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Abstract

In this note a matrix version of the q-d algorithm is introduced. It is shown that

the algorithm may be used to obtain the coeÆcients of the recurrence relations for

matrix orthogonal polynomials on the interval [0;1) and [0; 1] from its moment gen-

erating functional. The algorithm is illustrated by several examples, which generalize

classical orthogonal polynomials on the real line.
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1 Introduction

The q-d algorithm is useful in numerical analysis and approximation theory. Some dis-

cussion of the algorithm is given in the monograph of Henrici (1977), Vol. 2. One of the

applications of the algorithm is to turn a power series into a continued fraction. Formally

we have
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The algorithm relates the quantities c

i

in the power series with the coeÆcients q

(0)

i

; e

(0)

i

in

the continued fraction and proceeds by some simple quotient-di�erence operations. Given

the quantities c

0

; c

1

; � � � we start by de�ning for n � 0

q

(n)

1

=

c

n+1

c

n

(1.2)

and successively de�ne e

(n)

m

; q

(n)

m+1

for m � 1 and n � 0 by the relations
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(1.3)

This is usually displayed in an array of the form
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where the top diagonal produces the entries q

(0)

i

; e

(0)

i

of the continued fraction expansion in

(1.1). When the quantities c

k

are the moments

c

k

=

Z

1

0

t

k

d�(t)

for some measure � on the interval [0;1), the series gives the Stieltjes transform of the

measure �, that is,

Z

1

0

d�(t)

1� zt

= c

0

+ c

1

z + c

2

z

2

+ � � � :(1.5)

Truncating the continued fraction produces a rational approximation to the series. The

coeÆcients in the continued fraction also generate the coeÆcients of the three term recur-

rence relation for the polynomials orthogonal with respect to the measure �. Thus, if we

set
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�

2m�1

= q

(0)

m

�

2m

= e

(0)

m

; m � 1(1.6)

then the corresponding monic orthogonal polynomials satisfy the relations: P

�1

(x) �

0; P

0

(x) � 1 and

P

n+1

(x) = (x� �

n+1

)P

n

(x)� �

n+1

P

n�1

(x) ; n � 1(1.7)

where

�

k+1

= �

2k�1

�

2k

and �

k+1

= �

2k

+ �

2k+1

:

Forms of the q-d algorithm have appeared using vectors, see Van Iseghem (1987, 1989).

Recently there has been considerable interest in matrix measures and matrix orthogonal

polynomials, see for example Rodman (1990), Sinap and Van Assche (1994,1996), Duran

and Van Assche (1995), Duran (1995, 1996, 1999) or Duran and Lopez-Rodriguez (1996,

1997) and the references therein. The purpose of the present note is describe a matrix

version of the q-d algorithm and to illustrate its application in some examples of the matrix

version of the recurrence formula (1.7). The remaining part of the paper is organized as

follows. In the next section some background material is discussed and the matrix algorithm

precisely stated. Section 3 contains a proof of the result and section 4 has some examples

illustrating applications of the algorithm from di�erent viewpoints.

2 Review and Statement of Theorem

In this section a number of preliminary results are discussed. Let � = (�

ij

) denote a p� p

matrix of measures on the Borel �eld of the interval [0;1) such that for each Borel set A

the matrix (�

ij

(A)) is symmetric and positive semi-de�nite and such that the moments

S

k

=

Z

1

0

t

k

d�(t) 2 R

p�p

(2.1)

exist for all k � 0. For n 2 N

0

let H

n

denote the block Hankel determinants de�ned by

H
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.

.

.
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m

� � � S

2m

1

C

A

H

2m+1

=

0

B

@

S

1

� � � S

m+1

.

.

.

.

.

.

S
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� � � S
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1

C

A

:(2.2)

It has been shown in Dette and Studden (2001) that if

M

n+1

= f (S

0

; � � � ; S

n

) j S

k

=

Z

1

0

t

k

d�(t) for some � g(2.3)
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denotes the n-th moment space generated by these measures, then (S

0

; � � � ; S

n

) 2 M

n+1

if and only if the Hankel matrix H

n

is semi-de�nite and (S

0

; � � � ; S

n

) 2 int M

n+1

if and

only if H

n

is positive de�nite. If (S

0

; � � � ; S

n�1

) 2 int M

n

let S

�

n

be de�ned by

S

�

2m

= (S

m

; � � � ; S

2m�1

)H

�1

2m�2

0

B

@

S

m

.

