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Concepts of Outlyingness

for Various Data Structures

Ursula Gather, Sonja Kuhnt and J�org Pawlitschko

Department of Statistics, University of Dortmund

44221 Dortmund, Germany

Abstract. The term \outlier" is probably one of the vaguest and most

imprecise ones in statistical science. There is no formal de�nition of an

outlier, which all statisticians agree upon. However, for a univariate nor-

mal null-model Davies and Gather ([12] [13]) have introduced the concept

of �-outliers and �-outlier regions, giving a de�nition which characterizes

outliers only by their location relative to the assumed model for the good

data. Outliers are thereby data points, observed in a region of the support of

the anticipated distribution, namely an �-outlier region, where observations

are { in a certain sense { unlikely under the assumed model. In this chap-

ter we revisit this approach to outlyingness and generalize it to a variety of

univariate and multivariate, continuous and discrete distributions as well as

to structured models such as regression models and contingency tables. We

also indicate how the concept of outlier regions can be used to de�ne and

construct outlier identi�cation procedures.

Key words: Outliers, Tail regions, Density contours, Structured data, Robust procedures
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1 INTRODUCTION

In the statistical analysis of data we are often confronted with observations

that \appear to be inconsistent with the remainder of that set of data" [2,

p. 7] or, more generally, that \are far away [� � �] from the pattern set by

the majority of the data" [18, p. 25]. Observations of this kind are usually

called \outliers". They may have a great impact on the statistical analysis

and can cause completely misleading results when using standard methods.

But also, sometimes outliers themselves provide the most interesting aspect

of the data, for instance an unexpected long survival time in a clinical trial

may indicate immunity against a certain disease. Although the problem of

identifying and handling outliers has been subject of numerous investigations,

there is no general agreement on a formal de�nition of outlyingness. Most

authors, however, agree in that the term \outlier" is only meaningful if one

has in mind a certain statistical model for the \good" data.

Consider the following set of data based on 15 observations made in 1846 on

the vertical semi-diameter of the planet Venus. These observations are not

the original measurements but the residuals with respect to a simple model

as they have been analyzed by the astronomers Peirce and Chauvenet in 1852

and 1863, respectively (see [2, p. 38]):

-0.30 0.48 0.63 -0.22 0.18 -0.44 -0.24 -0.13

-0.05 0.39 1.01 0.06 -1.40 0.20 0.10

At �rst glance it seems that the smallest (-1.40) and to a weaker extent

the largest observation (1.01) are not consistent with the remaining values.

They might therefore be \outliers". Figure 1 shows, besides the data itself,

density functions of a symmetric, unimodal distribution and of a bimodal
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distribution. It is quite obvious that it will depend on the assumed (null-)

distribution whether the observation -1.40 will be called an outlier or not.
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N (0; 0:3) 0:1N (�1:4; 0:1) + 0:9N (0:0; 0:3)

Figure 1: Density functions for a normal and a mixture distribution

If one has in mind a normal distribution as on the left hand side of Figure 1,

the smallest observation -1.40 clearly seems to be an outlier. But if one knew

for some reason that the data generating mechanism must be described by

a bimodal distribution as on the right hand side of Figure 1, then the value

-1.40 is in accordance with the underlying model and will not be considered

as outlying with respect to this null-distribution.

From another point of view, a mixture distribution as on the right hand side

of Figure 1 can also be seen as a special case of an \outlier-generating model",

where the outliers are, roughly spoken, assumed to be contaminated obser-

vations coming from a distribution that is di�erent from the distribution of

the \good" data. A comprehensive review of such models can be found e.g.

in [2] or [15]. Such outlier-generating models have their merits. But they

are based on a number of assumptions concerning the mechanism produc-

ing the outliers and thus impose too many restrictions. As a consequence,
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Davies and Gather (1993) proposed another way of formalizing the notion

of outlyingness. Their approach tries to capture the element of surprise and

of unlikeliness we associate with the term outlier. This is done by de�n-

ing so-called outlier regions. Roughly spoken, these regions cover an area of

the support of the anticipated null-distribution, where observations can only

occur with a very small probability.

To �x ideas we may assume that in the above set of data the \good" part

comes from a normal distribution N (0; 0:5). In Figure 2 that area under

the density function which equals 0:1 has been marked, where the density

function has smallest possible values. We denote all observations falling into

the corresponding part of the support as 0:1-outliers. In our example these

are the two values which we have already found suspicious.

0.0

0.3

0.6

0.9

-2 -1 0 1 2

Figure 2: 0:1-outlier region of the N (0; 0:5)-distribution

A formal de�nition of �-outliers for rather general statistical models is given

in Section 2 below together with some remarks concerning procedures to

identify such outliers in a given sample. In Section 3 we look at �-outlier

regions for some univariate and multivariate continuous distributions. In
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the univariate case we investigate how these outlier regions are related to

certain tail regions of the distribution. Section 4 contains a discussion of

outlier regions in the continuous case when additional covariates are present.

We focus on linear regression and one-way random e�ects models. Section

5 treats univariate and multivariate discrete distributions. For univariate

discrete distributions with increasing-decreasing density function we present

an algorithm for calculating the corresponding �-outlier regions. Section 6

covers structured discrete models like the logistic regression model and the

loglinear Poisson model.

2 �-OUTLIER REGIONS

It is the aim to de�ne �-outliers as objects which are in accordance with

the idea that outliers are points which are rather unlikely under the true

distribution. The concept of �-outliers has been introduced for univariate

location-scale distributions in [12], [13] and has been extended to more gen-

eral situations in [11]. The notion can be generalized to nearly all situations

in which a clearly speci�ed statistical model is assumed for the \good" data.

Let P be a family of distributions on a measurable space (X ;A) which is

dominated by a �-�nite measure � such that P 2 P has �-density f . For

P 2 P let supp(P ) denote the support of P and set supp(P) =

S

P2P

supp(P ).

For given � 2 (0; 1) the �-outlier region of P 2 P is then de�ned as

out(�; P ) = fx 2 supp(P) : f(x) < K(�)g (1)

where

K(�) = sup

�

K > 0: P

�

fy : f(y) < Kg

�

� �

	

:
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With inl(�; P ) = supp(P) n out(�; P ) we de�ne the corresponding �-inlier

region of P . Each point x 2 out(�; P ) is called an �-outlier relative to P

and each x 2 inl(�; P ) an �-inlier.

For a random variable (r.v.) X with distribution P , one has by (1) that

P

�

X 2 inl(�; P )

�

� 1� �; (2)

and indeed, in most cases the �-inlier region of P can be viewed as the

\smallest" subset of the support of supp(P ) (with respect to the dominating

measure �) that has property (2).

