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A Note on Estimation Via
Linearly Combining Two Given Statistics

J�urgen Gro�

Department of Statistics

University of Dortmund

Vogelpothsweg ��

D������ Dortmund� Germany

Abstract� Linear combination of two statistics is considered when some prior knowledge about
their expectation and complete knowledge about their joint dispersion is available� The considered
setup is more general than those already known in the literature� in the sense that the expectation
of one of the statistics is not necessarily assumed to be completely known when estimation of the
expectation of the other statistic is of interest�

AMS ���� subject classi�cation� ��H���
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�� Introduction� Let us be given two statistics U� and U� with expectation

vectors �� and �� respectively� Suppose that we wish to estimate the k�dimensional

parameter vector ��� and �� � X � where X � is a known subspace of the space of all

k�dimensional real vectors� Additionally the l�dimensional vector �� is known to lie

in X �� where X � is a given subspace of the space of all l�dimensional real vectors�

and the joint dispersion matrix of U� and U� is known apart from a positive scalar�

Now� it is quite natural to ask whether it is possible to combine the statistics

U� and U� in such a way that the additional information will lead to improved

estimation of ��� Baksalary and Kala ��	 derived explicit formulas for the best

linear combination of U� and U� as an unbiased estimator for �� for the special

cases that �� 
 �� �� 
 ��� and �� being a subvector of ��� In this note we wish

to hint to the general case� �� � X �� by adopting the method of Baksalary and

Kala ��	� viz identifying the best linear combination of U� and U� with minimum

dispersion linear unbiased estimation under an appropriate Gauss�Markov model�

However� we do not assume that some relationship is known a priori between �� and

��� and therefore our results will not cover two of the cases investigated in ��	� As

�



it will be seen subsequently� our discussion will lead to an easy interpretation of the

so called covariance adjustment estimator� that is the best linear combination of U�

and U� when �� 
 ��

�� Preliminaries� Let IRm�n� IR
s
m� and IR�

m denote the set of m � n real

matrices� the subset of IRm�m consisting of symmetric matrices� and the subset of

IRs
m consisting of nonnegative de�nite matrices� respectively� The symbols A�� A��

A� and R
A� will stand for the transpose� any generalized inverse� the Moore�

Penrose inverse� and the range of A � IRm�n� Recall that A� is a generalized

inverse of A� if it is a solution to AGA 
 A with respect to G� whereas A� is the

unique solution to the four equations AGA 
 A� GAG 
 G� AG 
 
AG�� and

GA 
 
GA�� with respect to G�

Consider the general Gauss�Markov model denoted by

M 
 fY�X�� ��Vg�

where Y is an n� � observable random vector with E
Y� 
 X� and D
Y� 
 ��V�

The operators E
�� and D
�� stand for expectation vector and dispersion matrix�

respectively� of a random vector argument� The matrices X � IRn�p and V � IR�
n

are known� whereas � � IRp�� and �� � � are unknown parameters�

If K � IRr�p� then the vector of parametric functions K� is known to be un�

biasedly estimable under M if and only if R
K�� � R
X��� In that case� LY � l

is the minimum dispersion linear unbiased estimator 
MDLUE� of K� under M if

and only if


LX � LVX� � l� 
 
K � � � ��� 
����

where X� denotes any matrix such that R
X�� 
 N 
X��� cf� Rao ���	 or Drygas

��	� The term �minimum dispersion� is understood in the usual sense of the nonneg�

ative de�nite 
L�owner� ordering between dispersion matrices of estimators� Explicit

solutions to the system of equations 
���� are well known and widely discussed in

the literature� For example� an appropriate choice for L would be

L 
 K
X�T�X��X�T�� 
����

�



where T 
 V �XX�� cf� ���	�

Suppose now that Y 
 
Y�
� � Y

�
��
�� where Y� is of dimension k � � and Y� is of

dimension l � � and k � l 
 n� Moreover� assume that

X 


�
X� �

� X�

�
�

where X� � IRk�p�� X� � IRl�p� � and p� � p� 
 p� Then partitioning of � and V

accordingly leads to the Gauss�Markov model

f

�
Y�

Y�

�
�

�
X� �

� X�

��
��

��

�
� ��

�
V�� V��

V�� V��

�
g� 
����

Under the above model� estimation of E
Y�� 
 X��� means estimation of the vector

of parametric functions K� with K 
 
Ik � ��X� By choosing

X� 
 In �XX� 


�
Ik �X�X

�

� �

� Il �X�X
�

�

�
�

it is easily seen from 
���� that L�Y� � L�Y� is the MDLUE for E
Y�� if and only

if L� and L� are two solutions to the system of equations


L�X� � L�X�� 
 
X� � ��� 
����

L�V��
Ik �X�X
�

� � � L�V��
Ik �X�X
�

� � 
 �� 
����

and

L�V��
Il �X�X
�

� � � L�V��
Il �X�X
�

� � 
 �� 
����

Explicit solutions to 
����� 
���� and 
���� may for example be obtained by evaluating