.

.

S

2m�1

1

C

A

(2.4)

if n = 2m is even, and by

S

�

2m+1

= (S

m+1

; � � � ; S

2m

)H

�1

2m�1

0

B

@

S

m+1

.

.

.

S

2m

1

C

A

(2.5)

if n = 2m+1 is odd. The matrix S

�

n

gives the "smallest" value for S

n

if (S

0

; � � � ; S

n�1

) 2 int M

n

and

(S

0

; � � � ; S

n

) 2 M

n+1

:

It was shown in Dette and Studden (2001) that if (S

0

; � � � ; S

n

) 2 int M

n+1

for all n and

the p� p-matrix �

k

is de�ned by

�

k

= (S

k�1

� S

�

k�1

)

�1

(S

k

� S

�

k

)(2.6)

for k � 1, then the monic matrix orthogonal polynomials corresponding to the matrix

measure � satisfy an analog of the recurrence relation (1.7) for the coeÆcients �

k

de�ned

in (2.6). More precisely, if the polynomials are orthogonalized with respect to a right

inner product, we have for the monic orthogonal matrix polynomials the recursive relation

P

0

(x) = I

p

; P

�1

(x) = 0 and for m � 0

xP

m

(x) = P

m+1

(x) + P

m

(x)(�

2m+1

+ �

2m

) + P

m�1

(x)�

2m�1

�

2m

;(2.7)

where I

p

2 R

p�p

denotes the identity matrix and the quantities �

j

2 R

p�p

are de�ned by

(2.6) if j � 1 and �

0

= 0. Our main result shows that these coeÆcients can be explicitly

obtained by the q-d algorithm with a speci�c initialization.

Theorem 2.1 : If the q-d algorithm in matrix form starts with the matrices

q

(n)

1

= S

�1

n

S

n+1

n � 0

and e

(n)

m

; q

(n)

m+1

, m � 1, n � 0 are de�ned recursively by the equations (1.3) then

e

(0)

m

= �

2m

; q

(0)

m

= �

2m�1

for m � 1 where the matrices �

k

2 R

p�p

are de�ned by (2.6).
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Thus if we start with a matrix measure � on the interval [0;1) with moments S

k

2 R

p�p

the

coeÆcients in the recurrence formula for the orthogonal polynomials can be derived from

the matrix version of the q-d algorithm. Conversely the moments of a matrix measure can

be obtained by a reverse application of the q-d algorithm from the recurrence relation of

the corresponding monic orthogonal polynomials. Note that in the 'quotient' or second

part of the algorithm in (1.3) the matrices must be in the order presented, which is due to

the fact that we used a right inner product for orthogonalization. It was shown in Dette

and Studden (2001) that the point (S

0

; S

1

; : : :) corresponds to a matrix measure on the

interval [0;1) if and only if

S

0

�

1

� � � �

n

> 0

for all n 2 N

0

. Consequently the q-d-algorithm can be used to check if a given vector of

matrices is in fact a vector of moments corresponding to a matrix measure on the interval

[0;1) .

The matrix version of the q-d algorithm has some further information. It is known in the

scalar case that the measure � is supported on the interval [0; 1] if and only if the quantities

�

k

form a chain sequence, that is, there exists a further sequence fp

k

g with 0 < p

i

< 1 such

that �

k

= q

k�1

p

k

where q

k

= 1 � p

k

and q

0

= 1 [see Chihara (1978) or Wall (1948)]. An

analogous result for the matrix polynomials is described in Dette and Studden (2001). For

a matrix measure supported on the interval [0; 1] there is a sequence of matrices U

k

; k � 1

such that if V

k

= I

p

� U

k

, then the quantities �

k

de�ned in (2.6) are given by �

k

= V

k�1

U

k

(V

0

= I

p

). The matrices U

k

are called canonical moments and the conditions on the matrices

U

k

is that for all n � 1,

D

n

U

n

> 0 and D

n

V

n

> 0(2.8)

where

D

n

= S

0

U

1

V

1

� � �U

n�1

V

n�1

:

Thus the matrix version of the q-d algorithm in Theorem 2.1 provides us with a means of

also calculating the matrix chain sequence from the moments for matrix measures on the

interval [0; 1]. Again the inequalities (2.8) can be used to check if a given vector of matrices

is in fact a vector of moments corresponding to a matrix measure on the interval [0; 1] .