The above de�nition of an �-outlier formalizes the perception that an outlier

is a point which is extremely unlikely if P is the true distribution. Note that

by (1) each x 2 supp(P) and not only the observations of a given sample can

be classi�ed as outlying or inlying with respect to P 2 P. Note further that

a r.v. X having distribution P may itself be observed in out(�; P ). However,

because of (2) the probability of the corresponding event is smaller than �

by de�nition.

When exploiting the de�nition of �-outlier regions for the task of outlier

identi�cation in a given sample, the sample size, say N , should be taken into

account. If the sample points are assumed to be observations of i.i.d. random

variables X

i

; i = 1; : : : ; N; each with distribution P , then a natural choice of

� = �

N

is given by

�

N

= 1� (1� ~�)

1=N

(3)

for some given ~� 2 (0; 1). This choice guarantees that

P (X

i

2 inl(�; P ); i = 1; : : : ; N) � 1� ~�:

Under these assumptions the task of outlier identi�cation can be formalized

as follows: Given observations x

N

= (x

1

; : : : ; x

N

)

0

with an unknown number
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of \good" data, which are assumed to come i.i.d. from a distribution P ,

�nd all those x

i

, which are located in the outlier region out(�

N

; P ) for an

appropriately selected ~�. Often ~� is chosen as 0:05 or 0:1.

Roughly spoken, there are two important types of outlier identi�cation rules.

A so-called simultaneous or one-step outlier identi�erOR(�

N

;x

N

) � supp(P)

can be viewed as an empirical version of out(�

N

; P ). Each x 2 OR(�

N

;x

N

)

is classi�ed as �-outlier with respect to P . Since P is not known or only par-

tially known, its unknown features have to be estimated from the data. The

main problem here is that outliers in the data may seriously a�ect standard

estimators of unknown distribution parameters, leading to the well-known

e�ects of masking and swamping (cf. [13] for an in-depth discussion of this

topic). This problem can be solved by using robust estimation methods.

In [8] a one-step outlier identi�er based on such robust estimators is called

\resistant detection rule".

Identi�cation rules of the second type proceed stepwise by judging the out-

lyingness of the sample points in order of their \extremeness" relative to

the sample. Inward testing procedures begin with the in some sense most

suspicious observation. If this is declared as outlying, by some test for in-

stance, it is removed from the sample and the procedure continues with the

most extreme observation in the reduced sample. The procedure terminates

if for the �rst time a subsample is found free of outliers or if a prespeci�ed

maximal number of possible outliers is reached. Outward testing procedures

start with a reduced subsample that is supposed to contain no outliers. The

least extreme of the observations not contained in this subsample is then

checked with regard to its outlyingness. If it is indeed identi�ed as an out-

lier, the procedure stops and only the observations in the reduced sample are
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considered as inlying. If not, it is joined with the subsample again and the

least extreme of the remaining observations is checked. Since this paper is

mainly concentrating on the concept of outlyingness in general rather than

on identi�cation rules, we will not give a further treatment of this topic here.

For a deeper discussion see [16] and [26].

3 UNIVARIATE AND MULTIVARIATE CONTINUOUS

DISTRIBUTIONS

In this section we investigate the shape of �-outlier regions when (X ;P) =

(R

d

;B

d

); d 2 N , where B denotes the usual Borel-�-algebra and P = fP

�

; � 2

� � R

k

g is a family of distributions dominated by the d-dimensional Lebesgue-

measure such that each P

�

2 P has density f(�; �).

A useful property of an �-outlier region in this context is got by the following

lemma.

Lemma 1. For P

�

2 P assume that also P

�

2 P where P

�

is de�ned by

P

�

(B) = P

�

(A

�1

(B � �)); B 2 B

d

. Here � 2 R

d

and A denotes a regular

d� d-matrix. Then out(�; P ) is aÆne equivariant, i.e.

out(�; P

�

) = A out(�; P

�

) + �:

Note however that out(�; P

�

) is not equivariant under more general transfor-

mations.

We �rst look at the case d = 1, that is we discuss outlier regions for univari-

ate continuous distributions. As a �rst example we consider the univariate

normal distribution. Taking the standard normal distribution and � = 0:1,
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x

-1.6449 0 1.6449

0.1

0.2

0.3

f(x,(0,1))

Figure 3: 0:1-outlier region of the standard normal distribution

the application of de�nition (1) gives

out(0:1;N (0; 1)) =

�

x : jxj > 1:6449

	

:

This set (see Figure 3) is just the union of the upper and lower 0:05-tail

region, see Lemma 2 below.

A close connection between tail and outlier regions holds in other cases as

well. In the following, we make use of certain properties of a distribution P

�

.

We call P

�

(i) symmetric, if for some � 2 R one has f(�� x; �) = f(�+ x; �); x � 0;

(ii) having a strictly increasing-decreasing density, if for some �

1

; �

2

2 R

with �

1

� �

2

one has that f(�; �) is strictly increasing on supp(P

�

) \

(�1; �

1

], constant on [�

1

; �

2

] and strictly decreasing on supp(P

�

) \

[�

2

;1),

(iii) having a strictly decreasing density, if f(�; �) is strictly decreasing on

the entire support of P

�

.
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If assumed, conditions (i){(iii) need only to hold with probability one.

For � 2 (0; 1) let

q

�

(P

�

) = inffx : P

�

(X � x) � �g (4)

denote the �-quantile of P

�

. Here X is random with distribution P

�

. Then

supp(P

�

) \ (�1; q

�

(P

�

)) and supp(P

�

) \ (q

1��

(P

�

);1) de�ne the lower and

upper �-tail region of P

�

, respectively. Assume for simplicity that all distri-

butions contained in P share the same support. Then the following simple

relations hold.

Lemma 2.

(a) If P

�

is symmetric, then out(�; P

�

) is equal to the union of the upper

and lower �=2-tail region of P

�

.

(b) If P

�

has a strictly decreasing density, then out(�; P

�

) equals the upper

�-tail region of P

�

.

