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Abstract

In modern statistics the robust estimation of parameters is a cen-

tral problem, i. e., an estimation that is not or only slightly a�ected by

outliers in the data. The Minimum Covariance Determinant estima-

tor (MCD) [8] is probably one of the most important robust estimators

of location and scatter. It's complexity of computing the MCD, how-

ever, was unknown and generally thought to be exponential even if the

dimensionality of the data is �xed.

Here we present a polynomial time algorithm for MCD for �xed

dimension of the data. In contrast we show that computing the MCD-

estimator is NP-hard if the dimension varies.

Keywords: Computational statistics, eÆcient algorithms, NP-com-

pleteness, combinatorial geometry

1 Introduction

In modern mathematical statistics and data analysis one fundamental problem

is that of constructing statistical methods which are robust against model de-

viations. For example, it is well known that the standard estimates of location

and scatter { sample mean and sample variance { are not robust. A single data

point which is moved far out will change these quantities arbitrarily. In general

one assumes that the observed data is mainly generated by some process or

distribution which one would like to analyse. We shall call the part of the data

coming from the distribution of interest the data from the true population.

�
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The rest of the data, however, might come from other sources or is altered by

noise, we call this the outliers. The goal is to nevertheless estimate statistical

quantities of the true population. This is clearly impossible if the majority

of the data consists of outliers, thus we shall assume that the majority of the

data comes from the true population.

One possible approach to tackle the problem of robust estimation is to �nd

a suÆciently large subset of the data mainly consisting of elements of the true

population and to base the estimation on this subset. Several authors follow

this approach, e. g. [3, 8]. One of the most popular methods in this context is

to select a subset with a minimum value of the covariance determinant (MCD

estimator, [2, 4, 8]). Heuristic search algorithms for the MCD can be found in

[5, 6, 9, 10, 11]. A comparison of the MCD, MVE and S-estimator is presented

in [1].

More precisely, given N observations, a subset of size h, for some h > N=2,

is selected for which the determinant of the empirical covariance matrix is

minimal over all subsets of size h. We shall now formally de�ne MCD and

then discuss some of its properties.

Let X = x

1

; : : : ;x

h

be a set

1

of points in R

d

for some constant d. Let x

i

=

(x

i1

; : : : ; x

id

)

T

. The (empirical) covariance matrix C = C(X ) = (c

ab

)

1�a;b�d

of

X is the (d� d)-matrix de�ned by

c

ab

=

1

h

h

X

i=1

(x

ia

� t

a

) � (x

ib

� t

b

) where t

j

=

1

h

h

X

i=1

x

ij

;

or in matrix notation

C(X ) =

1

h

h

X

i=1

x

i

x

i

T

� t t

T

:

The covariance matrix is positive de�nite. For a d�d-matrixM , let det(M)

denote its determinant. For the determinant of a covariance matrix C we write

det(X ) = det(C(X )) and we shall call it covariance determinant. Let us now

de�ne the problem:

De�nition 1.1 (MCD) Let d < N=2. Let X = fx

1

; : : : ;x

N

g be a set of

N points in R

d

. Let h be a natural number, N=2 < h < N . The minimum

covariance determinant problem for X and h, MCD for short, is the problem

to �nd an h-element set X

0

= fx

i

1

; : : : ;x

i

h

g � X such that det(X

0

) is minimal,

over all h-element sets.

For the decision version of MCD, MCDd, a positive real number B is given

in addition. The problem is to decide whether there exists an h-element set

X

0

= fx

i

1

; : : : ;x

i

h

g � X such that det(X

0

) � B.

1

Strictly speaking we are considering multisets here, i. e., we allow multiple occurrences

of the same element. We shall nevertheless use the term set as is the practice in statistics.

One may as well think of weighted points, where the weight indicates the multiplicity.
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Another robust estimator of location and shape is the Minimum Volume

Ellipoid and our results can be easily adapted to this estimator:

De�nition 1.2 (MVE) The Minimum Volume Ellipsoid is the problem to

�nd a subset of size h, for that the enclosing ellipsoid has the minimal volume.

The empirical covariance matrix C(X

0

) with minimal determinant yields a

robust estimator S of scatter, S = S(X

0

) = c

0

� C(X

0

), where c

0

is a suitably

chosen constant to achieve consistency. As an estimator for the location one

uses the mean (or center of gravity)

t = t(X

0

) =

1

h

X

x2X

0

x

of the h points in the set X

0

. The pair (t; S) is called MCD-estimator with

respect to X .

