

�

4

(t)dt:

5



Similary, we have for the j-th component of the vector X

T

�

E[

1

n

(X

T

�)

j

] = E[

n�1

X

i=1

�

2

j

(

i

n

)(X
i+1

n

�X
i

n

)

2

] �

Z

1

0

�

2

j

(t)�

2

(t)dt

and continuity properties of the variance function imply

1

n

(X

T

X) �

�

Z

1

0

�

2

j

(t)�

2

i

(t)dt

�

d

i;j=1

=: �:

These approximations motivate (a rigorous proof follows by a straightforward but tedious ex-

tension of the arguments given in the appendix)

E[

^

T

n

] �

Z

1

0

�

4

(t)dt� s

T

�

�1

s(2.18)

= min

�

1

;:::;�

d

2R

Z

1

0

f�

2

(t)�

d

X

j=1

�

j

�

2

j

(t)g

2

dt;

where

s =

�

Z

1

0

�

2

1

(t)�

2

(t)dt; : : : ;

Z

1

0

�

2

d

(t)�

2

(t)dt

�

T

and the last equality follows by a standard calculation from Hilbert space theory. Note that the

right hand side vanishes if the hypothesis H

�

0

is valid and consequently this hypothesis should

be rejected for large values of the statistic

^

T

n

: It can be shown by similar arguments as given

in the proof of Theorem 2.2 that under the null hypothesis (2.16) we have

p

n

^

T

n

D

�! N (0;

8

3

Z

1

0

�

8

(t)dt)(2.19)

and an estimator of the asymptotic variance is obtained from the observation that

E[(X
i+1

n

�X
i

n

)

8

] � 105(

Z

i+1

n

i

n

�

2

(s)ds)

4

�

105

n

4

�

8

(

i

n

)

[see formula (4.40) in the proof of Theorem 2.2 in the appendix], which gives

�̂

2

n

=

n

3

105

n�1

X

i=1

(X
i+1

n

�X
i

n

)

8

as a consistent estimator for

R

1

0

�

8

(t)dt: Consequently the hypothesis of the parametric structure

is rejected if

r

3n

8

^

T

n

�̂

n

> u

1��

;

where u

1��

denotes the (1� �) quantile of the standard normal distribution.
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3 Finite sample properties

In order to study the �nite sample properties of the new test consider at �rst the stochastic

di�erential equation (1.1) with b(t; x) � 0 and assume that the hypothesis of homoscedasticity

�

2

(t; x) = �

2

> 0 is valid. In this case the pseudo residuals X
i+1

n

� X
i

n

are independent

identically distributed with

X
i+1

n

�X
i

n

� N (0;

�

2

n

) i = 1; : : : ; n� 1:(3.1)

The distribution of the test statistic

p

3n=8T

n

=T

2

1n

is in this case equal to the distribution of

the random variable

V

n

=

r

3n

8

n

3

P

n�1

i=1

Z

4

i

� (

P

n�1

i=1

Z

2

i

)

2

(

P

n�1

i=1

Z

2

i

)

2

;(3.2)

where Z

1

; : : : ; Z

n�1

are independent identically standard normally distributed random variables.

Note that the random variable on the right hand side is essentially an estimate of the kurtosis

of a random variable with zero mean and it is well know that the normal approximation for

this distribution is rather poor. Obviously, because bias is present for a nonvanishing drift, this

observation carries over to the normal approximation for the statistic T

n

de�ned in (2.7). For

this reason we propose an alternative method for obtaining quantiles for the distribution of T

n

:

At �rst note that due to the assumptions (2.1) and (2.8) the pseudo residuals X
i+1

n

�X
i

n

are

approximately unbiased. Secondly, if this bias is neglected, it follows from the above discussion

that under the hypothesis of homoscedasticity the distribution of T

n

=T

2

1n

is scale invariant and

we may assume without loss of generality �

2

= 1: Now Theorem 2.1 shows that

T

1n

P

�! 1

and for this reason we propose to use the quantiles of the statistic Z

n

which is obtained if

p

3n=8 � T

n

is evaluated with data generated by the standard Brownian motion (note that we do not

estimate the variance). The quantiles of this distribution can easily be obtained via simulation

and are listed for various values of n in Table 3.0. These results are based on 100000 simulation

runs.