Since in [13] the de�nition of out(�; P

�

) has been given only for the special

case of the univariate normal distribution, part (a) of Lemma 2 has sometimes

been mistaken as the actual de�nition. However, in many cases the two

notions lead to di�erent subsets of the support of P

�

. From Lemma 2, the �-

outlier regions for many other important univariate distributions can readily

be obtained. Examples are contained in Table 1.
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Distribution Parameter Support Lebesgue-density �-outlier region

Normal � 2 R; � > 0 R

1

p

2 � �

exp

�

�

(x� �)

2

2 �

2

�

�

x : jx� �j > � z

1��=2

	

�

Cauchy � 2 R; � > 0 R

1

� �

1

1 +

(x��)

2

�

2

�

x : jx� �j > � tan

�

� (1� �)

2

�

	

Logistic � 2 R; � > 0 R

exp

�

�

x��

�

�

�

�

1 + exp

�

x��

�

��

2

�

x : jx� �j > �� ln

�

1� �=2

�	

Double-Exponential � 2 R; � > 0 R

1

2 �

exp

�

�

jx� �j

�

�

�

x : jx� �j > �� ln�

	

Exponential � 2 R; � > 0 [�;1)

1

�

exp

�

�

x� �

�

�

�

x : x > � � � ln�

	

y

Pareto � > 0; � > 0 [�;1)

� �

�

x

�+1

�

x : x > � �

�1=�

	

y

Table 1. �-outlier regions for some univariate continuous distributions

� z

1��=2

denotes the (1� �=2)-quantile of the standard normal distribution

y if � is �xed, else unite this set with (�1; �)

1
1



For univariate continuous distributions P

�

which are not covered by Lemma 2,

the relation of out(�; P

�

) to certain tail regions is more diÆcult. Sometimes,

e.g. for mixture distributions, the �-outlier region may also contain an inner

subset of the support. Although explicit expressions are seldom available,

it is often possible to derive the boundary points of out(�; P

�

) numerically.

For example, consider a distribution having a strictly increasing-decreasing

density f(�; �) and let F (�; �) denote the corresponding distribution func-

tion. Suppose that lim

x&a

P

�

f(x; �) = lim

x%b

P

�

f(x; �) = 0 where a

P

�

and

b

P

�

denote the lower and upper bound of supp(P

�

), respectively. Then the

corresponding �-outlier regions can be obtained as follows:

Find points x

1

< x

2

within supp(P

�

) such that the following two equations

hold

� = 1� F (x

2

; �) + F (x

1

; �);

f(x

1

; �) = f(x

2

; �):

(5)

The �-outlier region of P

�

is then given as

out(�; P

�

) = fx 2 supp(P

�

) : x < x

1

or x > x

2

g:

Example 1. The (two-parameter) Weibull-distribution is an important

parametric distribution with applications in reliability and lifetime analy-

sis. It has Lebesgue-density

f(x; �; �) = � x

��1

exp(�� x

�

); x � 0;

with shape parameter � > 0 and scale parameter � > 0. The density f(�; �; �)

is strictly increasing-decreasing if and only if � > 1, otherwise it is strictly

decreasing and Lemma 2 (b) can be applied. For � > 1, (5) can be written
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1 2 3 4 5

0
1

2
3

4
Bounds of out(0.05, P)

Bounds of 0.025-tail regions

β

Figure 4: 0.05-outlier regions and upper and lower 0:025-tail regions for the

Weibull-distribution with scale parameter � = 1

as

1� �� exp(�� x

�

1

) + exp(�� x

�

2

) = 0;

x

��1

1

exp(�� x

�

1

)� x

��1

2

exp(�� x

�

2

) = 0:

These equations can readily be solved for x

1

; x

2

by using e.g. the Newton-

Raphson method.

Figure 4 displays the values of x

1

and x

2

as well as the �=2- and (1� �=2)-

quantiles for various � � 1 in case that � = 0:05 and � = 1. Note that the

�-inlier region is always smaller than the complement of the corresponding

tail regions.

Example 2. As an example of a non-symmetric distribution with support

equal to the entire real line we consider an extreme value distribution. It has
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Lebesgue-density

f(x; �; �) =

1

�

exp

�

�

x� �

�

� exp

�

�

x� �

�

��

; x 2 R;

with location parameter � 2 R and scale parameter � > 0. From Lemma 1 it

follows that it suÆces to solve equations (5) for the standardized distribution

with � = 0 and � = 1. These equations reduce to

1� �� exp

�

� exp(�x

2

)

�

+ exp

�

� exp(�x

1

)

�

= 0;

exp(�x

1

)� exp(�x

2

) + x

1

� x

2

= 0:

(6)

Take e.g. � = 0:05. Solving (6) for x

1

; x

2

yields the following 0:05-outlier

region for the standardized extreme value distribution:

out(0:05; P

0;1

) = fx 2 R : x < �1:5613 or x > 3:1615g:

Note that the lower 0.025- and upper 0.025-tail region of P

0;1

are given by

(�1;�1:3053) and (3:6762;1), respectively.

Outlier regions for a non-standardized extreme value distribution can be

obtained by transforming the solutions of (6) according to ~x

i

= � x

i

+�; i =

1; 2:

Within the framework of outlier regions, the problem of identifying outliers in

univariate continuous distributions has thoroughly been investigated for the

normal distribution and the (one-parameter) exponential distribution. The

case of a normal distribution is treated in [13] and [16]. In [13], di�erent types

of identi�cation rules are compared with respect to their worst-case behavior.

It turns out that in case of unfavorably placed outliers identi�cation rules

based on robust estimators of location and scale still lead to satisfactory

results. As an example we mention the one-step Hampel-identi�er which is

given by

OR

H

(x

N

; �

N

) = fx 2 R : jx�Med(x

N

)j > g

N

(�

N

)MAD(x

N

)g:
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HereMed(x

N

) denotes the sample median,MAD(x

N

) = Med(jx

i

�Med(x

N

)j)

the (unstandardized) median absolute deviation from the median and g

N

(�

N

)

an appropriately chosen normalizing constant. A common standardization

is based on the requirement that under the null model H

0

- all observations

come i.i.d. from a N (�; �

2

)-distribution - one has

P

H

0

�

no X

i

is identi�ed as �

N

-outlier

�

� 1� �

for some appropriately chosen � 2 (0; 1). Usually one takes � = ~�; but

other choices may be reasonable as well. In case of the Venus data from

Section 1, application of the Hampel-identi�er with � = ~� = 0:05 yields

g

15

(�

15

) = 6:36 and OR

H

(x

15

; �

15

) = Rn[�1:85; 1:97]; hence no observation is


agged as outlying. The recommendations given in [13] are supported in [16]

where also some considerations concerning the power of various identi�cation

rules are added. An interesting generalization of the Hampel-identi�er for

toxicological research is discussed in [31], where the case of non identically

distributed random variables is treated whose expectations change according

to a known toxicokinetical model.

The exponential distribution is investigated in [29] and [30]. The �rst paper

is concerned with one-step identi�cation rules whereas in [30] the focus lies

on inward and outward testing procedures. As in the normal case, the use

of robust estimators of the scale parameter when constructing identi�cation

rules is suggested. Best results concerning worst-case behavior and reason-

able power are obtained with procedures based on a standardized sample

median. Investigations for other univariate continuous distributions are rare,

especially the case of non-symmetric distributions still awaits a complete

treatment.