There is a nice geometric interpretation of the MCD. The inverse C

�1

(X

0

) of

the minimum covariance matrix C(X

0

) and the mean t(X

0

) de�ne an ellipsoid

in R

d

, for details see Section 2. This ellipsoid nicely matches the points X

0

,

see Figure 1 for an example in two dimensions. The determinant is a measure

of volume. Hence a small determinant corresponds to an ellipsoid of small

volume. If the extensions of the ellipsoid in all dimensions are small then the

set X

0

is quite compact. Another way to get a small volume is that the ellipsoid

is somewhat \at", i. e., it might have a large extension in some directions but

only small ones in others. This indicates that the set X

0

is \essentially lower

dimensional".

In this paper we address the complexity of computing the MCD-estimator.

Obviously, computing det(X

0

) for all

�

N

h

�

subsets X

0

of X of size h solves the

problem, though it might take exponential time in h. It was not clear whether

the estimator itself has this complexity independent of the dimensionality d

of the data. Here we show that the complexity of MCD is polynomial if the

dimension is �xed. This is achieved by avoiding to consider all subsets of size

h. Exploiting geometric properties of the estimator, we have been able to

design an algorithm which enumerates a sequence of subsets of size h of the

input data set X in polynomial time. We show that one of the sets enumerated

has minimum covariance determinant. The running time of our algorithm is

O

�

N

d

2

�

.

On the other hand it is possible to show that the decision version of the

MCD problem is NP-complete if the dimension varies. This is achieved by

reducing CLIQUE to MCDd. The reduction combines combinatorial and al-

gebraic methods in a clever way and is of its own interest. The main problem

in constructing a reduction is that one cannot control the entries of the covari-

ance matrix directly but only through the data points. Moreover, changing a

data point might alter all entries of the covariance matrix. The continuous

nature of the MCD-estimator introduces further diÆculties.

The next section states some properties of the covariance determinant and

the related ellipsoid which will be helpful in proving our results.
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Figure 1: The �gure shows the ellipsoid which corresponds to the covariance

matrix with minimum determinant. The ellipsoid is plotted for two di�erent

radii. The points at right are outside the ellipsoid even for a very large radius.

2 MCD and Ellipses

Fix d and let v = d(d + 3)=2. A quadric Q in R

d

is a (d � 1)-dimensional

manifold determined by a second order expression which depends on v + 1

real parameters a

0

; a

1

; : : : ; a

d

and a

ij

for 1 � i � j � d. Every point z =

(z

1

; : : : ; z

d

)

T

2 Q satis�es the condition

a

0

+a

1

z

1

+ � � �+a

d

z

d

+a

11

z

2

1

+2a

12

z

1

z

2

+ � � �+2a

d;d�1

z

d

z

d�1

+a

dd

z

2

d

= 0 : (1)

Note that there are only v degrees of freedom because equation (1) can be mul-

tiplied by any non-zero constant without changing the quadric. Equation (1)

can be rewritten in matrix form as follows. Let the symmetric matrix A and

the vector b be de�ned by

A :=

0

B

B

B

@

a

11

a

12

� � � a

1d

a

12

a

22

� � � a

2d

.

.

.

.

.

.

.

.

.

.

.

.

a

1d

a

2d

� � � a

dd

1

C

C

C

A

; b :=

0

B

B

B

@

a

1

a

2

.

.

.

a

d

1

C

C

C

A

:

Then Equation (1) is equivalent to

z

T

Az+ z

T

b + a

0

= 0 : (2)

We say that quadric Q selects a subset X

0

� X if

x

T

Ax+ x

T

b+ a

0

�

� 0 8x 2 X

0

> 0 8x 2 X n X

0

:
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If the quadric surface is the surface of an ellipsoid then Equation (2) can

be rewritten as

(z� t)

T

M (z� t) = r

2

; (3)

where M is a positive de�nite (d � d)-matrix, t 2 R

d

is the center point

and r 2 R is the radius. Given M , t and r we denote by E(M; t; r) the solid

ellipsoid de�ned by Formula (3) with equality replaced by \less than or equal".

Selection by quadrics in d dimensions is equivalent to linear separation in

v dimensions. To this end consider the mapping b: R

d

7! R

v

de�ned by

b
z = (z

1

; : : : ; z

d

; z

1

z

1

; : : : ; z

i

z

j

; : : : ; z

d

z

d

)

T

; 1 � i � j � d :

For a set Z � R

d

let

^

Z := f
b
z j z 2 Zg. Now the parameters a

i

; a

ij

in (1) de�ne

a hyperplane in R

v

which separates the points of

^

X

0

from those in

^

X n

^

X

0

.

As mentioned in Section 1, the covariance matrix C(X

0

) of a point set X

0

is positive de�nite. Its inverse C

�1

is also positive de�nite and the ellipsoid

E(C

�1

; t(X

0

); r) is an ellipsoid which \�ts" the point set X

0

for a suitably

chosen radius r.

Throughout this paper we assume that the points of X are in general

quadric position, i. e., no hyperplane in R

v

contains more than v + 1 points

of

^

X .

