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Abstract

As will be shown the current use of Desirability Indices for optimi-

sation purposes in experimental design gives biased results in general.

Researchers were satis�ed with approximative solutions as unbiased

results would have required analytical expressions for the distributions

of Desirability Indices. These expressions are unavailable. Todays

computing power allows to use Monte-Carlo estimators for estimating

exact solutions instead of analytical solutions and therefore to improve

the estimation process for Desirabilities.

Keywords: MCO, MCD, MCDA, Desirability Function, Desirabil-

ity Index, numerical optimisation, bias, Monte-Carlo estimation, com-

puter intensive procedures.

1 Introduction

Desirability Functions (DFs) are a popular tool to perform Multi-Criteria-

Optimisations (MCOs). As is well known the key problem in MCO are

so called competing responses, which can not be simultaneously optimised.

Any improvement in response, say, Y

1

diminishes response Y

2

. DFs translate

all responses individually in a user de�ned way onto a unitless scale. The

�

Work was partly supported by the DFG (SFB 475, "Reduction of complexity in mul-

tivariate data structures")
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individual Desirabilities then are combined to a single measure, the so called

Desirability Index (DI) to generate "best compromise" solutions.

Throughout this paper we assume a multivariate response Y 2 IR

Z

, i.e.

Z individual responses Y

1

; : : : ; Y

Z

to be measured and F controllable factors

X

1

; : : : ;X

F

. A set of values X

1

;X

2

; : : : ;X

F

is called a factor level setting

X. The relationship between responses Y and factor level settings X is given

by a function f with individual components f

i

; i = 1; 2; : : : ; Z:

Y = f(X) + � (1)

= (f

1

(X); f

2

(X); : : : ; f

Z

(X))

0

+ � (2)

= (f

i

(X

1

; : : : ;X

F

) + �

i

)

0

i=1;2;::: ;Z

; �

i

� N(0; �

i

); i = 1; 2; : : : Z (3)

= (Y

1

; Y

2

; : : : ; Y

Z

)

0

: (4)

A brief introduction to the concept of Desirability was given in [Ste99].

An overview and a nice comparison of Desirability and other approaches to

MCO can be found in [HdSD92].

Within the wide range of possible DFs those of Derringer/Suich type can

be considered as a de facto standard in real world applications.

What makes them standard is the 
exibility in representing di�erent

schemes for weighting deviances from a target value. An experimenter can

handle symmetric and asymmetric, target value and maximisation problems

using the same class of functions.

The aim of this work is to show some shortcomings of the current way

optimisations of DIs are performed and to remedy these by computer inten-

sive procedures. Most important is the correction of the inherent bias for

the estimated optimum factor level setting

d

X

opt

in the classical optimisation

procedure. This procedure up to now solves a simpli�ed problem, therefore

failing to identify the looked for solution. An improved procedure will be

presented.

All simulations were done using the data analysis computer language R

[Iha95].

In Section 2 the Derringer/Suich functions are introduced very brie
y,

together with the formalism needed in this paper. Section 3 describes the

standard procedure for Desirability Index optimisation. An improved alter-

native is presented in Section 4. Section 5 gives an example of both pro-

cedures "at work" using a data "classic". The example shows the superior

performance of the improved procedure presented here. A short conclusion

with directions of further work is given in Section 6.
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2 The Desirability Function of Derringer/Suich

type

In 1980 Derringer and Suich de�ned their class of desirability functions in

[DS80] as a more 
exible alternative to Harrington type functions [Har65].

A detailed discussion of their di�erences can be found in [Ste99].

The formal de�nition of a DF of Derringer/Suich type for a target value

problem is as follows:

d(Y

i

) :=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0; for Y

i

< LSL

i

�

Y

i

� LSL

i

T

i

� LSL

i

�

�

l;i

; for LSL

i

� Y

i

� T

i

�

USL

i

� Y

i

USL

i

� T

i

�

�

r;i

; for T

i

< Y

i

� USL

i

0; for USL

i

< Y

i

The parameters LSL

i

; USL

i

; T

i

give lower speci�cation limit, upper spec-

i�cation limit and target value for response Y

i

; parameters �

l;i

and �

r;i

are

weights for deviations to the left respectively to the right from the target.