We now turn to multivariate extensions (d � 2). Whereas in the univariate

15



continuous case �-outlier regions are often closely connected to certain tail

regions, for multivariate continuous distributions the relation between the

former and certain density contours seems helpful. This relation is especially

apparent for a non-degenerate elliptically contoured distribution (see [14]).

Such a distribution, denoted by EC(�;�; g), has density with respect to the

d-dimensional Lebesgue-measure given by

f(x;�;�) =

1

j�j

1=2

g

�

(x� �)

0

�

�1

(x� �)

�

; x 2 R

d

: (7)

Here � 2 R

d

, � denotes a positive de�nite d � d-matrix, and the function

g : R �! R

+

has to ful�ll the condition

Z

1

0

u

d=2�1

g(u) du < 1:

If in addition g is a strictly decreasing function on the positive real line, then

out(�;EC(�;�; g)) = fx 2 R

d

: (x� �)

0

�

�1

(x� �) > c

�

g:

The constant c

�

is determined by P (X

0

X > c

�

) = � where X denotes a

random vector with distribution EC(0; I

d

; g). Hence, the �-outlier regions

of an elliptically contoured distribution are complements of d-dimensional

ellipsoids that are determined by certain density contours. The special case

of a non-degenerate multivariate normal distribution corresponds to choosing

g(u) =

1

(2�)

d=2

exp(�u):

In this case, the well known results for quadratic forms of independent nor-

mally distributed random variables yield c

�

= �

2

d;1��

, the (1��)-quantile of

the chi-square distribution with d degrees of freedom.

The identi�cation of outliers in the multivariate normal case using one-step

identi�cation rules has been investigated in [4] and [5]. The focus lies on
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Figure 5: Density contour of a bivariate standard normal distribution

rules of the type

OR(x

N

; �

n

)

= fx 2 R

d

: (x�m

N

(x

N

))

0

S

N

(x

N

)

�1

(x�m

N

(x

N

)) > g

N

(�

N

)g;

where S

N

(x

N

) denotes a robust estimator of the covariance matrix and

m

N

(x

N

) a corresponding robust estimator of �. For example one may con-

sider the so-called minimum volume ellipsoid which is the smallest ellipsoid

containing at least [(N +d�1)=2] data points. The mean and sample covari-

ance matrix of the corresponding subsample yield highly robust estimators of

� and �. Stepwise rules for outlier identi�cation in the multivariate normal

case have been proposed e.g. by [9]. However, a discussion of those rules in

the light of outlier regions is still wanting.

An interesting application to the problem of outlier identi�cation in online

monitoring data from intensive care medicine can be found in [3]. Another

useful application can be found in [19], where �-outlier regions of a multivari-
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ate normal distribution are investigated as a tool in cluster analysis. More

generally, in [19] a �x point cluster is de�ned as a subset of a given data

set such that a certain simultaneous outlier identi�er (constructed for a pre-

speci�ed cluster reference distribution) detects no �-outlier in this subset. In

[19], [20] this approach is transferred to cluster analysis for linear regression

(cf. Section 4) and discrete data.

For other multivariate continuous distributions explicit representations for �-

outlier regions can seldom be given. A simple case where this is still possible

is given in the following example.

Example 3. Consider the case of a bivariate exponential distribution when

the marginal distributions are independent. That is, we consider a bivariate

Lebesgue-density

f(x; y; �

1

; �

2

) =

1

�

1

�

2

exp

�

�

x

�

1

�

y

�

2

�

; x; y > 0;

with scale parameters �

1

; �

2

> 0.

Again, �-outlier regions for this bivariate distribution can be found by using

their relation to certain density contours which are given as certain straight

lines. From (1) one �nds that here an �-outlier region is given by

out(�; P

�

1

;�

2

) =

n

(x; y)

0

2 R

+

� R

+

: y > �

2

�

� ln

�

�

1

�

2

K

�

�

x

�

1

�o

where K is determined as solution of the equation

�

1

�

2

K

�

� ln

�

�

1

�

2

K

�

+ 1

�

= �:

Hence, the �-outlier region of this bivariate exponential distribution is the

complement (in the �rst quadrant of R

2

) of a simplex with vertices (0; 0)

0

;

(0;��

1

ln(�

1

�

2

K))

0

; and (��

2

ln(�

1

�

2

K); 0)

0

: For other bivariate exten-

18



sions of the exponential distribution that also allow for dependence, the con-

struction of the corresponding �-outlier regions is more complicated.

4 STRUCTURED CONTINUOUS DATA

So far we have investigated outlier regions for data situations where a homo-

geneous population was assumed. We focus now on the case of inhomoge-

neous populations, especially in the presence of certain covariates.

We �rst consider the simple linear regression model:

Y = �

0

+X

0

�

1

+ U (8)

where Y denotes the response, X 2 R

p

a vector of regressors, and � =

(�

0

;�

0

1

)

0

2 R

p+1

a vector of regression parameters. With U = Y �(�

0

+X

0

�

1

)

we denote the corresponding residual. Suppose that a random sample of

independent copies (Y

i

;X

i

); i = 1; : : : ; N; from model (8) is given. To exploit

the concept of �-outlier regions successfully in this regression set-up, we

have to make appropriate assumptions for the distribution of the response

and the joint distribution of the regressors if they are random. Reasonable

assumptions are

P

Y jX

= N (�

0

+X

0

�

1

; �

2

); (R1)

for a scale parameter �

2

> 0, that is the conditional distribution of Y given

the vector of regressors is normal, and

P

X

= N (�;�); (R2)

that is the joint distribution of the regressors is a p-variate normal distribu-

tion with mean � 2 R

p

and (p � p)-covariance matrix �. Note that under
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(R1) the conditional distribution of the residual U is given by

P

U jX

= N (0; �

2

):

Further, if (R1) and (R2) hold, then

P

(Y;X)

= N

0

@

0

@

�

0

+ �

0

�

1

�

1

A

;

2

4

�

2

+ �

0

1

��

1

�

0

1

�

��

1

�

3

5

1

A

: (9)

There are several reasonable ways of de�ning outlier regions for this regression

set-up. First look at the case where we only assume (R1). Then according

to the general de�nition (1), a response-�-outlier region could be de�ned as

out(�; P

Y jX

) =

�

y 2 R : u = jy � (�

0

+X

0

�

1

)j > � z

1��=2

	

: (10)

This type of outlier region is especially useful in the case of �xed regressors

where only outliers in y-direction are of interest. Note that essentially the

residual u determines whether some y is outlying or not, a large absolute

value of u indicates an �-outlier.