n 80% 90% 95% 97.5%

25 0.2148 0.6823 1.2645 1.9514

50 0.3846 0.9055 1.4810 2.1311

100 0.5098 1.0609 1.6303 2.448

200 0.6237 1.1642 1.6831 2.2119

Table 3.0. Simulated quantiles of the statistic

p

3n=8T

n

for data generated from a standard

Brownian motion.
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The normalized statistic

p

3n=8T

n

=T

2

1n

obtained from the observed data is then compared with

the quantiles of the simulated distribution and the hypothesis of homoscedasticity is rejected if

r

3n

8

T

n

T

2

1n

> z

1��

(3.3)

where z

1��

denotes the (1� �) quantile of the simulated distribution (see Table 3.0).

Example 3.1. Our �rst example investigates the approximation of the level of the test de�ned

in (3.3). Because of the scale invariance we restrict ourselves to the case �

2

= 1 and considered

the functions

b(t; x) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

x

sin(5x)

x + x

�1

tx

x sin(t)

xe

t

for the drift. The di�usion was usually \normalized" by X

0

= 0 a.s., except in the case

b(t; x) = x + x

�1

; where X

0

= 1 a.s. was used as initial value. Table 3.1 shows the simulated

level of the test (3.3) for various sample sizes. The numbers in brackets denote the level obtained

by the normal approximation. We observe a nonsatisfactory performance of the test using the

quantiles of the standard normal distribution and a reasonable approximation of the level of

the test (3.3) for all drift functions under consideration. It is remarkable that the quality of

approximation does not change if an additional time parameter is included in the drift function.

� � 1 n = 50 n = 100 n = 200

b(t; x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

0 19.94 10.02 4.68 20.14 9.98 4.32 19.93 9.46 4.61

x 20.29 9.59 4.14 19.76 9.47 4.24 20.40 9.69 .476

sin(5x) 20.74 10.02 4.42 20.63 10.45 4.93 20.41 10.42 5.00

x+

1

x

17.78 8.64 3.76 19.84 9.77 4.34 20.12 9.65 4.71

t � x 20.55 9.94 4.61 21.26 10.48 4.94 19.92 9.85 4.94

x sin(t) 20.37 10.31 4.64 20.80 9.81 4.73 20.50 10.10 4.67

xe

t

19.67 9.40 4.34 20.13 9.78 4.60 19.72 9.82 4.94

Table 3.1: Simulated rejection probabilities of the test (3.3) for various sample sizes and drift

functions (�

2

= 1): The critical values z

1��

are obtained from Table 3.0. The numbers in

brackets show the simulated level of the test using a normal approximation.

Example 3.2. In this example we investigate the power of the proposed test (3.3). To this

end we consider the drift functions b(t; x) = x (Table 3.2) and b(t; x) = xt (Table 3.3) as

8



representative examples. For the heteroscedastic alternative we used the functions

�(t; x) =

8

>

>

>

>

>

<

>

>

>

>

>

:

1 + x

1 + sin(5x)

1 + xe

t

1 + x sin(5t)

1 + tx

for the variance in the stochastic di�erential equation (1.1). The corresponding results are listed

in Table 3.2 and 3.3 and show that the test detects heteroscedasticity in all considered cases. It

is worthwhile to mention that the size of the power depends on the nonnegative random variable

M

2

de�ned in (1.2), but not directly on the variance function. Note also (comparing the the

�rst with the �fth and third alternative) that the inclusion of an additional time dependence

in the variance function can yield a decrease or increase in power. However, comparing Table

3.2 with 3.3 we observe a decrease with respect to power in all cases, if the drift term contains

an additional time component.
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b(t; x) = x n = 50 n = 100 n = 200

�(t; x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

1 + x 75.45 64.79 53.26 86.11 78.41 70.63 92.59 87.97 83.26

1 + sin(5x) 99.93 99.75 99.09 100 100 99.99 100 100 100

1 + xe

t

91.30 83.80 73.69 97.39 94.97 90.99 99.48 98.91 97.84

1 + x sin(5t) 71.59 59.11 47.33 82.39 72.76 63.44 88.72 83.13 77.49

1 + tx 61.97 47.65 35.11 73.84 62.96 52.21 82.28 74.53 67.95

Table 3.2: Simulated power of the test (3.3) for various sample sizes, drift function b(t; x) = x

and di�erent variance functions.