The following result of Rousseeuw [9] shows that the �t is even better for

the set de�ning the minimum covariance determinant.

Lemma 2.1 Let d < h < N and let X � R

d

be a set of N points. Let

X

opt

� X , jX

opt

j = h be such that det(X

opt

) is minimal for all subsets of X of

cardinality h. Let C

opt

= C(X

opt

) be the corresponding covariance matrix and

t

opt

= t(X

opt

) be the center of gravity. Then there exists a radius r > 0 such

that

X

opt

= X \ E(C

�1

opt

; t

opt

; r) ;

that is, E(C

�1

opt

; t

opt

; r) selects X

opt

.

Given a set S � X , jSj = v then (by our assumption on the position of

the points) there is a unique quadric Q(S) through the points of S; we call

it the quadric de�ned by S. It can be computed by writing an equation of

the form (1) for every point z 2 S and solving the resulting system of linear

equations for a

0

; a

1

; : : : ; a

dd

. As mentioned above the value of one parameter,

e. g., a

0

, can be chosen arbitrarily.

The next lemma shows that a set of points selectable by an ellipsoid is

(almost) selectable by a quadric de�ned by a set of v points.

Lemma 2.2 Given X � R

d

in general quadric position and an ellipsoid E let

X

0

= E \ X . Then there exists a set S � X , jSj = v := d(d + 3)=2 such

5



that for the quadric Q(S) the following holds: Let A, b and a

0

de�ne Q(S) as

in (2) then

x

T

Ax + x

T

b+ a

0

� 0 x 2 X

0

x

T

Ax + x

T

b+ a

0

� 0 x 2 X n X

0

x

T

Ax + x

T

b+ a

0

= 0 for at most v points x 2 X n X

0

Proof. Let an ellipsoid E = E(M; t; r) be given which selects a set X

0

� X ,

i. e.,

(x� t)

T

M (x� t)

�

� r

2

if x 2 X

0

;

> r

2

if x 2 X n X :

Expanding the matrix equation into the form (1) with a

0

= �r

2

we arrive at

a

1

x

1

+ � � �+ a

d

x

d

+ a

11

x

2

1

+ 2a

12

x

1

x

2

+ � � �+ a

dd

x

2

d

(

� r

2

if x 2 X

0

;

> r

2

if x 2 X n X

0

:

(4)

The hyperplane

a

1

x

1

+ � � �+ a

d

x

d

+ a

11

x

2

1

+ 2a

12

x

1

x

2

+ � � �+ a

dd

x

2

d

= r

2

separates the points of

^

X

0

and

^

X n

^

X

0

in R

v

. This hyperplane is now moved

in such a way that it contains v points of

^

X but no point has passed through

it. By our assumption made on the position of the points it follows that the

hyperplane contains exactly v points. This means that the inequality or strict

inequality (4) becomes an equality for the points x on the hyperplane. Let a

0

i

and a

0

ij

denote the parameters of the resulting hyperplane. Clearly a

0

i

and a

0

ij

de�ne a quadric in R

d

but not necessarily an ellipsoid. Altogether there are at

most v new points x 2 X n X

0

such that

a

0

1

x

1

+ � � �+ a

0

d

x

d

+ a

0

11

x

2

1

+ 2a

0

12

x

1

x

2

+ � � �+ 2a

0

d;d�1

x

d

x

d�1

+ a

0

dd

x

2

d

= Fa

0

0

:

�

3 An EÆcient Algorithm for Fixed Dimension

Using the results from the previous section, we show how to list all subsets

selectable by ellipsoids in polynomial time. Actually we shall list a polynomial

collection of sets which contains all those selectable by ellipsoids. There are in

general in�nitely many ellipsoids which select the same subset. Given X

0

� X

let E(X

0

) denote the set of all ellipsoids selecting X

0

. Next we show how to

select a representative from every E(X

0

), X

0

� X .

Let E 2 E(X

0

). According to Lemma 2.2, there is hyperplane H(E) in R

v

such that for all points of X

0

the inequality for H(E) is satis�ed with \less or

equal"and there are at most v points of X n X

0

satisfying it with equality.
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The algorithm loops through all subsets S of X of cardinality v. For every

S it computes the hyperplane H(S) de�ned by S, which is possible in time

O(v

3

). We then compute the set

T = fx 2 X j x satis�es (4) with "strictly less"g :

The time to compute T is O(n). Finally, for every S

0

� S let T

0

= S

0

[ T .

The sets T

0

enumerated as above contain all subsets of X selectable by

ellipsoids and possibly other sets. We are only interested in sets of size h.

Let T

0

1

; : : : ; T

0

k

be the sequence sets constructed as above with jT

i

j = h. For

each T

0

i

the covariance determinant is computed and the overall minimum is

selected. By Lemma 2.1, any set de�ning an optimal covariance determinant

is selectable by an ellipsoid, hence, an optimal set appears in the sequence.