We will illustrate this application in the examples of Section 4.

3 Proof of Theorem

Notice �rst in processing down each column of (1.4) that the entries are formally the same

except that the indices are shifted up by one, for example q

(n)

1

= S

�1

n

S

n+1

(by de�nition),

e

(n)

1

= q

(n+1)

1

� q

(n)

1

+ e

(n+1)

0

= S

�1

n+1

(S

n+2

� S

n+1

S

�1

n

S

n+1

)

q

(n)

2

= (e

(n)

1

)

�1

q

(n+1)

1

e

(n+1)

1

= (S

n+2

� S

n+1

S

�1

n

S

n+1

)

�1

(S

n+3

� S

n+2

S

�1

n+1

S

n+2

) :
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Therefore, without loss of generality we can concern ourselves with only the �rst two

diagonal rows e

(0)

n

; q

(0)

n

and e

(1)

n

; q

(1)

n

. Observing the representation (2.6) the entries in the

�rst diagonal row in the array (1.4) should be

e

(0)

m

= (S

2m�1

� S

�

2m�1

)

�1

(S

2m

� S

�

2m

)

q

(0)

m+1

= (S

2m

� S

�

2m

)

�1

(S

2m+1

� S

�

2m+1

):

(3.1)

Note that by the above discussion the entries q

(1)

m

and e

(1)

m

in the second diagonal are

obtained from q

(0)

m

and e

(0)

m

by replacing in these expressions the matrices S

n

by S

n+1

.

Therefore, introducing the notation

S

�

2m

= (S

m+1

; � � � ; S

2m�1

)

0

B

@

S

2

� � � S

m

.

.

.

.

.

.

S

m

� � � S

2m�2

1

C

A

�1

0

B

@

S

m+1

.

.

.

S

2m�1

1

C

A

(3.2)

and observing (2.4) and (2.5) the entries in the second diagonal row should be

q

(1)

m

= (S

2m�1

� S

�

2m�1

)

�1

(S

2m

� S

�

2m

)

e

(1)

m

= (S

2m

� S

�

2m

)

�1

(S

2m+1

� S

�

2m+1

):

(3.3)

Using equations (3.1) and (3.3) it is then required to show that

e

(0)

m

= q

(1)

m

� q

(0)

m

+ e

(1)

m�1

(3.4)

and

q

(0)

m+1

= (e

(0)

m

)

�1

q

(1)

m

e

(1)

m

:(3.5)

Equation (3.5) is very simple and follows easily by inserting the appropriate quantities from

(3.1) and (3.3).

Equation (3.4) requires more work. By inserting the expressions from (3.1) and (3.3) into

(3.4) and multiplying the resulting equation by (S

2m�1

� S

�

2m�1

) it follows that we are

required to show the identity

S

�

2m

� S

�

2m

= (S

2m�1

� S

�

2m�1

) Q (S

2m�1

� S

�

2m�1

)(3.6)

where the matrix Q is de�ned by

Q = (S

2m�2

� S

�

2m�2

)

�1

� (S

2m�2

� S

�

2m�2

)

�1

:(3.7)
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The proof now uses the idea that the right hand side of the equation (3.6) is a "quadratic

form" in the matrix (S

2m�1

� S

�

2m�1

). We will therefore replace S

2m�1

on the left hand by

(S

2m�1

�S

�

2m�1

)+S

�

2m�1

and on expanding things out, show that everything cancels except

for the two terms on the right hand side. To be precise we write the row and column vector

in the de�nition of the matrix S

�

2m

in (2.4) as

(S

m

; � � � ; S

2m�1

) = (S

m

; � � � ; S

�

2m�1

) + (0; � � � ; 0; S

2m�1

� S

�

2m�1

) = A

0

+B

0

;

where the last equality de�nes the matrices A and B. Similarly, for S

�

2m

let

(S

m+1

; � � � ; S

2m�1

) = (S

m+1

; � � � ; S

�

2m�1

) + (0; � � � ; 0; S

2m�1

� S

�

2m�1

) = C

0

+D

0

;

and further let

G

2m�2

=

0

B

@

S

2

� � � S

m

.