����� Clearly� if V�� 
 �� then we may choose L� 
 � and L� such that L�Y� is

the MDLUE of X��� under a model fY��X���� �
�V��g�

As a further preliminary result we introduce the following lemma due to Albert

��	�

�



Lemma� Let A � IRs
k�l be partitioned as

A 


�
A�� A��

A�� A��

�
�

Then A � IR
�
k�l if and only if A�� � IR

�
l � R
A��� � R
A��� and

A� �
 A�� �A��A
�
��
A�� � IR�

k

for some 
and hence every� choice of generalized inverse A�
���

Note that the invariance of A� with respect to the choice of the generalized

inverse A�
��

is implied by R
A��� � R
A���� since the latter may also be expressed

as A�� 
 A��G for some matrix G� Therefore A�� 
 A�
��


 G�A��� and A� 


A�� � G�A��A
�
��A��G 
 A�� � G�A��G� The matrix A� is also known as the

generalized Schur complement of A�� in A� cf� ��� ��	�

�� Best linear combination of two statistics� Now suppose that U�

and U� are two statistics with E
U�� 
 �� and E
U�� 
 ��� where �� � X � and

�� � X � and the k � � and l � � subspaces X � and X � are known� Clearly we can

identify X � and X � with the column spaces of two known matrices X� and X�� say�

i�e� X � 
 R
X�� and X � 
 R
X��� In addition the dispersion matrix of the joint

vector 
U�
� � U

�
��
��

D

�
U�

U�

�

 ��

�
V�� V��

V�� V��

�
�

is assumed to be known apart from the positive scalar ���

If we are interested in estimation of one of the parameter vectors� �� say� then

it is quite natural to ask whether also the information delivered by U� can be

incorporated into the estimation procedure� The resulting estimator should be a

linear combination of U� and U� which is unbiased for ��� This means the estimator

should lie in the class

U � fU
L�U��L�U� � L� � IRk�k�L� � IRk�l�E
U� 
 �� ��� � R
X��g�

�



The optimal choice of estimator cU from this class should have minimum dispersion�

that is D
U� � D
cU� � IR
�
k for all U � U � It is quite obvious that the best linear

combination of U� and U� in this sense is equal to the MDLUE of X��� under the

Gauss�Markov model 
����� Thus we may state�

Proposition �� The best linear combination of the statistics U� and U� for

estimating �� is given by L�U� � L�U�� where L� and L� are any solutions to the

equations 
����� 
���� and 
�����

It is clear that when U� and U� are uncorrelated� that is V�� 
 � and V�� 


V�
�� 
 �� then we cannot expect any advantage from using U� in estimating ���

Indeed� as mentioned in the previous section� in that case L� 
 � and L� is such

that L�U� is the MDLUE of X��� under the model fU��X���� �
�V��g�

Our prior knowledge about the parameter vectors �� and �� is comprised in

the subspaces X � 
 R
X�� and X � 
 R
X��� respectively� If X � 
 IRk�� 
or

X � 
 IRl���� then we may say that �� 
or ��� is completely unknown� If X � 
 f��g�

where �� is a known l� � vector� then �� is completely known� In this case we may

assume without loss of generality that �� 
 � since we may as well consider the

statistic U� ��� instead of U��

If we consider the special case that �� is completely unknown� then we may

choose X� 
 Il� and it is easily seen that solutions to 
����� 
���� and 
���� are again

given by L� 
 � and L� being such that L�U� is the MDLUE of X��� under the

model fU��X���� �
�V��g� If in addition �� is completely unknown� that is X� 
 Ik�

then L� 
 Ik� Thus we may state�

Proposition �� If the two statistics U� and U� are uncorrelated� or �� is

completely unknown� then every linear combination of U� and U� for estimating ��

is worse than the MDLUE of X��� under the model fU��X���� �
�V��g� The latter

is U� itself if in addition �� is completely unknown�

We note that the situation when both �� and �� are completely unknown does

not cover Corollary ��� from ��	� This is so because in our approach no relationship

between the parameter vectors �� and �� is assumed to be a priori known� Therefore

our Proposition � does not cover the cases �� 
 �� and �� being a subvector of ��

which were investigated in ��	�

�



As mentioned above� the case that �� is completely known may be regarded as

the case of �� 
 � and hence X� 
 �� In the literature estimation in this case is