The number of enumerated sets T

0

is at most

�

N

v

�

2

v

= O(N

v

), where

v = d(d + 3)=2. For every set time O(N) is spent. The following theorem

summarizes this result.

Theorem 3.1 For �xed dimension d the MCD-problem can be solved in poly-

nomial time O(N

v+1

) where v = d(d+ 3)=2.

4 The Hardness Result

In this section we show that the decision version MCDd of the Minimum

Covariance Determinant problem is NP-complete if the dimension varies. To

indicate this we shall use n to denote the dimension in this section.

De�nition 4.1 (Mahalanobis distance) Let C be a positive de�nite n�n-

matrix and let t be a n-vector. Then the Mahalanobis distance md(x;C; t) of

vector x w. r. t. C and t is de�ned by

md(x;C; t) := (x� t)

T

C

�1

(x� t) :

The following Lemma is a particular case of the Theorem 1 from [9]:

Lemma 4.2 (Exchange Lemma) Let x and y be points from R

n

and let

X be a set of points from R

n

not containing x or y. Let C = C(X ) be the

covariance matrix of X and t = t(X ) be the center of gravity of the points in

X . If

md(x;C; t) > md(y;C; t)

then

det(X [ fxg) > det (X [ fyg) :

Intuitively, exchanging a distant point with a closer one decreases the de-

terminant. We show that the decision version of MCD is NP-complete by

reducing the maximum clique problem n=2-CLIQUE to it. For the sake of

completeness let us repeat the de�nition of the latter problem.
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De�nition 4.3 (n=2

n=2

n=2-CLIQUE) Let a graph G with n vertices and m edges

be given. The problem is to decide whether G contains a complete subgraph on

dn=2e vertices, i. e., a subset of dn=2e vertices in which all edges are present.

The parameters used in the following theorem and in the rest of the paper

are summarized in Table 1 of the appendix. Now we are ready to state the

main theorem:

Theorem 4.4 MCDd is NP-complete.

Proof. Let G = (V;E) be a graph with vertex set V , jV j = n and edge set

E. For a reduction we construct an input for the MCD-estimator by mapping

the vertices and edges of G into points in R

n

and by choosing the appropriate

constant B =

1

h

n

(k + 2wz

2

)

k

� (2wz

2

)

(n�k)

. The dimension of the resulting

input is the number of vertices of the graph. Let v

i

, i = 1; : : : ; n, be the

vertices and let e

ij

denote the edge between v

i

and v

j

. Let e

i

denote the i-th

unit vector in R

n

. Vectors and points in R

n

are identi�ed as usual.

We use k to denote dn=2e in the following. Three types of points in R

n

are

used in the reduction: Vertex points (v-points), edge-points (e-points), and

auxiliary points (a-points). Let X consist of the following points:

� For every vertex v

i

add the point e

i

on the i-th coordinate axis.

� For every edge e

ij

add the point e

i

+ e

j

on the diagonal of the 2-

dimensional subspace in dimensions i and j.

� For every i 2 f1; : : : ; ng add k

4

=2 times the point k

�2k

�e

i

and k

4

=2 times

the point �(k

�2k

) � e

i

. These points are on the i-th coordinate axis very

close to the origin.

Altogether X contains N := n+m+nk

4

points. MCD selects a subset X

0

� X

of cardinality h < N such that det(X

0

) is minimal. We set h := k +

�

k

2

�

+ nk

4

which is the number of a-points plus the number of edges and vertices of a

k-clique.

The a-points serve two purposes: By choice of h, at least k

4

�

�

k

2

�

� k

copies of every a-point have to be selected. This ensures that the covariance

determinant for k � 2 is not zero, because the a-points span R

n

. Second their

large number ensures that the center of any covariance ellipsoid de�ned by h

points is very close to the origin.

The a-points are close to the origin and do not contribute much to the

covariance determinant resp. to the volume of the associated ellipsoid. We shall

show that one has to select all of them for a minimum ellipsoid. Still

�

k

2

�

+ k

points are missing and we have to select them from the v- and e-points. These

points are far away from the origin (and the center of any ellipsoid de�ned

by h points), hence they contribute much to the covariance determinant. In

order to keep the determinant small the vectors they represent should span a

low-dimensional space.

8



If G contains a k-clique then the set X

0

can be completed by adding the

points corresponding to the edges and vertices of a clique. We shall call this a

clique con�guration. The vectors of the v- and e-points of X

0

span a space of

only k dimensions, which bounds their inuence on the covariance determinant.

Altogether the covariance determinant det(X

0

) is small. In Section 4.1 we will

show that det(X

0

) is not larger than B.