.

.

.

.

.

S

m

� � � S

2m�2

1

C

A

:

Observing the equations in (2.4), (2.5) and (3.2) the right hand side of equation (3.6) is

then

(C

0

+D

0

)G

�1

2m�2

(C +D)� (A

0

+B

0

)H

�1

2m�2

(A +B)

Note also that

D

0

G

�1

2m�2

D � B

0

H

�1

2m�2

B

is equal to the right hand side of (3.6), which also follows from (2.4), (2.5) and (3.2) by

taking Schur complements in the matrices H

2m

and G

2m

. The other terms will pair up and

cancel, that is

C

0

G

�1

2m�2

C = A

0

H

�1

2m�2

A and C

0

G

�1

2m�2

D = A

0

H

�1

2m�2

B :

These identities follow in essentially the same manner and for the sake of brevity we consider

only the �rst one

C

0

G

�1

2m�2

C = A

0

H

�1

2m�2

A :(3.8)

To accomplish this it is convenient to write

0

B

B

B

B

B

B

@

S

m

S

m+1

.

.

.

S

2m�2

S

�

2m�1

1

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

@

S

1

� � � S

m�1

S

2

S

m

.

.

.

.

.

.

S

m�1

� � � S

2m�3

S

m

� � � S

2m�2

1

C

C

C

C

C

C

A

0

B

@

S

1

� � � S

m�1

.

.

.

.

.

.

S

m�1

� � � S

2m�3

1

C

A

�1

0

B

@

S

m

.

.

.

S

2m�2

1

C

A

;(3.9)

where the equality for the last component is the de�nition of S

�

2m�1

and the other identities

follow very easily. Now the identity (3.8) is obtained by inserting the expressions for the
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matrices C and A from equation (3.9) into the above and using the fact that

0

B

@

S

1

� � � S

m

.

.

.

.

.

.

S

m�1

� � � S

2m�2

1

C

A

0

B

@

S

0

� � � S

m�1

.

.

.

.

.

.

S

m�1

� � � S

2m�2

1

C

A

�1

=

0

B

B

B

B

@

0 I

p

0 � � � 0 0

0 0 I

p

� � � 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 � � � 0 I

p

1

C

C

C

C

A

2

4 Examples

4.1 Random walk measures

Consider the matrix measure

� =

 

�

11

�

12

�

12

�

22

!

where

d�

11

dt

=

d�

22

dt

=

1

�

1

p

t(1� t)

d�

12

dt

=

1

�

2t� 1

p

t(1� t)

(see also VanAssche (1993), who considered this example on the interval [�1; 1]). Note

that this measure corresponds to the spectral measure of a symmetric random walk on the

integers [see Karlin and Mcgregor (1959), Section 4]. A straightforward calculation gives

for the moments

S

k

=

�

2k

k

�

1

2

2k

(k + 1)

 

k + 1 k

k k + 1

!

; k � 0 ;

and an induction argument yields the entries in the array (1.4), that is

e

(k)

j

=

j

2

(k + 2j)(k + 2j + 1)

 

1 �

1

2j

�

1

2j

1

!

;

q

(k)

j

=

(k + j)

2(k + 2j � 1)(k + 2j)

 

2(k + j) 1

1 2(k + j)

!

; k; j � 0 :

Now Theorem 2.1 gives

�

2k

= e

(0)

k

= V

2k�1

U

2k

=

k

k + 1

 

1 �

1

2k

�

1

2k

1

!

;

�

2k�1

= q

(0)

k

= V

2k�2

U

2k�1

=

1

2(k � 1)

 

2k 1

1 2k

!

;
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and it follows for the canonical moments of the matrix measure �

U

2k

=

k

2k + 1

 

1 0

0 1

!

;

U

2k�1

=

1

2

 

1

1

2k

1

2k

1

!

;

for k 2 N . Note that this result was stated in Dette and Studden (2001) without an explicit

proof. In a similar way it can be shown that the canonical moments of the matrix measure

d�(t)

dt

= c

�;�

x

�

(1� x)

�

 

1 2x� 1

2x� 1 1

!

(4.1)

are given by

U

2k

=

k

2k + � + � + 2

 

1 0

0 1

!