b(t; x) = tx n = 50 n = 100 n = 200

�(t; x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

1 + x 72.88 60.69 48.93 81.76 73.39 64.30 90.12 84.67 78.69

1 + sin(5x) 99.90 99.65 99.29 99.99 99.98 99.92 100 100 100

1 + xe

t

90.71 83.43 73.85 97.24 94.46 90.46 99.42 98.72 97.66

1 + x sin(5t) 67.32 53.87 42.00 78.03 67.71 57.29 86.65 79.78 73.06

1 + xt 58.52 44.64 31.98 69.56 58.17 47.34 79.06 70.11 62.37

Table 3.3. Simulated power of the test (3.3) for various sample sizes, drift function b(t; x) = tx

and di�erent variance functions.
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4 Appendix: Proofs.

We begin with a decomposition of the di�usion (X

t

)

t2[0;1]

X

t

= X

0

+ A

t

+M

t

(0 � t � 1) ;(4.1)

where the processes (A

t

)

t2[0;1]

and (M

t

)

t2[0;1]

are de�ned by

A

t

:=

Z

t

0

b (s;X

s

) ds und M

t

:=

Z

t

0

� (s;X

s

) dW

s

(0 � t � 1) ;(4.2)

respectively. Our �rst auxiliary result gives estimates for the the moments of the increments

A

t+h

� A

t

and M

t+h

�M

t

:

Lemma 4.1. If assumption (2.1) and (2.2) are satis�ed and the solution (X

t

)

t2[0;1]

of the

stochastic di�erential equation (1.1) is decomposed as in (4.1) with

E

�

jX

0

j

2p

�

<1(4.3)

for some p 2 N ; then the following estimate holds for all m � p

sup

0�t�1

E

�

jA

t+h

� A

t

j

p

jM

t+h

�M

t

j

m�p

�

= O

�

h

(m+p)=2

�

(h # 0) :(4.4)

Proof. Recall from Karatzas and Shreve (1991) p. 306, that there exists a constant C

m;K

> 0

such that the solution of the stochastic di�erential equation (1.1) satis�es

E( sup

0�s�t

jX

s

j

2m

) � C

m;K

(1 + E(jX

0

j

2m

)) e

C

m;K

t

(4.5)

for all t 2 [0; 1]; provided that for some m 2 N

E(jX

0

j

2m

) <1 :(4.6)

Under the same assumption it also follows that

E(jX

t

�X

s

j

2m

) � C

m;K

(1 + E(jX

0

j

2m

))(t� s)

m

(4.7)

holds for all s; t 2 [0; 1] with s � t: Now an application of the Cauchy Schwarz inequality yields

E

�

jA

t+h

� A

t

j

p

jM

t+h

�M

t

j

m�p

�

� fE[jA

t+h

� A

t

j

2p

]g

1

2

fE[jM

t+h

�M

t

j

2(m�p)

]g

1

2

;(4.8)

where the factors of the right hand side can be estimated as follows. Using the de�nition (4.2)

and the estimate (4.5) we obtain by assumption (2.2)

E[jA

t+h

� A

t

j

2p

] = E

h

�

�

�

Z

t+h

t

b (s;X

s

) ds

�

�

�

2p

i

� h

2p

K

2p

E[(1 + sup

0�s�1

jX

s

j)

2p

]

� 2

p

h

2p

K

2p

p

X

l=0

�

p

l

�

E[ sup

0�s�1

jX

s

j

2l

] = O(h

2p

)(4.9)
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A further application of (4.7) for the process (M

t

)

t2[0;1]

de�ned in (4.2) yields

E[jM

t+h

�M

t

j

2(m�p)

] � C

m�p;K

h

m�p

(4.10)

(note that M

0

= 0) and a combination of (4.8) - (4.10) proves the assertion of Lemma 4.1.