If G does not contain a k-clique, we will be forced to add v- and e-points

to X

0

such that the corresponding vectors span at least k+1 dimensions. This

results in a much larger value of det(X

0

). All such con�gurations are called

non-clique con�gurations.

In order to lower bound the determinant we will construct in Section 4.3 an

arrangement of h points which cannot be realized by the reduction. It consists

of all a-points, exactly k+1 v-points and h� (k+1)�nk

4

copies of the origin.

We call this a minimal (k+1)-con�guration. We will show in Section 4.4 that

this minimal (k+1)-con�guration has a smaller determinant than a non-clique

con�guration, but is still greater than B.

To show that the reduction works in polynomial time, we look at the num-

ber of points and the bit-length of the numbers. The number of points is

bounded by O(k

5

). The numbers itself are described by rational numbers.

B is the largest number, and nominator and denominator are bounded by

2k

(4k+1)n

. Therefore the bit-length is less than O(k

2

log k). �

The proofs of the facts in the following sections have to cope with many

technical problems. MCD is a continuous problem, not a combinatorial one.

The main diÆculty, however, is that we cannot control the entries of the co-

variance matrix directly. In general a point in X

0

inuences all entries in the

covariance matrix C(X

0

) as well as the center of gravity.

4.1 An Upper Bound on the Determinant of the Clique

Con�guration

Let X

0

constitute a clique con�guration. The center of gravity t of X

0

is

t =

1

h

(k; : : : ; k; 0; : : : ; 0)

T

;

where the transition of the entries from k to 0 occurs after position k. The

covariance matrix C of the clique con�guration has the following form:

C =

1

h

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

a b � � � b 0 � � � � � � 0

b

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

b

.

.

.

.

.

.

b � � � b a 0 � � � � � � 0

0 � � � � � � 0 c 0 � � � 0

.

.

.

.

.

. 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0

0 � � � � � � 0 0 � � � 0 c

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;
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where the upper left submatrix is k � k and

a = k + 2wz

2

� k

2

=h

b = 1� k

2

=h

c = 2wz

2

:

By Hadarmard's determinant inequality, see e. g. Horn and Johnson [7], the

determinant of a positive de�nte matrix is bounded by the product of its

diagonal elements. Hence we arrive at

h

n

� det(C) � a

k

� c

n�k

=

�

k + 2wz

2

�

k

2

h

�

k

�

�

2wz

2

�

(n�k)

�

�

k + 2wz

2

�

k

�

�

2wz

2

�

(n�k)

= h

n

�B

4.2 All a-Points Have to be Selected

Let X

0

� X be a set of h points. We want to show that for any choice of X

0

every a-point is closer to the center of gravity of the set X

0

than any v- or

e-point. Closeness here is measured with respect to the Mahalanobis distance.

More precisely:

Lemma 4.5 Let a be an arbitrary a-point and let x be an arbitrary v- or e-

point, a;x 2 X . Then the following relation holds for any set X

0

� X with

jX

0

j = h

md(a;C(X

0

); t(X

0

)) < md(x;C(X

0

); t(X

0

)) :

Proof. We try to construct X

0

in such a way that the di�erence

md(x;C(X

0

); t(X

0

))�md(a;C(X

0

); t(X

0

))

is minimized and show that it is always larger than 0. It then follows from

Lemma 4.2 that a set X

0

de�ning a minimal covariance determinant has to

contain all a-points.

In order to maximize the Mahalanobis distance of an a-point and simultane-

ously minimize that of a v-point w. r. t. C and t, we even allow con�gurations

of points which are not realizable by our reduction. We allow that a v- or

e-point is chosen multiple times, in order to "pull the ellipsoid towards it".

The analysis distinguishes several cases. We describe the analysis of one

case in detail, namely that of maximizing the Mahalanobis distance of an a-

point and simultaneously minimizing that of a v-point in a di�erent dimension.

The arguments for the other cases follow the same line.

2

The inuence of a point on the covariance matrix { and hence the Ma-

halanobis distance { is maximal in the direction from the point to the center

2

Maple worksheets for the cases not treated here can be found on the following website:

http://ls2-www.cs.uni-dortmund.de/~bernholt/mcd/index.html
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of gravity and is minimal in orthogonal directions. We thus consider a two-

dimensional sub-scenario of a d-dimensional one. Let us, w. l. o. g., devote di-

mension 1 to minimize the distance to a v-point and dimension 2 to maximize

that of an a-point.

As we have moved all degrees of freedom into dimensions 1 and 2, the a-

points in dimensions 3; 4; : : : ; n are symmetrically placed. These a-points do

not inuence the upper left (2 � 2)-submatrix of the covariance matrix, they

do however a�ect the center of gravity. As they are symmetrical with respect

to the origin, they sum up to the origin. There are at most n+ n(n� 1)=2 v-

and e-points. In the case we are looking at now, we allow u copies of the v-

point v

1

:= (1; 0; 0; ; : : : ; ; 0)

T

and w�u copies of the a-point (0; z; 0; ; : : : ; ; 0)

T

.