Exponents near zero indicate unimportant deviations, whereas large expo-

nents stand for very important targets. In Figure 1 characteristic desirability

functions have been plotted, to show the 
exibility of this function class.

Maximisation- (minimisation-) problems can be handled consistently within

this function class using only the right (left) branch of a target value DF.

In the following a Derringer/Suich DF will be identi�ed by its �ve pa-

rameters and called a DF of type (LSL; T; USL; �

l

; �r).

Maxi- and minimisation can be written as DFs of type (LSL; T;1; �

l

; 0)

(maximisation) resp. type (�1; T; USL; 0; �

r

) (minimisation).

To combine these functions to a Multi-Criteria tool, Derringer/Suich use

the geometric mean of multiple DFs as Desirability Index D of a multivariate

response Y . The formula for D(Y ) gives the formal de�nition:

D(Y ) :=

Z

v

u

u

t

Z

Y

i=1

d

i

(Y

i

) (5)

=

Z

v

u

u

t

Z

Y

i=1

d

i

(f

i

(X

1

;X

2

; : : : ;X

F

) + �

i

): (6)

Implementations of Derringer/Suich desirabilities are found in a number

of software packages, mostly for experimental design. Two name just two
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Figure 1: Desirability functions of Derringer/Suich type for two di�erent

values of �

l

and �

r

, asymmetric case.
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Desirability functions of Derringer/Suich type

there are Design Expert [Inc00] from Stat-Ease Inc. und STAVEX [AG00],

developed at CIBA-GEIGY.

The following discussion is based on an experimental design. Each f

i

represents a linear or quadratic relationship between factors X

1

;X

2

; : : : ;X

F

and Y

i

; i = 1; 2; : : : ; Z. For each target Y

i

a DF d

i

of Derringer/Suich type

is speci�ed.

The aim is to �nd a factor level setting X

opt

which gives the best possible

response Y

opt

measured on the DI scale.

In this �nal "calibration" step the di�erence between usage of DFs in

observational studies and usage of DFs in experimental design can be found.

While in observational studies the (multivariate) observations are ranked

using desirabilities only, in experimental design optimisation an additional

step is considered. The estimated functional relationship

^

f is used to estimate

the best setting for the controllable factors

d

X

opt

. The optimisation takes place

in factor space, not in response space.
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3 Standard optimisation procedure

Before �nding X

opt

the corresponding Y

opt

has to be found which maximises

D(Y ). It must be noted that neither Y

opt

is necessarily unique, nor X

opt

.

Nevertheless for the paper presented here it is enough to �nd one Y

opt

.

The procedure adapted in practise to �nd a solution �rst estimates the

functions f

i

using Least-Squares estimates

^

f

i

(X) = E(Y

i

jX); i = 1; : : : ; Z.

As the optimisation takes place in factor space the de�nition of Desirabil-

ity in response space has to be transferred to factor space in a proper way. In

the classical procedure the following analogy is used to de�ne a Desirability

Index for factor level settings X:

D(X) := D(f(X)): (7)

Obviously the error term in (1) was replaced by its expected value 0.

Therefore DFs in factor space such de�ned are called idealised DFs.

For estimating the DI all estimated

^

f

i

are inserted into the user de�ned

expression for the Desirability Functions and the Desirability Index:

d

D

ideal

(X) :=

Z

v

u

u

t

Z

Y

i=1

d

i

(

^

Y

i

) (8)

=

Z

v

u

u

t

Z

Y

i=1

d

i

(

^

f

i

(X

1

;X

2

; : : : ;X

F

): (9)

This function D

ideal

is maximised in factor space, resulting in an estima-

tion

d

X

ideal

opt

for the optimum factor level setting X

opt

.

For optimisation practise it has to be noted that neither DFs nor DI

functions are unimodal in general. Therefore gradient based optimisation

techniques may only be used after further considerations.

3.1 Estimating a single idealised DF

As seen above the estimation of Desirabilities essentially takes place by es-

timating the individual idealised DFs. In this section the implications of

ignoring the error in the classical procedure will be investigated.

A simulation study was performed to give a �rst impression of estimating

idealised DFs.