2

Proof of Theorem 2.1. Recalling the de�nition of the random variables T

n

; T

1n

; T

2n

in (2.6),

(2.7) and the decomposition (4.1) we obtain

T

1n

= T

(1)

1n

+ 2T

(2)

1n

+ T

(3)

1n

(4.11)

where the statistics T

(i)

1n

(i = 1; 2; 3) are de�ned by

T

(1)

1n

=

n�1

X

i=1

(M
i+1

n

�M
i

n

)

2

T

(2)

1n

=

n�1

X

i=1

(A
i+1

n

� A
i

n

)(M
i+1

n

�M
i

n

)(4.12)

T

(3)

1n

=

n�1

X

i=1

(A
i+1

n

� A
i

n

)

2

:

Similary, we have

T

2n

= T

(1)

2n

+ 4T

(2)

2n

+ 6T

(3)

2n

+ 4T

(4)

2n

+ T

(5)

2n

(4.13)

with statistics T

(i)

2n

(i = 1; 2; 3; 4; 5) de�ned by

T

(1)

2n

= n

n�1

X

i=1

(M
i+1

n

�M
i

n

)

4

T

(2)

2n

= n

n�1

X

i=1

(A
i+1

n

� A
i

n

)(M
i+1

n

�M
i

n

)

3

T

(3)

2n

= n

n�1

X

i=1

(A
i+1

n

� A
i

n

)

2

(M
i+1

n

�M
i

n

)

2

(4.14)

T

(4)

2n

= n

n�1

X

i=1

(A
i+1

n

� A
i

n

)

3

(M
i+1

n

�M
i

n

)

T

(5)

2n

= n

n�1

X

i=1

(A
i+1

n

� A
i

n

)

4

:
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A straightforward application of Lemma 4.1 gives (using assumption (2.9))

T

(2)

1n

= O

P

(n

�

1

2

)

T

(3)

1n

= O

P

�

n

�1

�

T

(2)

2n

= O

P

(n

�

1

2

)

T

(3)

2n

= O

P

�

n

�1

�

(4.15)

T

(4)

2n

= O

P

(n

�

3

2

)

T

(5)

2n

= O

P

(n

�2

)

and observing the de�nition (2.7) the assertion of Theorem 2.1 can be established by proving

the estimates

R

n

= T

(1)

1n

�

Z

1

0

�

2

(s;X

s

)ds = O

p

(n

�1=2

)(4.16)

S

n

=

1

3

T

(1)

2n

�

Z

1

0

�

4

(s;X

s

)ds = O

p

(n

�1=2

logn):(4.17)

In order to prove these estimates we note that Itô's formula [see Karatzas and Shreve (1991)]

gives the representation

(M

t+h

�M

t

)

2

=

Z

t+h

t

2(M

u

�M

t

)�(u;X

u

)dW

u

+

Z

t+h

t

�

2

(u;X

u

)du;(4.18)

which shows

R

n

=

n�1

X

i=1

n

(M
i+1

n

�M
i

n

)

2

�

Z

i+1

n

i

n

�

2

(s;X

s

)ds

o

+O(n

�1

) = U

(1)

1n

+O(n

�1

);(4.19)

where the random variable U

(1)

1n

is de�ned by

U

(1)

1n

:=

n�1

X

i=1

Z
i+1

n

i

n

2(M

u

�M
i

n

)�(u;X

u

)dW

u

:(4.20)

The martingale properties of the Itô integral show that the terms in the above sum are uncor-

related and Itô's isometry allows an explicit calculation of the L

2

-norm of U

(1)

1n

; i.e.

E[(U

(1)

1n

)

2

] =

n�1

X

i=1

E[

Z

i+1

n

i

n

4(M

u

�M
i

n

)

2

�

2

(u;X

u

)du](4.21)
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�

n�1

X

i=1

Z
i+1

n

i

n

4E[(M

u

�M
i

n

)

4

]

1

2

E[�

4

(u;X

u

)]

1

2

du

� D

1

�

n�1

X

i=1

Z
i+1

n

i

n

(u�

i

n

) (1 + E[jX

u

j

4

])

1

2

du

� D

2

(1 + E[ sup

0�t�1

jX

t

j

4

])

1

2

n�1

X

i=1

Z
i+1

n

i

n

(u�

i

n

) du = O(n

�1

);

where we used Cauchy's inequality, the estimates (4.5), (4.7) and the constants D

1

; D

2

are

independent of n: A combination of this estimate with (4.19) proves (4.16).