However, often also the regressors are random quantities as in many econo-

metric or sociometric applications. In this case, also outliers in x-direction

are of interest. Under assumption (R2), a regressor-�-outlier region can be

de�ned as in Section 2 for the multivariate normal distribution:

out(�; P

X

) = fx 2 R

p

: (x� �)

0

�

�1

(x� �) > �

2

p;1��

g: (11)

This approach leads to a population based formalization of the concept of

so-called leverage points which in a given sample (Y

i

;X

i

) are \cases for which

X

i

is far away from the bulk of the X

i

in the data" [28].

From (9), outliers in y- as well as in x-direction can now be characterized by
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the �-outlier region

out(�; P

(Y;X)

) =

n

(y;x

0

)

0

2 R

p+1

:

(y � (�

0

+ x

0

�

1

))

2

�

2

+ (x� �)

0

�

�1

(x� �) > �

2

p+1;1��

o

:

This is again the �-outlier region of a certain multivariate normal distribu-

tion, where the special structure of the mean vector and covariance matrix

is taken into account.

         ↑

 Response-

      inlier

     region

         ↓
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Figure 6: Outlier regions in the regression set-up

In Figure 6 the three types of outlier regions are shown for the case that

in (R1) and (R2) we have N = 100; � = 10; �

0

= 10; �

1

= 1; �

2

= 1

and � equals 4. Further, � = �

N

= 1 � (1 � ~�)

1=N

with ~� = 0:05. The

�lled circle \�" indicates a point which is a regression-outlier but neither

a regressor- or response-outlier, the diamond \�" indicates a \good", the

un�lled circle \Æ" a \bad" leverage point.
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Several outlier regions for linear regression models have also been investigated

in [6]. However, with exception of (10) these regions do not correspond to

the outlier regions presented here. For an unspeci�ed measurable function

g : R

p+1

�! R, depending on � and the model parameters, in [6] a more

general (g; �)-outlier region is de�ned in terms of

out(g; �; P

(Y;X)

) = f(y;x

0

)

0

2 R

p+1

: g(y;x) > 1g:

By judicious choice of g this more general de�nition also covers other notions

of outlyingness. Note however that the interpretation of an �-outlier region

as given in Section 2 does no longer hold true for a general (g; �)-outlier

region.

We investigate two functions g that yield reasonable (g; �)-outlier regions:

Choosing

g(y;x) =

jy � �

0

� x

0

�

1

j

� c

�

p

1 + (x� �)

0

�

�1

(x� �)

(12)

leads to a (g; �)-outlier region by which leverage points are only classi�ed as

outlying if the corresponding residual has a quite large absolute value. On

the other hand, choosing

g(y;x) =

jy � �

0

� x

0

�

1

j

� c

�

q

1 + (x� �)

0

�

�1

(x� �) (13)

leads to a (g; �)-outlier region that will classify only \good" leverage points as

inlying. In [6] these regions are called outlier regions of Type III and Type II,

respectively (outlier regions of Type I correspond to response-outlier regions

as de�ned in (10)). The constant c

�

has to be chosen in accordance with

an appropriate standardization. Figure 7 contains both regions in case that

the relevant parameters are chosen as in Figure 6. The normalizing constant

has been chosen such that the probability of the occurrence of a (g; �

N

)-

outlier in a sample of size N = 100 does not exceed �

N

= 1� (1� ~�)

1=N

for
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~� = 0:05. This requirement leads to c

�

N

= 3:13 for a Type III-outlier region

and c

�

N

= 6:83 for a Type II-outlier region, where these values are obtained

by simulations.
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(a)

Type II - inlier region
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0
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0

(b)

        ↑

   Type III -

inlier region

        ↓

Figure 7: Outlier regions of (a) Type II and (b) Type III in the regression

set-up

In [6] it is shown that identi�cation of outliers in the regression set-up based

on empirical versions of response- and Type II-outlier regions leads inevitably

to procedures with bad worst-case behavior. In general, procedures based

on least median of squares or least trimmed squares as estimators of the

regression parameters (cf. [27]) yield the most satisfactory results.

Outlier regions for ANOVA models with �xed e�ects can be de�ned as in

(10). For a two-way ANOVA, one-step-identi�cation rules implicitly based

on this de�nition of outlyingness are discussed in [33]. If random e�ects must

be included the situation becomes more complex. Consider the most simple

case of a one-way random e�ects model with k classes and N

i

measurements

taken in each class, i = 1; : : : ; k. Typical applications of this model include

the statistical analysis of interlaboratory studies. The de�nition of outlier
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regions for this set-up has been investigated in [34]. Let Y

ij

denote the j-th

outcome in the i-th class, then we assume

Y

ij

= �+ U

i

+ E

ij

; i = 1; : : : ; k; j = 1; : : : ; N

i

;

where � 2 R is the overall mean, U

i

is the unobservable random e�ect of the

i-th class and E

ij

represents the measurement error for the j-th observation

in this class. Set Y

i

= (Y

i1

; : : : ; Y

iN

i

)

0

. We make the additional assumption

P

(Y

i

;U

i

)

=

0

@

0

@

1

N

i

�

0

1

A

;

2

4

�

2

e

I

N

i

+ �

2

u

1

N

i

1

0

N

i

1

N

i

�

2

u

1

0

N

i

�

2

u

�

2

u

3

5

1

A

; (RE)

where I

m

denotes the (m �m)-identity matrix, 1

m

2 R

m

is the vector hav-

ing all components equal to one, and �

2

u

; �

2

e

> 0 are the so-called variance

components representing the contributions of the random e�ect and the mea-

surement error to the total variance of the Y

ij

. We assume further that the

random vectors (Y

0

i

; U

i

)

0

; i = 1; : : : ; k; are independent. Note that from (RE)

the conditional distribution of Y

ij

given the random e�ect U

i

equals

P

Y

ij

jU

i

= N (�+ U

i

; �

2

e

);

and the marginal distributions of the joint observations in a single class and

of the random e�ects are respectively given as

P

Y

i

= N

�

1

N

i

�; �

2

e

I

N

i

+ �

2

u

1

N

i

1

0

N

i

�

;

P

U

i

= N (0; �

2

u

):

(14)

With the exception of P

Y

i

these distributions do not depend on the indices i

and j. For P

Y

i

, dependence occurs only with regard to the sample size. There

are now di�erent forms of suspicious observations which should be treated

separately. Firstly one may be interested in a location-�-outlier within the

i-th class. The corresponding �-outlier region is simply given by

out(�; P

Y

ij

jU

i

) = fy 2 R : jy � �� u

i

j > �

e

z

1��=2

g;
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where the level could be chosen as � = �

N

i

= 1� (1 � ~�)

1=N

i

or � = �

N

=

1� (1� ~�)

1=N

with N =

P

k

i=1

N

i

.