We then compute the (2-dimensional) covariance matrix C and the center of

gravity t of this arrangement of points.

t = (t

1

; t

2

)

T

=

1

h

�

u; (w � u)z + w(�z)

�

T

=

1

h

�

u;�zu

�

T

;

C =

"

a b

b c

#

=

1

h

2

4

u+ 2w z

2

�

u

2

h

u

2

z

h

u

2

z

h

(2w � u) z

2

�

u

2

z

2

h

3

5

:

Let a

2

:= (0; z; 0; ; : : : ; ; 0)

T

be the a-point in dimension 2. Let d(v

1

) =

md(v

1

;C; t) be the Mahalanobis distance of v

1

w. r. t. C and t, and let d(a

2

) =

md(a

2

;C; t) be the corresponding value for a

2

. We consider the inequality

d(v

1

)� d(a

2

) > 0. Multiplying with det(C) we �nd

�

2 t

2

z � z

2

�

a+

�

2 t

2

� 2 t

1

z

�

b +

�

�2 t

1

+ 1

�

c > 0 :

Substituting a; b; c; t

1

; t

2

and multiplying with h=z

2

yields

�

�2�

1 + z

2

k

�

u+

�

1� z

2

�

k

4

> 0 :

In order to minimize the left-hand side, one has to choose u as large as possible,

i. e., u = 2k + 2k(2k � 1)=2:

k

4

� 4 k

2

+

�

�k

4

� 2 k � 1

�

z

2

� 4 k � 1 > 0 :

The term k

4

is the dominant one, and the left-hand side increases with k and

thus the inequality is true for k � 3.

The other cases that one has to consider include distributing the u missing

a-points in other possible ways and the consideration of two v-points and

mixtures of e- and v-points. The arguments are along the same line and

always establish that the corresponding di�erence of the Mahalanobis distance

is larger than 0 for k � 3. Altogether it follows that the Mahalanobis distance

of a v- or e-point is always larger than that of any a-point. �

The following lemma is an immediate consequence of Lemma 4.5 and the

fact that the origin is contained in the convex hull of the a-points.

11



Lemma 4.6 Let 0 be the origin and let x be an arbitrary v- or e-point, x 2 X .

Then the following inequation holds for any set X

0

� X with jX

0

j = h:

md(0;C(X

0

); t(X

0

)) < md(x;C(X

0

); t(X

0

)) :

4.3 Constructing a Minimal Con�guration

Assume that the graph G of our clique problem does not contain a k-clique.

Let X be the set of points of the corresponding MCDd problem and let X

0

� X

be any set of h points. We now show that det(X

0

) is at least as large as the

determinant of the minimal (k+1)-con�guration. To this end we show how X

0

can be transformed into the minimal (k+1)-con�guration, whithout increasing

the determinant.

Lemma 4.7 Let G be a graph on n vertices without a k-clique, k = dn=2e. Let

X be the set of points of the corresponding MCDd problem. Let X

0

� X be any

set of h points. Let D be the determinant of a minimal (k + 1)-con�guration.

Then

det(X

0

) � D :

Proof. For the proof let us introduce some notation. Given a set of Y con-

sisting of e- and v-points we say that it spans k dimensions if the subspace

spanned by the corresponding vectors is k-dimensional. We say that Y touches

k dimensions if there are at least k positions in which some member of Y has

a 1-entry. For example the set f(1; 1; 0; 0; 0); (0; 0; 1; 1; 0)g spans 2 dimensions

and touches 4 dimensions. Adding the vector (0; 1; 1; 0; 0) does not increase

the number of dimensions touched but increases the dimension of the span to

3.

From Section 4.2 we know that any h-element set with minimal covariance

determinant has to contain all a-points. Consequently it has to contain exactly

m := (k�1)k+k e- or v-points y

1

; : : : ;y

m

. Let Y = fy

1

; : : : ;y

m

g be the set of

these points. As G does not contain a k-clique, the vectors in Y span a space

of at least k + 1 dimensions.

If there are k + 1 v-points in Y then we can achieve the minimal (k + 1)-

con�guration directly by moving all but k + 1 v-points to the origin. By

Lemma 4.6 and the Exchange Lemma 4.2, the covariance determinant of the

resulting con�guration is less than or equal to that of the original con�guration.