;

U

2k�1

=

1

2(2k + �+ � + 1)

 

2k + 2� + 1 1

1 2k + 2�+ 1

!

;

where the constant c

�;�

in (4.1) is de�ned such that the diagonals integrate to 1.

4.2 Matrix Jacobi polynomials

During the past few years some important results in the theory of classical orthogonal

polynomials have been extended to classical orthogonal matrix polynomials [see for example

J�odar, Company and Navarro (1994), J�odar and Cort�ez (1998a,b), J�odar and Sastre (2000)].

In the following example we discuss some properties of the generalized Jacobi polynomials

corresponding to the measure determined by the moments of the Beta matrix distribution

B(A;B : t) = t

B

(1� t)

A

(4.2)

where A and B are real p � p matrices such A + I

p

and B + I

p

are positive de�nite. The

matrix form of the Beta-integral is given by

B(A+ I

p

; B + I

p

) =

Z

1

0

t

B

(1� t)

A

dt ;

where I

p

denotes the p� p identity matrix. For some general discussion of this function we

refer to J�odar and Cort�ez (1998b) and we assume in this example that the matrices A and

B are simultaneously diagonalizable, that is

A = SD

A

S

�1

; B = SD

B

S

�1

9



where S is a non-singular p � p matrix and D

A

and D

B

are diagonal matrices containing

the (real) eigenvalues a

1

; : : : ; a

p

and b

1

; : : : ; b

p

of the matrices A and B, respectively. Now

formula (6) in J�odar and Cort�ez (1998b) gives for the "moments" of the (normalized) Beta

distribution B

�1

(A+ I

p

; B + I

p

)B(A;B : t)

S

k

=

Z

1

0

t

k

B

�1

(A+ I

p

; B + I

p

)B(A;B : t)dt(4.3)

= S �B

�1

(D

A

+ I

p

; D

B

+ I

p

)

Z

1

0

t

k

B(D

A

; D

B

: t)dt � S

�1

= SR

k

S

�1

;

where R

k

is a diagonal matrix containing the moments of ordinary B(a

j

; b

j

)-distributions,

that is

R

k

= diag

�

�(a

1

+ b

1

+ 2)�(b

1

+ k + 1)

�(b

1

+ 1)�(a

1

+ b

1

+ k + 2)

; : : : ;

�(a

p

+ b

p

+ 2)�(b

p

+ k + 1)

�(b

p

+ 1)�(a

p

+ b

p

+ k + 2)

�

(4.4)

(note that R

0

= I

p

). When we apply the q-d algorithm to the moments S

k

de�ned by

(4.3), the matrices S and S

�1

will factor out in the di�erence operation and a little bit

of cancelling occurs with the quotient operation, such that the basic operations of the q-d

algorithm have only to be performed for diagonal matrices. Consequently we obtain from

Example 1.5.3 in Dette and Studden (1997) that

�

2m

= S � �

D

2m

� S

�1

= m(mI

p

+ A)(2mI

p

+ A+B)

�1

((2m+ 1)I

p

+ A +B)

�1

(4.5)

�

2m�1

= S � �

D

2m�1

� S

�1

= (mI

p

+ A+B)(mI

p

+B)((2m� 1)I

p

+ A+B)

�1

(2mI

p

+ A+B)

�1

where

�

D

2m

= diag

�

(a

1

+m)m

(2m+ a

1

+ b

1

)(2m+ a

1

+ b

1

+ 1)

; : : : ;

(a

p

+m)m

(2m+ a

p

+ b

p

)(2m+ a

p

+ b

p

+ 1)

�

�

D

2m�1

= diag

�

(a

1

+ b

1

+m)(b

1

+m)

(2m� 1 + a

1

+ b

1

)(2m+ a

1

+ b

1

)

; : : : ;

(a

p

+ b

p

+m)(b

p

+m)

(2m� 1 + a

p

+ b

p

)(2m+ a

p

+ b

p

)

�

The corresponding chain sequence is obtained by a straightforward calculation, solving the

equations V

j�1

� U

j

= �

j

, i.e.