For the proof of the remaining estimate (4.17) we note that a twofold application of Itô's formula

yields

(M

t+h

�M

t

)

4

=

Z

t+h

t

4(M

u

�M

t

)

3

�(u;X

u

)dW

u

(4.22)

+

Z

t+h

t

6(M

u

�M

t

)

2

�

2

(u;X

u

)du

=

Z

t+h

t

4(M

u

�M

t

)

3

�(u;X

u

)dW

u

+

Z

t+h

t

Z

u

t

12(M

s

�M

t

)�(s;X

s

)dW

s

�

2

(u;X

u

)du

+

Z

t+h

t

Z

u

t

6�

2

(s;X

s

)ds �

2

(u;X

u

)du;

which gives for the left hand side of (4.17) the representation

3S

n

= T

(1)

2n

� 3

Z

1

0

�

4

(s;X

s

)ds = U

(1)

2n

+ U

(2)

2n

+ U

(3)

2n

+O(n

�1

) ;(4.23)

where the quantities U

(i)

2n

(i = 1; 2; 3) are de�ned by

U

(1)

2n

:= n

n�1

X

i=1

Z

i+1

n

i

n

4(M

u

�M
i

n

)

3

�(u;X

u

)dW

u

U

(2)

2n

:= n

n�1

X

i=1

Z

i+1

n

i

n

Z

u

i

n

12(M

s

�M
i

n

)�(s;X

s

)dW

s

�

2

(u;X

u

)du(4.24)

U

(3)

2n

:=

n�1

X

i=1

n

n

Z

i+1

n

i

n

Z

u

i

n

6�

2

(s;X

s

)ds �

2

(u;X

u

)du� 3

Z

i+1

n

i

n

�

4

(s;X

s

)ds

o

:

The �rst term is treated similar as the statistic U

(1)

1n

in (4.2) and gives

E[(U

(1)

2n

)

2

] = O(n

�1

);
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which implies

U

(1)

2n

= O

P

(n

�

1

2

):(4.25)

For the estimation of the second term we use integration by parts for the Itô integral [see

Karatzes and Shreve (1991), p. 155] and obtain by a straightforward calculation

U

(2)

2n

= 12[U

(2:1)

2n

+ U

(2:2)

2n

+ U

(2:3)

2n

](4.26)

where the terms U

(2;i)

2n

(i = 1; 2; 3) are de�ned as follows

U

(2:1)

2n

:= n

n�1

X

i=1

Z

i+1

n

i

n

Z

u

i

n

�

2

(s;X

s

)ds (M

u

�M
i

n

)�(u;X

u

)dW

u

;

U

(2:2)

2n

:=

n�1

X

i=1

�

2

(

i

n

;X
i

n

)

Z

i+1

n

i

n

(M

s

�M
i

n

)�(s;X

s

)dW

s

;(4.27)

U

(2:3)

2n

:= n

n�1

X

i=1

Z

i+1

n

i

n

(M

s

�M
i

n

)�(s;X

s

)dW

s

Z

i+1

n

i

n

(�

2

(u;X

u

)� �

2

(

i

n

;X
i

n

))du:

For the random variable U

(2:1)

2n

we have

E[(U

(2:1)

2n

)

2

] = n

2

n�1

X

i=1

E

h�

Z

i+1

n

i

n

Z

u

i

n

�

2

(s;X

s

)ds (M

u

�M
i

n

)�(u;X

u

)dW

u

�

2

i

= n

2

n�1

X

i=1

E

h

Z

i+1

n

i

n

�

Z

u

i

n

�

2

(s;X

s

)ds

�

2

(M

u

�M
i

n

)

2

�

2

(u;X

u

)du

i

= O(n

�1

);

where we used similar arguments as in derivation of (4.21). This yields

U

(2:1)

2n

= O

p

(n

�1=2

);(4.28)

and an analog argument for the second term in (4.26) shows

U

(2:2)

2n

= O

p

(n

�1=2

):(4.29)

For the remaining term U

(2:3)

2n

we apply Cauchy's inequality

E[jU

(2:3)

2n

j] � n

n�1

X

i=1

E

h

Z

i+1

n

i

n

(M

s

�M
i

n

)