Otherwise we have to replace some e-points by v-points in addition, without

increasing the determinant. In order to control the change of the determinant

during the replacement, one has to carefully select which e- and v-points to

keep and which to move into the origin. Therefore, the location of the points

in Y relative to each other is important. We represent this structure as an

undirected graph H = H(Y). For every v-point v

i

2 Y there is a vertex i

in H. For every e-point e

ij

2 Y the vertices i and j are in H as is the edge

fi; jg. In order to distinguish between vertices which are solely introduced by

e-points and those for which the corresponding v-point is in Y we call a vertex

12



i of H marked if v

i

2 Y. The resulting graph H is isomorphic to a subgraph

of the original graph G, but has two types of vertices, marked and unmarked

ones. The marked vertices correspond to v-points really present in Y while the

unmarked vertices of H do not have a corresponding v-point in Y. They are

merely induced by an e-point in Y.

We now show how a set Y

0

� Y can be constructed such that the resulting

graph H

0

= H(Y

0

) is cycle-free and that Y

0

spans k + 1 dimensions.

De�nition 4.8 Let B be a tree with marked vertices as described above. If B

has m edges the value w(B) of B is de�ned by

w(B) =

�

m+ 1 if at least one vertex is marked,

m otherwise.

Note that if the tree B is de�ned by a set Y of v- and e-points, i. e. B = H(Y),

and w(B) = s, then Y spans s dimensions, but might touch more. In contrast,

a cyclic graph de�ned by a even number s of e-points, e. g. e

12

; e

23

; : : : ; e

s1

only

spans s� 1 dimensions.

Claim 4.9 If a graph H has at least

�

k

2

�

edges and does not contain a k-clique

then there are vertex-disjoint trees B

1

; : : : ; B

r

in G with

P

r

i=1

w(B

i

) � k.

Proof. Assume that for all choices of r and vertex-disjoint trees B

1

; : : : ; B

r

the equation

P

i=1:::r

w (B

i

) � k�1 holds true. Then there are at most k�1+r

vertices in the trees B

1

; : : : ; B

r

.

Let B

1

; : : : ; B

r

any r trees such that all edges of H lie within these trees.

Let k

i

be the number of vertices in tree B

i

. We want to establish an upper

bound for the number of edges in the connected components induced by the

trees.

To this end let B

0

1

; : : : ; B

0

r

be the vertex disjoint graphs induced by the trees

B

1

; : : : ; B

r

. A graph B

0

i

has k

i

vertices and at most

�

k

i

2

�

edges. The number

of edges in the graphs B

0

1

; : : : ; B

0

r

is at most Z =

�

k

1

2

�

+ � � �+

�

k

r

2

�

and the B

0

i

then contain

P

i=1:::r

k

i

= k � 1 + r vertices.

If r = 1, the graph B

0

1

is identical to the graph H. Moreover, w(B

1

) � k�1

hence B

1

(and H) has at most k vertices. As H has at least

�

k

2

�

edges, it

contains a k-clique contrary to our assumption.

Otherwise, if r � 2, the edges are distributed over two or more graphs

and due to the convexity of W there are fewer edges in the graph G than

�

k

2

�

. So this leads to a contradiction. Thus there must be vertex disjoint trees

B

1

; : : : ; B

r

with

P

i=1:::r

w (B

i

) � k. �

Claim 4.10 Let H be a graph with M marked vertices,

�

k

2

�

+k�M edges and

let H contain no k-clique. Then there are vertex-disjoint trees B

1

; : : : ; B

r

in

H with

P

i=1:::r

w (B

i

) � k + 1.

Proof. We prove this claim by constructing trees with the desired property:
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� Case 1: M � k + 1

There are k + 1 trees each consisting of a single marked vertex.

� Case 2: 1 �M � k

The graph has at least

�

k

2

�

edges. Claim 4.9 shows that there exists some

r and trees B

1

; : : : ; B

r

such that

P

i=1:::r

W (B

i

) � k. Take one marked

vertex additionally.

� Case 3: M = 0

The graph has at least

�

k

2

�

+k =

�

k+1

2

�

edges. By Claim 4.9 it follows that

there exists some r and trees B

1

; : : : ; B

r

such that

P

i=1:::r

w (B

i

) � k+1.

�

For the construction of the set Y

0

apply Claim 4.10 to the graph H(Y). Let

B

1

; : : : ; B

r

be the resulting trees. Now move all e-points in Y corresponding

to edges that are not present in some B

i

into the origin. By Lemma 4.6 the

covariance determinant is only decreased by this operation.

In the following, the e-points in Y

0

will be replaced by suitably chosen v-

points. We then end up with Y

0

consisting of at least k + 1 v-points and no

e-point.

Let us consider a single tree B

i

and the corresponding v- and e-points. The

formula below shows a (3� 3)-submatrix of corresponding rows and columns

of the covariance matrix. For technical reasons the covariance matrix is split

into the sum of the pure covariance part and the o�set resulting from the fact

that the center of gravity is not the origin. The �rst row is a prototype of

a dimension which is touched by exactly q v- or e-points. The second row is

a dimension which is solely touched by a single e-point that also touches the

dimension of the third row. The third row represents a dimension which is

either unmarked and is touched by p e-points, p � 2, or which is marked and

touched by p� 1 e-points, p � 2.