Besides the observations it may be the classes themselves which are of inter-

est. E.g., in an interlaboratory study one may observe a laboratory that in

general has conspicuous results compared with the other labs. From (14) a

class-�-outlier region could be de�ned as

out(�; P

Y

i

) =

n

y = (y

i1

; : : : ; y

iN

i

)

0

2 R

N

i

:

P

N

i

j=1

(y

ij

� �)

2

�

2

e

�

�

2

u

�

2

e

�

P

N

i

j=1

y

ij

�N

i

�

�

2

�

2

e

+N

i

�

2

u

> �

2

1��;N

i

o

;

which, similarly to out(�; P

(Y;X)

) in the regression model, is the �-outlier re-

gion of a multivariate normal distribution with a certain mean and covariance

structure.

In [34] it is mentioned that one may be interested in di�erent types of outlying

classes: such which seem to di�er markedly from the others with respect to

location and such which show a comparably larger (or smaller) dispersion

of the outcomes. The �rst type of aberrant classes can be described by a

location-�-outlier region within the random e�ects de�ned by

out(�; P

U

i

) = fu 2 R : juj > �

u

z

1��=2

g:

Note that this is just the �-outlier region of a univariate normal distribution

with variance �

2

u

. For the second type, in [34] an outlier region is suggested

that is based on a scale estimator of �

e

. Let s

m

: R

m

�! R

+

denote such an

estimator which operates on a set of m observations and which is location

and scale equivariant. Then in [34] a scale-�-outlier region with respect to

s

N

i

is de�ned by

out(�; P

Y

i

; s

N

i

) = fy 2 R

N

i

:

�

�

ln(s

N

i

(y))� ln(�

e

)

�

�

> c

�

g:
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The constant c

�

is determined from

P

�

Y

i

2 out(�; P

Y

i

; s

N

i

)

�

= �:

This scale-�-outlier region is an �-outlier region in the sense of de�nition (1)

only if the distribution of ln(s(Y

i

)) is indeed symmetric with center ln(�

e

).

For the outlier regions de�ned for the classes it is convenient to choose � =

�

k

= 1� (1� ~�)

1=k

.

A great di�erence between outlier regions for the one-way random e�ects

model and the other models discussed so far is that some of them depend

on the unobservable U

i

's. For practical applications, e.g. when constructing

a simultaneous outlier identi�er, the realizations of the random e�ects must

be predicted from the data. As is shown in [34], reliable outlier identi�ers

can be constructed with robust estimators of the model parameters �; �

u

; �

e

;

and robust predictors of the random e�ects. Especially procedures based on

medians yield results that are quite satisfactory.

5 UNIVARIATE AND MULTIVARIATE DISCRETE

DISTRIBUTIONS

The �-outlier concept can also successfully be applied to discrete distribu-

tions which have an enumerable support. Hence in contrast to Section 3

families of distributions P = fP

�

; � 2 � � R

k

g on (R

d

;B

d

) are consid-

ered which are dominated by the counting measure on supp(P

�

). Let the

discrete density of P

�

be denoted by p(�; �) and the �-quantile of P

�

be de-

�ned as in (4). The lower and upper �-tail regions of P

�

are again given by

supp(P

�

)\(�1; q

�

(P

�

)) and by supp(P

�

)\(q

1��

(P

�

);1), respectively. Note

that the upper �-tail region is empty if q

1��

(P

�

) = max(supp(P

�

)), a similar

26



result holds for the lower tail region.

Usually, the �-outlier regions with respect to discrete distributions cannot

be obtained with similar arguments as those for continuous distributions (as

for example in Table 1). Lemma 1 still holds but is not useful in most

cases as usually P

�

=2 P. A somewhat arti�cial example where P

�

2 P is

always true is given by the general family of discrete uniform distributions

U = fU(n; a; h); n 2 N ; a 2 R; h 2 Rg, where U(n; a; h) has density

p(x; a; n; h) =

1

n+ 1

1

fa i+h; i2f0;:::;ngg

(x);

that is supp(U(n; a; h)) = fx 2 R : x = a+i h; i 2 f0; : : : ; ngg and supp(U) =

R (see [22, p. 272]). Following the de�nition of an �-outlier region given in

Section 1, the �-outlier region of U(n; a; h) is given by

out(U(n; a; h)) = R n supp(U(n; a; h)) = a out(U(n; 1; 0)) + h:

Hence, irrespectively of the choice of � 2 (0; 1), each x =2 supp(U(n; a; h)) is

an �-outlier with respect to U(n; a; h).

The same is true for Lemma 2, which can be formulated for the discrete case

as well. But it is not helpful in most cases. Take as an example the family

of binomial distributions Bin(n; �) with �xed positive integer n 2 N and

parameter � 2 [0; 1], where the distributions have support f0; : : : ; ng and

density function

p(x; �) =

�

n

x

�

�

x

(1� �)

n�x

1

f0;:::;ng

(x):

Each binomial distribution has a strictly increasing-decreasing density with

�

1

= �

2

= [[�(n+ 1)]] if �(n+ 1) =2 N , and �

1

= �(n+ 1)� 1; �

2

= �(n+ 1)

otherwise. If � = 0:5, all Bin(n; 0:5) are symmetric around � =

n

2

, n 2 N .

In this case Lemma 2 (a) can be applied and the �-outlier region is the
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union of the corresponding upper and lower �=2-tail regions of Bin(n; 0:5).

These can easily be found using standard tables. If for example n = 5 the

lower 0:05-tail region equals f0g and the upper 0:05-tail region equals f5g.

Following Lemma 2 (a) the 0:1-outlier region of Bin(5; 0:5) therefore contains

the values 0 and 5. For � 6= 0:5, the �-outlier region of Bin(n; �) can be

derived by calculating all probabilities and applying the de�nition. Especially

with higher values of n this becomes rather tedious. Figure 8 shows the case

n = 6, � = 0:6.

0 1 2 3 4 5 6

0.0

0.1

0.2

0.3

p(x,0.6)

x

Figure 8: 0:1-outlier region of the binomial distribution Bin(6; 0:6)

Consider the following condition. We say P

�

(iv) has an increasing-decreasing density if for some � 2 supp(P

�

) one has

p(x

1

; �) � p(x

2

; �) for all x

1

� x

2

� � and p(x

1

; �) � p(x

2

; �) for all

� � x

1

� x

2

, x

1

; x

2

2 supp(P

�

).