First the most simple case of estimating DFs is explored. The known

"true" model was chosen as Y

1

= f

1

(X)+� = X+�; � � N(0; 0:1), with a type
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(-1, 0, 1, 1, 1) DF d

1

. Repeatedly �ve data points Y

1;i

for the design points

X

i

2 f�1;�0:5; 0; 0:5; 1g; i = 1; 2; : : : ; 5, were generated. These points were

used to estimate idealised desirabilities for the linear model

^

f

1

= �̂ +

^

�x. In

Figure 2 ten estimated idealised desirabilities are shown.

Figure 2: Ten estimated idealised DFs, Y = X + � � N(0; 0:1), d of type (-1,

0, 1, 1, 1),

^

f

1

= �̂+

^

�x.
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Ten repeated estimates of an idealised DF of type (-1, 0, 1, 1, 1), linear case

Most important in Figure 2 (and in Figure 4) is the seeming precision the

results are reported with. Each replication of the experiment gives a seem-

ingly exact estimation of the idealised desirability. Especially no uncertainty

may be assigned to an

d

X

ideal

opt

after the calibration step.

Nevertheless

d

X

ideal

opt

is a random variate. To get an idea about its distri-

bution the estimation process was repeated 1000 times. A line search was

performed to �nd

d

X

ideal

opt

for each replication. Figure 3 shows a histogram for

d

X

ideal

opt

. Its distribution is symmetric about the known "true" x

ideal

opt

zero. The

calibration gives an unbiased result for a response assumed being error free.

In a second step analogous simulations were performed for the quadratic

case.

The known "true" model was chosen as Y

2

= f

2

(X) + � = X

2

+ �; � �

N(0; 0:1), with a type (-1, 0, 1, 0.1, 1) DF d

2

. The same design was used to

generate data and subsequently estimate a linear model

^

f

2

= �̂+

^

�x+
̂x

2

. In
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Figure 3: Histogram of estimated

d

X

ideal

opt

, 1000 replications, linear case; for

exact speci�cations see Figure 2

Histogram of estimated optima, linear case , 1000 replications
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Figure 4 ten estimated idealised desirabilities for this simulation are shown.

Figure 4 is somewhat more interesting than Figure 2. The speci�ed ex-

ample shows a target value problem modelled quadratically. The response

reaches T = 1 exactly in X

ideal

opt

= 0.

The estimated DFs fall into two classes. On one hand there are parabolas

of the same type as the speci�cation of the example. Their vertex gives a re-

sponse below T. For this class

d

X

ideal

opt

is distributed symmetrically around the

known optimum factor level setting. On the other hand there are parabolas

with maximum response higher than T. Those result in DFs with two local

extrema in the points giving exactly a response T. Again the calibration was

performed using line search. In case of multiple optima one of those was

chosen at random.

As the distribution of

d

X

ideal

opt

is a mixture of the two distributions for

the two classes, tri-modality may be expected. Indeed Figure 5 shows this

behaviour for 1000 replications of the estimation process.

To stress the point of these simulations: In an experimental design context

there are no repetitions. The experimenter has no hint about the reliability

of the estimated optimum using the standard procedures. One has to believe

in the resulting factor level settings. Certainly the estimated errors �̂

i

for
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Figure 4: Ten estimated idealised DFs, Y = X

2

+ � � N(0; 0:1), d of type

(-1, 0, 1, 0.1, 1),

^

f

2

= �̂ +

^

�x+ 
̂x

2

.
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Ten repeated estimates of an idealised DF of type (-1, 0, 1, 0.1, 1) quadratic case

the individual functions f

i

; i = 1; : : : ; Z are known, but it is not possible to

extrapolate these to a con�dence interval of any kind for

d

X

ideal

opt

.

The approach used in the standard optimisation procedure deliberately

chooses to ignore knowledge about errors in the model.

One �nal note on the analytical diÆculties of the calibration step: Cali-

bration is equivalent to estimating roots of polynomials with coeÆcients one

knows the common distribution of. When for example considering the linear

case with Y

opt

:= T and ŷ = �̂+

^

�x one �ndsdx

opt

=

T��̂

^

�

. Even for this linear

case the general distribution of

�̂

^

�

is unknown, while the common distribution

of �̂ and

^

� is known.

4 Improved optimisation procedure

As seen above all information about the error is neglected in DI optimisation.

This exactly is the point where a great improvement can be achieved.

Is an experimenter really looking for an optimum factor setting forD(f(X))?