U

2m

= S � diag

�

m

(2m+ a

1

+ b

1

+ 1)

; : : : ;

m

(2m+ a

p

+ b

p

+ 1)

�

� S

�1

= m((2m+ 1)I

p

+ A+B)

�1

(4.6)

U

2m�1

= S � diag

�

(b

1

+m)

(2m+ a

1

+ b

1

)

; : : : ;

(b

p

+m)

(2m+ a

p

+ b

p

)

�

� S

�1

= (mI

p

+B)(2mI

p

+ A+B)

�1

:
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Note that the order of the factors in (4.5) and (4.6) is arbitrary, because the matrices A

and B commute. The monic orthogonal polynomials with respect to the right inner matrix

product induced by the beta distribution are de�ned by the recursive relation (2.7). For

the sake of comparison we transfer this recursion to the interval [�1; 1] and obtain the

recursive relation

P

m+1

(x) = P

m

(x)[(x + 1)I

p

� �

2m+1

� �

2m

]� 4P

m�1

(x)�

2m�1

�

2m

;(4.7)

for the monic matrix orthogonal polynomials with respect to the right inner product induced

by the beta-distribution on the interval [�1; 1]. Now let H

0

= I

p

,

H

k

=

1

2

k

k!

(2kI

p

+ A +B) � � � ((k + 1)I

p

+ A+B) (k � 1)

then it is easy to see that the matrix polynomials P

(A;B)

k

(x) = P

k

(x)H

k

are orthogonal

polynomials with respect to the right inner product induced by the beta distribution and

satisfy the recursive relation P

(A;B)

0

(x) = I

p

P

(A;B)

1

(x) =

1

2

[A +B + 2I

p

]x +

1

2

[A� B];

and for k � 1

2(k + 1)[(k + 1)I

p

+ A+B][2kI

p

+ A+B]P

(A;B)

k+1

(x) =

[(2k + 1)I

p

+ A+B]

n

[2kI

p

+ A +B][2(k + 1)I

p

+ A +B]x + A

2

� B

2

o

P

(A;B)

k

(x)

� 2[kI

p

+ A][kI

p

+B][2(k + 1)I

p

+ A +B]P

(A;B)

k�1

(x)(x) :

We �nally note that in the case where A andB do not commute the situation is substantially

more diÆcult. For a very interesting example considering the Nevai class M(A;B) of

orthogonal matrix polynomials with constant coeÆcients in the recurrence relations we

refer to Duran (1999).

4.3 A recurrence relation with constant coeÆcients

In this example we illustrate how the q-d algorithm can be used to identify the measure of

orthogonality corresponding to a sequence of (monic) orthogonal polynomials given by a

recurrence relation. To this end consider a sequence of polynomials recursively de�ned by

P

1

(x) = xI

p

� A, P

0

(x) = 1

xP

m

(x) = P

m+1

(x) + 2P

m

(x)A+ P

m�1

(x)A

2

;

for some positive de�nite matrix A 2 R

p�p

. In this case we have from a comparison with

the general recursive relation (2.7) �

j

= A for all j � 1. We can now use the q-d-algorithm

11



to �nd the moments of the corresponding measure. It can be proved by induction that

these moment are given by

S

j

= 2

2j+1

�

1=2

j + 1

�

(�1)

j

A

j

(j � 0) ;(4.8)

which yields for the Stieltjes transform of the corresponding measure of orthogonality

Z

dW (t)

z � t

=

S

0

z

+

S

1

z

2

+

S

2

z

3

+ : : : = A

�1

1

X

j=0

2

2j+1

�

1=2

j + 1

�

A

j+1

z

j+1

(�1)

j

= A

�1

n

I

p

2

�

1

2

1

X

j=0

�

1=2

j

�

�

4

z

�

j

(�1)

j

A

j

o

=

A

�1

2

n

I

p

�

r

�

I

p

�

4A

z

�o

;

where the square root is de�ned in the usual way, i.e. using the diagonal form of the matrix

and applying the appropriate square root to the eigenvalues. The corresponding measure

is now easily obtained using the arguments in Duran (1999), and we obtain the density

dW (t)

dt

=

p

X

i=1

z

i

z

T

i

1

2��

i

r

4�

i

� x

x

I

[0;4�

i

]

(x) ;

where

A =

p

X

j=1

�

j

z

j

z

T

j

is an eigenvalue decomposition of the matrix A with orthonormal vectors z

j

2 R

p

and

eigenvalues �

j

counted with their respective multiplicities.
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