Condition (iv) is assumed to hold with probability one. It is more general

than those given in Section 3 as it is ful�lled by all distributions for which

one condition out of (i) to (iii) holds.
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Inlier regions for a distribution P

�

ful�lling condition (iv) can be derived

using the following procedure. Let � be given. For x

q

2 supp(P

�

) denote

inff(x 2 supp(P

�

) : x > x

q

g by x

q+1

and supfx 2 supp(P

�

) : x < x

q

g by x

q�1

.

1. Set L = U = 0, x

0

= �, x

sup

= sup(supp(P

�

)), x

inf

= inf(supp(P

�

)).

2. Set L = L � i where i 2 N , p(x

L�i

; �) = p(x

L

; �) and p(x

L�i�1

; �) 6=

p(x

L

; �). If x

U

= x

sup

go to step 4, else continue.

3. Set U = U + j where j 2 N , p(x

U+j

; �) = p(x

U

; �) and p(x

U+j+1

; �) 6=

p(x

U

; �).

4. If P (X 2 [x

L

; x

U

]) � 1� � then inl(�; P ) = [x

L

; x

U

] \ supp(P

�

), else

if x

U

= x

sup

set L = L� 1 and return to step 2, else

if x

L

= x

inf

set U = U + 1 and return to step 3, else

set U = U + 1 if p(x

U+1

) = max(p(x

U+1

; �); p(x

L�1

; �)) and L = L� 1

if p(x

L�1

; �) = max(p(x

U+1

; �); p(x

L�1

; �)) and return to step 2.

Procedures like this have already been applied to the binomial and the Pois-

son distribution in [10] and [22]. As an example consider the family of Poisson

distributions Poi(�), � 2 R

+

, with density

p(x; �) =

�

x

x!

exp(��) 1

N

(x)

and support supp(Poi(�)) = N : Since p(�; �) is increasing-decreasing, the

algorithm presented above can be applied. For some values of � and � the

corresponding outlier regions are given in Table 2.

Note that although the de�nition of an �-outlier provides unambiguous out-

lier regions for a given distribution, these can be the same for di�erent values

of � and di�erent parameters.
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Parameter �

� 3 3.5 4

0.01 N n f0; : : : ; 8g N n f0; : : : ; 8g N n f0; : : : ; 9g

0.05 N n f0; : : : ; 6g N n f0; : : : ; 7g N n f1; : : : ; 8g

0.1 N n f1; : : : ; 6g N n f1; : : : ; 6g N n f1; : : : ; 7g

Table 2: �-outlier regions for some Poisson distributions

Outlier identi�cation procedures for samples from binomial and Poisson dis-

tributions can be derived from procedures for the logistic regression model

and the loglinear Poisson model ([22], [10]). The de�nition of outliers for

these more complex data structures will be discussed in Section 6.

We consider next the case of multivariate discrete distributions. In most cases

the marginal distributions are equal to well known univariate distributions.

But it is in general not possible to �nd a representation of the outlier region

in terms of the outlier regions of the marginal distributions. Even in the

case of independence where the joint distribution equals the product of the

marginal distributions out

�

�;

N

d

i=1

P

i

�

= �

d

i=1

out(�; P

i

) does not necessarily

hold. A similar result has been noted in [11].

As an example consider the case of a two-dimensional random vector (X

1

; X

2

)

0

and the following alternative distributions: The so-called bivariate Poisson

distribution (see [21], Chapter 37.2) has bivariate density

p(x

1

; x

2

; �

1

; �

2

; �

12

)

= exp(�(�

1

+ �

2

+ �

12

))

min(x

1

;x

2

)

X

i=0

�

x

1

�i

1

�

x

2

�i

2

�

i

12

(x

1

� i)! (x

2

� i)! i!

1

N

(x

1

) 1

N

(x

2

);

with parameters �

1

, �

2

, �

12

2 R

+

. In contrast to this, the multiple Poisson
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distribution given by Poi(�

1

+ �

12

)
 Poi(�

2

+ �

12

) has bivariate density

p(x

1

; x

2

; �

1

; �

2

; �

12

)

= exp(�(�

1

+ �

2

+ 2 �

12

))

(�

1

+ �

12

)

x

1

(�

2

+ �

12

)

x

2

x

1

! x

2

!

1

N

(x

1

) 1

N

(x

2

);

with the same parameters. In both cases the marginal distributions are Pois-

son distributions with parameters �

1

+�

12

and �

2

+�

12

, respectively. Corre-

sponding 0:1-inlier regions of two multivariate distributions with parameter

values �

1

= 1, �

2

= 3 and �

12

= 0:5 are given in Figure 9 as well as the

product of the 0:1-inlier regions of the marginal distributions. Apparently

these regions are di�erent and there is no obvious connection between the

inlier regions and hence nor between the outlier regions of the marginal and

the joint distributions.
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Figure 9: 0:1-inlier regions of some joint and marginal Poisson distributions

The inlier regions given in Figure 9 have been derived by lengthy calculations

of density values and the application of de�nition (1). So far no algorithms or

outlier identi�cation procedures have been developed for multivariate discrete

distributions. The main focus has been on structured situations which will

be discussed in the next section.
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6 STRUCTURED DISCRETE DATA

As in the continuous case, discrete data are often sampled from an inhomo-

geneous population such that the assumption of identical distributions for all

observations is not valid . However, quite often there exists an underlying

structure connecting the individual distributions. This is taken into account

by using a model like the logistic regression model, the loglinear Poisson

model, or the Poisson regression model. All these models may be embedded

into the larger class of generalized linear models (see [24]).

We deal here with samples of a �xed number N of discrete random variables

Y

1

; : : : ; Y

N

which are independently, but not identically distributed. Their

distributions belong to the same family P = fP

�

; � 2 �g but are charac-

terized by di�erent parameter values �

i

= �(x

i

;�), depending on some �xed

covariates x

i

2 R

p

and a common parameter vector � 2 R

p

.

Take as an example the loglinear poisson model for a contingency table where

the vector Y = (Y

1

; : : : ; Y

N

)

0

contains the frequency counts for the cells

of the table. Using the representation as generalized linear model, each

loglinear poisson model can be described by a �xed p�N -design matrixX =

(x

1

; : : : ;x

N

), containing only the entries �1; 0; 1, and a parameter vector

� 2 R

p

(see [1, p. 80] and [24, p. 13]). The cell counts Y

i

are assumed to

be independent and to follow Poisson distributions Poi(�

i

) with parameters

�

i

= �(x

i

;�) = exp(x

0

i

�); i = 1; : : : ; N .

Following Section 5 an �-outlier region out(�;


N

i=1

P

�(x

i

;�)

) for the joint dis-

tribution of the Y

i

can be considered. Note that in this case each vector

(y

1

; : : : ; y

N

) 2 supp(


N

i=1

P

�(x

i

;�)

) is either classi�ed as outlier or inlier. In

the contingency table set-up this would be the complete table. Such an ap-
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plication of the �-outlier concept is useful for a sample of more than one table

describing the same context. This is the case when we have outcomes of dif-

ferent experiments on the same topic with e.g. the �nal goal of estimating a

common odds ratio.