2

�

2

(s;X

s

)ds

i

1

2

(4.30)

� E

h�

Z
i+1

n

i

n

�

2

(u;X

u

)� �

2

(

i

n

;X
i

n

) du

�

2

i

1

2

and note that it follows from (2.2), (4.5) and (4.7) for the �rst factor

E

h

Z

i+1

n

i

n

(M

s

�M
i

n

)

2

�

2

(s;X

s

)ds

i

1

2

= O(n

�1

);
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where the bound is independent of i: For the second factor we have from (2.1) and (2.8)

(uniformly in i)

Z

i+1

n

i

n

j�

2

(u;X

u

)� �

2

(

i

n

;X
i

n

)j du =

Z

i+1

n

i

n

j�(u;X

u

)� �(

i

n

;X
i

n

)jj�(u;X

u

) + �(

i

n

;X
i

n

)j du

� 2 sup

0�t�1

j�(t; X

t

)j

Z

i+1

n

i

n

�

L(u�

i

n

)



+K jX

u

�X
i

n

j

�

du

� 2 sup

0�t�1

j�(t; X

t

)j

�

L

n

3=2

+

K

n

sup

0�s<t�1; jt�sj�n

�1

jX

t

�X

s

j

�

= O(n

�3=2

+ n

�

3

2

(logn)

1

2

) a:s:;

where the last line follows from the well known estimate for the modulus of continuity of the

di�usion (X

t

)

t2[0;1]

lim sup

h#0

sup

0�s<t�1; jt�sj�h

jX

t

�X

s

j

p

2h log(h

�1

)

= O(1) a:s:(4.31)

[see McKean (1969) p. 57] and the fact that the (almost surely) continuous function t! �(t; X

t

)

is bounded on the compact interval [0; 1]: A combination of these estimates with (4.30) yields

E[jU

(2:3)

2n

j] = O(n

�

1

2

(logn)

1

2

);

which implies observing the estimates (4.28) and (4.29)

U

(2)

2n

= O

p

(n

�1=2

p

logn):(4.32)

For the third term in (4.23) we use integration by parts and obtain

jU

(3)

2n

j =

�

�

�

n�1

X

i=1

3

n

n

�

Z

i+1

n

i

n

�

2

(s;X

s

)ds

�

2

�

Z

i+1

n

i

n

�

4

(s;X

s

)ds

o

�

�

�

�

n�1

X

i=1

3

n

n

�

Z

i+1

n

i

n

j �

2

(s;X

s

)� �

2

(

i

n

;X
i

n

) j ds

�

2

+

Z

i+1

n

i

n

j �

4

(s;X

s

)� �

4

(

i

n

;X
i

n

) j ds

+ 2�

2

(

i

n

;X
i

n

)

Z

i+1

n

i

n

j �

2

(s;X

s

)� �

2

(

i

n

;X
i

n

) j ds

o

�

n�1

X

i=1

3

n

n

�

Z

i+1

n

i

n

j �(s;X

s

)� �(

i

n

;X
i

n

) j j �(s;X

s

) + �(

i

n

;X
i

n

) j ds

�

2

+

Z
i+1

n

i

n

j �(s;X

s

)� �(

i

n

;X
i

n

) j j �(s;X

s

) + �(

i

n

;X
i

n

) j j �

2

(s;X

s

) + �

2

(

i

n

;X
i

n

) jds

+ 2�

2

(

i

n

;X
i

n

)

Z

i+1

n

i

n

j �(s;X

s

)� �(

i

n

;X
i

n

) j j �(s;X

s

) + �(

i

n

;X
i

n

) j ds

o
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� C

1

n�1

X

i=1

n

n

�

Z
i+1

n

i

n

(L(s�

i

n

)



+K jX

s

�X
i

n

j) ds � sup

0�t�1

j�(t; X

t

)j

�

2

+

Z
i+1

n

i

n

(L(s�

i

n

)



+K jX

s

�X
i

n

j) ds � sup

0�t�1

j�

3

(t; X

t

)j

o

� C

2

n�1

X

i=1

n

n sup

0�t�1

j�

2

(t; X

t

)j

�

L

n

3=2

+

K

n

sup

0�s<t�1; jt�sj�n

�1

jX

t

�X

s

j

�

2

+ sup

0�t�1

j�

3

(t; X

t

)j

�

L

n

3=2

+

K

n

sup

0�s<t�1; jt�sj�n

�1

jX

t

�X

s

j

�o

with constants C

1

; C

2

independent of n: Using again the estimate (4.31) for the modulus of

continuity it follows that

U

(3)

2n

= O

P

(n

�

1

2

(logn)

1

2

):(4.33)

and a combination with (4.32) and (4.25) yields the estimate (4.17), i.e.