Or wouldn't it be much more sensible to take process quality, measured by

the size of �, into account and optimise E(D(f(X) + �))?
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Figure 5: Histogram of estimated X

ideal

opt

, 1000 replications, qudratic case; for

exact speci�cations see Figure 4

Histogram of estimated optima, quadratic case, 1000 replications
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In analogy to de�nition (1) another way to de�ne Desirability in factor

space obviously is:

D

real

(X) := E(D(f(X) + �)): (10)

Desirabilities de�ned this way are called realistic DFs (resp. DIs).

The maximisation problem to solve alters directly to

max

X

E(D(f(X) + �)): (11)

Solutions of this problem are called X

real

opt

.

The two approaches coincide for applications if �

�

is very small, but will

give di�erent solutions if �

�

is not negligible.

Furthermore DFs are not linear. Therefore using d(

^

f (X)) as an estimator

for d(f(X) + �) only is an approximative solution.

This choice of an approximative solution was natural at times when the

necessary computing power was unavailable. Analytically the distributions

of Desirability Function values or Desirability Index values for a speci�ed

X can not be handled eÆciently. Using the computational power of today

one can a�ord to approximate the distribution of DF and DI using Monte-

Carlo Simulations. That way it becomes possible to optimise E(D(f(x)+�))

directly, using all information from the data, including size of errors!

9



A short remark has to be made concerning the use of the geometric mean:

While in the idealised approach it was deliberate to take the z-th root, it is

obligatory now. Exchanging the expectation and the z-th root may alter the

order of two factor level settings X

1

;X

2

.

4.1 Estimating a single realistic DF

In this section the implications of using a realistic DF for the estimating and

calibrating process will be shown.

Figure 6 displays the di�erence between the two presented procedures for

a simple example. The triangle function shows a typical idealised DF of type

(-1, 0, 2, 1, 1) for a one dimensional Y . As constructed X

ideal

opt

is found to be

zero.

Figure 6: Idealised and realistic Desirability for a Type (-1,0,2,1,1) DF, 5000

replications , Y = X + �; �� = 0:25; 0:5
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The other curves show estimated realistic DFs for di�erent values of �

�

=

0:25 and �

�

= 0:5. The value for each point X is calculated performing a

Monte-Carlo simulation approximatinging the mean desirability response for

each point.

To get a smooth curve a relatively high number of repetitions is necessary

in this example (n = 5000). The number of repetitions is an important

aspect, as it determines the computing time needed by this algorithm. This

aspect gets more important as the dimension of factor space increases. The

example in Section 5 shows a way to determine a reasonable sample size from

the data. Optimisation is performed via grid-search along the x-axis.

What can be seen from Figure 6? Obviously the curves from realistic

DFs are smoother than from idealised DFs. If an experimenter is sure about
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unimodality of the Desirability Index function gradient based methods may

fearlessly be applied. The most important di�erence is the direct impact the

size of �

�

has for the absolute value of DF. If �

�

increases the maximumdesir-

ability decreases, while at the same time the area with non-zero desirability

is enlarged. This behaviour re
ects very nicely the trust an experimenter

should have in the process. If there is a high noise level in the data one

can not be too sure about the performance in an estimated optimum factor

level setting. At the same time one can not be too sure about a real bad

performance at some design point.

The most important point however is the di�erence of the estimations for

X

ideal

opt

and X

real

opt

.

It is seen that the realistic optimum X

real

opt

slowly drifts away from X

ideal

opt

when the noise level is increased. The direction of drift is a consequence of

the asymmetric speci�cation of the DF, giving a deviation to the right less

weight. Table 1 summarises some of the simulation results. In columns three

and four the expected desirabilities of the estimated optima are compared.

The improvement in Desirability by using realistic DFs is obvious. The high

number of repetitions (10000) was necessary to make the di�erence between

columns three and four for �

�

= 0:25 signi�cant.

This constructed example shows the principle only. The advantage of

using realistic DFs does not look too impressive, but in the next chapter an

example with real data will be given, which shows the worthwhileness of such

e�orts.

Table 1: Results for the example shown Figure 6

�

�

d

X

real

opt

E(D(

d

X

ideal

opt

)) E(D(

d

X

real

opt

)) repetitions

0.25 0.11 0.85 0.86 10000

0.5 0.25 0.70 0.73 10000

5 Realistic Desirabilities at work

As the classic Derringer/Suich paper [DS80] gives a nice example for opti-

mising a Desirability Index, it is an obvious choice for trying to improve on

their result.