Usually, however, only one contingency table is observed and one is inter-

ested rather in single cell counts, hence one needs outlier regions for the

distributions of the individual Y

i

; i = 1; : : : ; N . The same applies for other

models than the loglinear poisson model. We therefore look at outlier re-

gions out(�

i

; P

�

i

) of the marginal distributions. As in the case of i.i.d. ran-

dom variables the values �

i

should be chosen such that the probability of

the occurrence of an outlier in the whole sample does not exceed a given ~�

(see (3)). Again, this can be achieved by setting �

i

= 1� (1� ~�)

1=N

for all

i = 1; : : : ; N .

Example 4. Consider the loglinear independence model for a 3� 3 table,

where N = 9 and p = 5. The parameters of the marginal Poisson distribu-

tions are given by �

i

= exp(x

0

i

�) with design matrix

X = (x

1

; : : : ;x

9

) =

2

6

6

6

6

6

6

6

6

6

4

1 1 1 1 1 1 1 1 1

1 1 1 0 0 0 �1 �1 �1

0 0 0 1 1 1 �1 �1 �1

1 0 �1 1 0 �1 1 0 �1

0 1 �1 0 1 �1 0 1 �1

3

7

7

7

7

7

7

7

7

7

5

:

As parameter vector we choose � = (4; 0:2;�0:2; 0:4; 0:3)

0

. Table 3 contains

the 0.01-outlier regions for the nine cell distributions. For example, a count

of 85 observed in cell 3 would be classi�ed as 0:01-outlier. However, the same

count observed in cell 1 would be an 0.01-inlier due to the inhomogeneous

cell distributions.
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cell �

i

out(0:01; P oi(�

i

))

1 99.48 N n f75; : : : ; 126g

2 90.02 N n f67; : : : ; 115g

3 33.12 N n f19; : : : ; 48g

4 66.69 N n f47; : : : ; 88g

5 60.34 N n f41; : : : ; 80g

6 22.20 N n f11; : : : ; 35g

7 81.45 N n f59; : : : ; 105g

8 73.70 N n f52; : : : ; 96g

9 27.11 N n f15; : : : ; 41g

Table 3: Loglinear Poisson model: 0.01-outlier regions for Example 4

In the loglinear Poisson model the design matrix X is always �xed, whereas

in the logistic regression and the Poisson regression model stochastic regres-

sors X

i

; i = 1; : : : ; N; are possible as well. In both cases it is assumed that

conditioned on the regressors the Y

i

are independent but not identically dis-

tributed with binomial distributions

P

Y

i

jX

i

= Bin

�

m

i

;

1

1 + exp(�X

0

i

�)

�

(15)

in case of the logistic regression model, and Poisson distributions

P

Y

i

jX

i

= Poi

�

m

i

exp(�X

0

i

�)

�

(16)

in case of the Poisson regression model respectively. Here m

1

; : : : ; m

N

are

given positive integers.

As in the situation of the linear regression model discussed in Section 4, the

concept of �-outlier regions can be applied in two di�erent ways: The �rst

way consists in specifying the joint distributions of (Y

i

;X

i

); i = 1; : : : ; N;
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and then deriving the corresponding �

i

-outlier regions. Since unlike to the

continuous case there is no natural choice for these joint distributions, usually

the conditional distributions (15) and (16) are considered. Following this

approach yields again to the same �

i

-outlier regions as obtained with �xed

explanatory variables (see [11]).

The concept of outlier regions for structured discrete data and correspond-

ing outlier identi�cation methods have recently been considered by a few

authors, see [10], [11], [17], [22]. Again, outlier identi�cation procedures that

are based on robust estimators of the unknown parameter vector � 2 R

p

give satisfactory results. The main problem here consists in �nding such an

estimator.

y

ij

j = 1 2 3 4 5

i =1 18 41 41 20 21

2 39 20 20 22 22

3 24 20 20 16 18

4 20 20 19 19 19

5 23 19 20 17 20

b

�

ij

1 2 3 4 5

1 24.2 21.0 21.0 20.0 21.0

2 25.3 22.0 22.0 20.9 22.0

3 23.0 20.0 20.0 19.0 20.0

4 21.9 19.0 19.0 18.1 19.0

5 23.0 20.0 20.0 19.0 20.0

Table 4: Invented 5� 5-table and median polish estimates

Example 5. As an example of the identi�cation of outliers in structured

discrete data we consider a data set which was invented by [32]. These

data are also discussed in [2, p. 438] and are displayed in Table 4 in their

original form as a 5 � 5-table. We have chosen this example, because here,

unlike to the usual situation in contingency tables, the outlying cells are

rather obvious, namely given by the observations y

11

, y

13

, and y

21

. As robust

estimation method in the case of the independence model for two-way tables
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an application of the median polish method to the logarithm of the table

has been suggested in [25]. The resulting estimates

b

�

ij

are given in the

right hand side of Table 4. The outlier regions out(�; Poi(

b

�

ij

)) based on

these estimators can now be viewed as estimates of the true outlier regions

out(�; Poi(�

ij

)). This approach leads quite naturally to the procedure of

identifying all observations lying in these estimated outlier regions as outliers.

j = 1 2 3 4 5

i = 1 f12; : : : ; 37g f10; : : : ; 33g f10; : : : ; 33g f10; : : : ; 32g f10; : : : ; 33g

2 f13; : : : ; 38g f11; : : : ; 34g f11; : : : ; 34g f10; : : : ; 33g f11; : : : ; 34g

3 f12; : : : ; 36g f10; : : : ; 32g f10; : : : ; 32g f9; : : : ; 31g f10; : : : ; 32g

4 f11; : : : ; 34g f9; : : : ; 31g f9; : : : ; 31g f8; : : : ; 29g f9; : : : ; 31g

5 f12; : : : ; 36g f10; : : : ; 32g f10; : : : ; 32g f9; : : : ; 31g f10; : : : ; 32g

Table 5: Inlier regions N n out(0:01; P oi(

b

�

ij

)) in Example 5

Table 5 contains the 0:01-inlier regions with respect to the Poisson distri-

butions given by the median polish estimates. According to the proposed

method an observation not located in the corresponding estimated inlier re-

gion is identi�ed as outlier. This is the case for the observations y

11

, y

13

and y

21

, hence the correct result is obtained. This example used a simpli�ed

version of special one-step outlier identi�cation procedures for contingency

tables which have been introduced in [22], [17], and [23].
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