0

@

q 0 0

0 1 1

0 1 1 + p

1

A

+

0

B

@

�

q

2

h

�

q

h

�

(1+p)q

h

�

q

h

�

1

h

�

1+p

h

�

(1+p)q

h

�

1+p

h

�

(1+p)

2

h

1

C

A

any other row

a leaf of the tree

a node with p v/e-points

We track the e�ect of replacing an e-point touching the dimension of row 2 and

3 by a v-point on the matrix. The replacement is reected by the following

operations on the rows and columns.

column 3 := column 3 - column 2

row 3 := row 3 - row 2

The resulting matrix is

0

@

q 0 0

0 1 0

0 0 p

1

A

+

0

@

�

q

2

h

�

q

h

�

pq

h

�

q

h

�

1

h

�

p

h

�

pq

h

�

p

h

�

p

2

h

1

A
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The determinant of the matrix has not been changed in this process. Thus

after successively applying this process to all edges of the tree B

i

, all points

corresponding to the tree are replaced by isolated vertices. Claim 4.10 ensures

that there are at least k + 1 vertices. If we move the superuous vertices into

the origin, we obtain a minimal (k+1)-con�guration and Lemma 4.7 has been

proved. �

4.4 A Lower Bound on the Determinant of a Minimal

(k + 1)-Con�guration

In this section we compute the covariance determinant of the minimal (k+1)-

con�guration as constructed in the previous section. The center of gravity t

of the clique con�guration is

t =

1

h

(1; : : : ; 1; 0; : : : ; 0)

T

;

where the transition of the entries from 1 to 0 occurs after position k+1. The

covariance matrix C

m

of the minimal (k + 1)-con�guration has the following

form:

C

m

=

1

h

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

a b � � � b 0 � � � � � � 0

b

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

b

.

.

.

.

.

.

b � � � b a 0 � � � � � � 0

0 � � � � � � 0 c 0 � � � 0

.

.

.

.

.

. 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0

0 � � � � � � 0 0 � � � 0 c

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

where the upper left submatrix is (k + 1)� (k + 1) and

a = 1 + 2wz

2

� 1=h

b = � 1=h

c = 2wz

2

:

According to Ger�scorin's Disc Theorem, see e. g. [7], all eigenvalues of a matrix

M = [m

ij

] are located in the union of the discs jm

ii

� j �

P

n

j=1;j 6=i

jm

ij

j for
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 2 C such that the determinant is lower bounded for k � 2 as follows:

h

n

� det(C

m

)

� (a� k � jbj)

k+1

� c

n�k�1

=

�

1 + 2wz

2

�

k + 1

h

�

k+1

� (2wz

2

)

n�k�1

�

�

9

10

�

k+1

� (2wz

2

)

n�k�1

� (k + 2wz

2

)

k

� (2wz

2

) � (2wz

2

)

n�k�1

= h

n

�B

We used the following relations:

1 + 2wz

2

� (k + 1)=h > 9=10 for k � 2

9=10 > (k + 2wz

2

)

k

� (2wz

2

) for k � 2

And that completes the proof of the NP-completeness of MCD.
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5 Summary

We have presented a polynomial-time algorithm for the minimum covariance

determinant problem for �xed dimensions of the data. On the other hand we

have shown that the problem is NP-hard for varying dimension.

The running time of our algorithm on N d-dimensional data points is

O

�

N

d(d+3)=2

�

. The hardness result suggests that any uniform algorithm for the

MCD problem has a running time where d appears more than poly-logarithmic

in the exponent. It is, however, possible that algorithms exist which have a

running time of N

O(d)

.

A paper concerning implementation details and empirical results gained on

benchmark data is in preparation.

Let us also remark that the algorithm can be easily adapted for the Mini-

mum Volume Ellipsoid problem and that our result implies that this problem

is NP-complete for varying dimension as well.
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A Appendix

n number of vertices of graph G

m number of edges of graph G

N number of points of the MCD-problem (here N = n+m+ nk

4

)

k clique size (here k = dn=2e)

h selection size (here h = k +

�

k

2

�

+ nk

4

)

z distance of an a-point from the origin (here z = k

�2k

)

w weight of an a-point (here w = k

4

=2)

B Bound for MCDd here B =

1

h

n

(k + 2wz

2

)

k

� (2wz

2

)

(n�k)

X the set of points in R

n

constructed in the reduction

X

0

the subset of h points for which

the covariance determinant is computed

Table 1: The table summarizes the parameters used in the paper.
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