In their paper they use a set of chemical data to apply their DFs to. They

have four targets Y

1

to Y

4

and three controllable variables X

1

to X

3

. The

data were generated using a central-composite design with 20 experiments, to

11



�t a second-order model

^

f

i

including all interactions. They got the following

estimates:

^

f

1

(X) = 139:1 + 16:5X

1

+ 17:9X

2

+ 10:9X

3

� 4:0X

2

1

� 3:5X

2

2

� 1:6X

2

3

+5:1X

1

X

2

+ 7:1X

1

X

3

+ 7:9X

2

X

3

; �

1

= 5:6;

^

f

2

(X) = 1261:1 + 268:2X

1

+ 246:5X

2

+ 139:5X

3

� 83:6X

2

1

� 124:8X

2

2

+199:2X

2

3

+ 69:4X

1

X

2

+ 94:1X

1

X

3

+ 104:4X

2

X3; �

2

= 328:7;

^

f

3

(X) = 400:4 � 99:7X

1

� 31:4X

2

� 73:9X

3

+ 7:9X

2

1

+ 17:3X

2

2

+ 0:4X

2

3

+8:8X

1

X

2

+ 6:3X

1

X

3

+ 1:3X

2

X

3

; �

3

= 20:6;

^

f

4

(X) = 68:9� 1:4X

1

+ 4:3X

2

+ 1:6X

3

+ 1:6X

2

1

+ 0:1X

2

2

� 0:3X

2

3

�1:6X

1

X

2

+ 0:1X

1

X

3

� 0:3X

2

X

3

; �

4

= 1:27:

(More details are found in [Ste99]).

After performing the optimisation for idealised DFs, an optimal factor

level setting

d

X

ideal

opt

= (�0:05; 0:145;�0:868) was identi�ed by Derringer/Suich.

In

d

X

ideal

opt

the idealised DI is 0.58.

If instead realistic DFs are used and the estimated standard deviations

�

i

; i = 1; 2; 3; 4 are taken into account a numerical optimisation (Nelder-

Mead) gives

d

X

real

opt

= (0:13; 0:50;�1:08). To get a �gure for the sample

size needed to get a desired precision a simulaton pre-study was performed.

Assuming similarity between the distributions of D(

d

X

ideal

opt

) and D(

d

X

real

opt

) a

Monte-Carlo simulation for estimating the variance of the DI in

d

X

ideal

opt

was

performed. This simulation gave

d

V ar(D(

d

X

ideal

opt

)) � 0:23.

Using the Central-Limit-Theorem is is easily seen that a sample size of

ca. 4800 at each point in factor space is needed to get a standard deviation

lower than

1

300

for the DI near the optimum. Using that sample size gains

two usable digits in the estimated DI using 99%-con�dence intervals.

Table 2: Estimated optima and estimated DIs; 4800 replications in each

factor setting X to reduce the standard deviation of the estimates near the

optimum to approximately

1

300

.

d

X

real

opt

d

X

ideal

opt

D

real

0.44 0.40

D

ideal

0.56 0.58

The idealised DI of

d

X

real

opt

is 0.56, only slightly worse than for

d

X

ideal

opt

. Com-

paring the realistic DIs for these two settings gives a promising relative im-
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provement of 10% from 0.4 to 0.44 (see Table 2). A 10% percent improvement

in desirability performance certainly is a strong argument towards applying

the realistic DFs.

6 Conclusion

The computing power easily available to the statistician nowadays allows to

tackle problems which are hard or impossible to solve analytically. Sometimes

approximative solutions may be discarded in favour of computer intensive,

"exact" procedures. The optimisation of Desirability Indices is one of these.

Only now it is possible to get an answer to the right question! Ignoring

the error terms while at the same time having estimated them is insensi-

ble. Monte-Carlo simulations give reasonable exact solutions to be used in

practical applications. While in this paper normality and independence is

assumed for the error, this is not necessary in principle. The procedure does

not depend on these assumptions.

Not considered in this paper is the distribution of the realistic Desirability

Index itself. Using Mote-Carlo simulations the statistician gets estimates for

the whole distribution function. This knowledge might be used to re�ne

and/or 
exibilise the optimisation goal.
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