S

n

= O

p

(n

�1=2

logn):

The assertion of the theorem now follows from the estimates (4.16) and (4.17).

2

Proof of Theorem 2.2. Recalling the de�nition of s

2j

in (2.13) and of T

2n

; T

1n

in (2.6) the

assertion of Theorem 2.2 follows from Cram�er's rule if the weak convergence

p

n

 

T

1n

� s

2

T

2n

� 3s

4

!

D

�! N (0; V ) (n!1)(4.34)

with

V =

 

2s

4

12s

6

12s

6

96s

8

!

(4.35)

can be established. To this end we use the decomposition (4.11) and (4.13) introduced in the

proof of Theorem 2.1. From the estimates (4.15) it is clear that (4.34) follows from the weak

convergence of

p

n

 

T

(1)

1n

+ 2T

(2)

1n

� s

2

T

(1)

2n

+ 4T

(2)

2n

� 3s

4

!

D

�! N (0; V ):(4.36)

The proof of the lastnamed statement is performed in two steps. At �rst we show that T

(2)

1n

and

T

(2)

2n

are of order o

p

(n

�1=2

) and therefore neglectible in (4.36) and secondly we prove asymptotic

convergence of the \remaining" random vector. For the �rst part we use the decomposition

T

(2)

kn

= n

k�1

n�1

X

i=1

(A
i+1

n

� A
i

n

)(M
i+1

n

�M
i

n

)

2k�1

= T

(2:1)

kn

+ T

(2:2)

kn

+ T

(2:3)

kn

; k = 1; 2;(4.37)
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where [recall the de�nition of the process (A

t

)

t2[0;1]

in (4.2)]

T

(2:1)

kn

= n

k�2

n�1

X

i=1

b(

i

n

;X
i

n

)(M
i+1

n

�M
i

n

)

2k�1

;

T

(2:2)

kn

= n

k�1

n�1

X

i=1

Z

i+1

n

i

n

(b (s;X

s

)� b(s;X
i

n

)) ds (M
i+1

n

�M
i

n

)

2k�1

;(4.38)

T

(2:3)

kn

= n

k�1

n�1

X

i=1

Z

i+1

n

i

n

(b(s;X
i

n

)� b(

i

n

;X
i

n

)) ds (M
i+1

n

�M
i

n

)

2k�1

:

A straightforward application of Itô's formula shows for k � 1

E

�

(M

t+h

�M

t

)

2k�1

j F

t

�

= 0 ;(4.39)

E

�

(M

t+h

�M

t

)

2k

j F

t

�

= d

k

h

Z

t+h

t

�

2

(s) ds

i

k

(4.40)

where d

k

= 1 � 3 � : : : � (2k� 1): This gives for the expectation and variance of the �rst term on

the right hand side of (4.37)

E

h

T

(2:1)

kn

i

= 0 ; k = 1; 2

V ar

h

T

(2:1)

kn

i

= d

2k�1

n

2k�4

n�1

X

i=1

E

�

b

2

(

i

n

;X
i

n

)

�

"

Z

i+1

n

i

n

�

2

(s) ds

#

2k�1

= O

�

n

�2

�

; k = 1; 2;

where we used (2.2) and (4.5) for the last estimate. This implies

T

(2:1)

kn

= O

P

(n

�1

) = o

P

(n

�

1

2

) ; k = 1; 2:(4.41)

For the second term T

(2:2)

kn

in (4.37) we use Cauchy's inequality, (2.1), (4.7) [applied to the

process (M

t

)

t2[0;1]