referred as covariance adjustment estimation� cf� ���� ��� �	� When X� 
 �� then

the equations 
����� 
���� and 
���� reduce to

L�X� 
 X�� 
����

L�V��
Ik �X�X
�

� � � L�V��
Ik �X�X
�

� � 
 �� 
����

L�V�� � L�V�� 
 �� 
����

From the Lemma in Section � we know that R
V��� � R
V���� which may be

written as R
V�
��� � R
V�

���� or equivalently V��V
�
��V�� 
 V�� for any choice of

generalized inverse V�
��� Thus a special solution to 
���� with respect to L� is given

by

L� 
 �L�V��V
�
��

for an arbitrary choice of V�
��� Substituting this special solution into 
���� shows

that 
���� and 
���� become equivalent to

�L�X� � L�V�
Ik �X�X
�

� �	 
 
X� � ��� 
����

where V� 
 V�� � V��V
�
��V�� is the generalized Schur complement of V�� in V�

Since by the Lemma we have V� � IR�
k � L� is a solution to 
���� if and only if L�U�

is the MDLUE of X��� under the model fU��X���� �
�V�g� see also 
����� Thus we

may state�

Proposition �� If �� is completely known 
that is �� 
 ��� then the best

linear combination of the statistics U� and U� for estimating �� is given by L�U��

L�V��V
�
��U�� where the choice of V�

�� is arbitrary and L� is such that L�U� is the

MDLUE of X��� under the model fU��X���� �
�V�g� The latter is U� itself if in

addition �� is completely unknown�

�



The addendum of Proposition � is easy to prove� It states that if �� is completely

unknown and �� 
 �� then the best linear combination is

U� �V��V
�
��U��

This has also been observed in ��� Corollary ���	� Actually� also the remainder of

Proposition � could follow by appropriate combination of Lemma �� Lemma � and

Theorem � in ��	�

�� Other concepts of linear combination of two statistics� Assuming

nonsingularity of V� Baksalary and Trenkler ��	 investigated linear combinations of

the form

L�U� � L�V��V
��
��U� 
����

with L� 
 F
F�V��
� F��F�V��

� � V� 
 V�� � V��V
��
��V��� and F being any known

matrix such that R
F� � R
X�� 
 X �� Such combinations were considered by

the authors ��	 as estimators for �� when �� is completely unknown� Although�

by Proposition �� these estimators are not best linear combinations for estimating

��� the authors ��	 demonstrated that under certain conditions they can outperform

the best estimator L�U� being the MDLUE of X��� under fU��X���� �
�V��g� The

motivation for the derivations is the observation that any estimator of the form 
����

is admissible for �� among the set of all linear combinations of U� and U� and with

respect to the mean square error criterion� Note that this criterion would lead to a

greater reduction of the class of linear estimators than the mean square error matrix

criterion� cf� ��	�

However� the results might be generalized by considering �� to be restricted

to some subspace X � instead of assuming X � 
 IRl��� Essentially� this would

require the identi�cation of all linearly admissible estimators under model 
�����

which could be done by applying the results of Baksalary and Markiewicz ��� �	�

Once a certain admissible linear combination of U� and U� is identi�ed� conditions

for outperforming the best linear combination� the latter being L�U� � L�U� with

solutions L� and L� to 
����� 
���� and 
����� can be investigated�

�



�� Using combination of statistics for prediction� Let us be given two

statisticsU� and U� as in Section �� Suppose that the realization of an unobservable

random variable w is to be predicted� where

D

�
U�

w

�

 ��

�
V�� ���

��� ���

�

is known apart from ��� For simplicity let V�� be nonsingular� Moreover� E
w� is

assumed to be a known linear combination of the elements of E
U�� 
 �� � X ��

that is E
w� 
 c���� where c � IRk�� is known� This situation describes state � of

knowledge as introduced in ��	� Following Harville ��� Sec� ���	� a possible predictor

is given by

b� � ���V
��
��
U��

where b� is an estimator for

� 
 
c� � ���V
��
�� ����

Thus� there is a one�to�one correspondence between estimators of � and predictors

of the realization of w� Since estimators of � may rely upon estimators of ��� it is

reasonable to use the best linear combination of U� and U� from Proposition � for

estimating ��� in order to obtain a better predictor for the realization of w�

�� Conclusion� If the two statistics U� and U� are correlated and the

dimension of the subspace X � of the l � � parameter vector �� � X � is less than

l� then we can expect an advantage from linearly combining U� and U�� The best

linear combination for estimating �� is cU 
 L�U��L�U�� where L� and L� are any

solutions to 
����� 
���� and 
����� It is reasonable to conjecture that the advantage

from using cU grows with our prior knowledge about ��� which becomes more when

the dimension of X � becomes smaller�
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