] and obtain with constants F

1

; F

2

; F

3

independent of n

E

h

�

�

�

T

(2:2)

kn

�

�

�

i

� n

k�1

n�1

X

i=1

n

E

h�

Z
i+1

n

i

n

(b (s;X

s

)� b(s;X
i

n

)) ds

�

2

io

1

2

n

E[(M
i+1

n

�M
i

n

)

4k�2

]

o

1

2

� F

1

n

k�1

n�1

X

i=1

n

E

h�

Z
i+1

n

i

n

jX

s

�X
i

n

j ds

�

2

io

1

2

n

�

2k�1

2

� F

2

n

�

1

2

n�1

X

i=1

n

n

�1

Z
i+1

n

i

n

E[jX

s

�X
i

n

j

2

] ds

o

1

2

� F

2

n

�1

n�1

X

i=1

n

Z
i+1

n

i

n

(1 + E[jX

0

j

2

])(s�

i

n

) ds

o

1

2

= F

3

(1 + E[jX

0

j

2

])

1

2

n

�2

(n� 1) = O

�

n

�1

�

;
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which proves

T

(2:2)

nk

= O

P

�

n

�1

�

= o

P

(n

�

1

2

) ; k = 1; 2:(4.42)

Finally, a similar argument shows

T

(2:3)

nk

= O

P

�

n

�1

�

= o

P

(n

�

1

2

) ; k = 1; 2(4.43)

and combining (4.41) { (4.43) with (4.36) shows that the weak convergence of (4.36) can be

established by proving

p

n

 

a

T

 

T

(1)

1n

T

(1)

2n

!

� a

T

 

s

2

3s

4

!!

D

�! N

�

0; a

T

V a

�

(n!1) :(4.44)

for all vectors a = (a

1

; a

2

)

T

2 R

2

nf0g: To this and let

T

(1)

0n

= a

1

T

(1)

1n

+ a

2

T

(1)

2n

=

n�1

X

i=1

a

1

(M
i+1

n

�M
i

n

)

2

+ a

2

n(M
i+1

n

�M
i

n

)

4

;(4.45)

then it follows from (4.40) by a straightforward calculation

E

h

T

(1)

0n

i

=

n�1

X

i=1

a

1

h

Z

i+1

n

i

n

�

2

(s) ds

i

+ a

2

3n

h

Z

i+1

n

i

n

�

2

(s) ds

i

2

(4.46)

=

n�1

X

i=1

a

1

n

�1

�

2

(

i

n

) + a

2

3n

�1

�

4

(

i

n

) +O

�

n

�

�

= a

1

Z

1

0

�

2

(t) dt+ a

2

3

Z

1

0

�

4

(t) dt+O

�

n

�

�

= a

1

s

2

+ 3a

2

s

4

+ o

�

n

�1=2

�

For the variance we obtain by similar arguments (observing that the terms in the sum (4.45)

are uncorrelated)

S

2

n

= V ar

h

T

(1)

0n

i

(4.47)
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n�1

X

i=1

a

2

1

E

h
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i+1

n

�M
i
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)

4
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a
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E

h
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n
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i
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)
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2

1

E
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2

i

E

h

(M
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2

2

n

2
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h
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1

h

Z

i+1

n

i

n

�

2

(t) dt

i

2

+ 24a

1

a

2

n

h

Z
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n

i

n

�
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(t) dt

i
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+ 96a

2

2

n

2

h

Z

i+1

n

i

n

�

2

(t) dt

i

4

= 2a

2

1

n

�1

Z

1

0

�

4

(t) dt+ 24a

1

a

2

n

�1

Z

1

0

�

6

(t) dt

+ 96a

2

2

n

�1

Z

1

0

�

8

(t) dt + O

�

n

�1�

�

+ O

�

n

�2

�

= n

�1

a

T

V a+ o

�

n

�1

�
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Moreover, (4.39) and (4.40) also imply

S

�4

n

n�1

X

i=1

E

h�

a

1

(M
i+1

n

�M
i

n

)

2

� a

1

E[(M
i+1

n

�M
i

n

)

2

]

+a

2

n(M
i+1

n

�M
i

n

)

4

� a

2

nE[(M
i+1

n

�M
i

n

)

4

]

�

4

i

= O

�

n

�1

�

:

and the weak convergence in (4.44) follows from the central limit theorem which completes the

proof of Theorem 2.2.
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