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Comparing Classi�ers in Standardized Partition

Spaces using Experimental Design

1

Ursula Garczarek and Claus Weihs

Department of Statistics, University of Dortmund, 44221 Dortmund, Germany

Abstract. We propose a standardized partition space (SPS) that o�ers a unifying framework

for the comparison of a wide variety of classi�cation rules. Using SPS, one can de�ne measures

for the performance of classi�ers w.r.t. goodness concepts beyond the expected rate of correct

classi�cations of the objects of interest. These measures are comparable for rules from so

di�erent techniques as support vector machines, neural networks, discriminant analysis, and

many more. In particular, we are interested in assessing the reliability of classi�cation rules

when used for proceeding interpretation of the relationship between the values of predictors

and the membership in classes.

We will demonstrate the high potential of SPS for the comparison of classi�cation methods

in a simulation study to analyse the following problem:

Given a medium number of predictors, (10-20), and a potentially complex relation between

classes and predictors, one would expect exible classi�cation methods like support vector

machines or neural networks to do better than simple methods like e.g. the linear discrim-

inant analysis or cart. Nevertheless, one often observes on real data sets, that the simple

procedures do pretty well. Our assumption is, that simple methods are more robust against

instability, and that the e�ect of instability superposes the e�ect of complexity of the relation.

By instability we mean the deviation from the assumption that the collected data is some

independent and identically distributed sample from some joint distribution of predictors and

classes.

We analyse this problem with a simulation study using experimental design.

Keywords. Classi�cation, Comparative Studies, Experimental Design

1 Introduction

2 Standardized Partition Spaces

2.1 Argmax rules

The method of SPS is applicable to all classi�cation methods that �nally decide for a certain

class c; c = 1; :::; G following some argmax rule. Argmax rules are based on a transformation

~
m(x) := (m(x; 1); :::;m(x;G))

0

2M of predictor values x 2 X from predictor space X into

some G-dimensional space of real numbers M � R

G

. The vector
~
m(x) is interpreted as a
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vector of membership values in the classes. Argmax rules assign an object with predictor

values x 2 X into the class with highest membership:

cl(x;
~
m) = arg max

c=1;:::;G

m(x; c):

We call max

c=1;:::;G

m(x; c) 'assigment values' and the space of all observations that get

assigned to the same class 'assigment area' of that class. Together, the assigment areas for

all classes form the classi�er's partition of the predictor space.

For example, all Bayes optimal classi�ers are argmax classi�ers.

2.2 Optimal Features

Our idea is motivated by the attempt to make any argmax rule comparable to the 'true'

or 'best' Bayes optimal classi�er that has complete knowledge (=: �) about the distribution

of predictors and classes on the population of objects. The Bayes optimal classi�er assigns

objects into the class with highest conditional probability:

cl(x;
~
p

�

) = arg max

c=1;:::;G

p(c j x; �); x 2 X:

This strategy minimizes the true expected error probability. Membership values of Bayes

optimal classi�ers all lie in the interval [0; 1] and sum up to 1. We denote this space of

membership vectors by M

s

� [0; 1]

G

.

All available information in the predictors about the membership of objects in classes is

coded in the membership values of the Bayes optimal classi�er. Thus, Fukunaga (1990) calls

them "optimal features".

If we had these optimal features, we could use them to answer questions of interest about

the interplay of predictors and class membership. In real situations, they are unknown, and

estimated membership functions of argmax classi�ers may be used as surrogates. Therefore,

we are interested reliability of classi�cation rules in this respect.

2.3 Scaling

In a �rst step, we want membership values to be directly comparable in size. We can not use

their raw membership values. One obvious reason is that they may lie on various scales. They

neither have to be non-negative nor add up to 1, as the optimal features do. Of course, we

can standardize them ad-hoc into M

s

by some monotone transformation without changing

the �nal assignment into classes. But this might lead to patterns more inuenced by the

standardization procedure than by the rule's classi�cation behaviour.

Less obvious, but equally important, even maximum membership values of argmax rules

based on learnt conditional class probabilities are not a reliable measure for the membership

of objects in the assigned classes, and thus not a reliable measure for the correctness of the

rule's decision. They give information about the rule's performance from its own perspective

only, whereas for comparisons, we would prefer a more objective view.
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The details of the process of scaling are published in Sondhau� and Weihs (2001) . It

is based on approximations of the empirical distribution of assignment values estimated on

some test data within assignment areas with the beta-distribution.

All scaled membership vectors

~

m

s

(x) := (m

s

(x; 1); :::;m

s

(x;G))

0

of any argmax rule lie

in the same space M

s

, therefore we call this method the method of standardized partition

spaces. Scaled membership vectors have the following properties:

� Scaled membership values are directly comparable in size.

� The average assignment value into each class approximates the the correctness rate of

that assignment on the test set.

� Scaled membership vectors of observations reect as much as possible the position of

the original membership vectors among each other within assignment areas.

2.4 Measures for the quality of scaled membership values

Following Hand's (1997 ) speci�cations for quality characteristics of conditional class proba-

bilities, high quality membership estimations are characterizes as follows: A high assessment

(relative to the assessed membership in other classes) in the assigned class should be justi�ed

(accuracy), the relative sizes of membership in classes should reect 'true' conditional class

probabilities (precision), and membership values of objects in the di�erent classes should be

well-separated (non-resemblance).

Average precision on the test set is used for the scaling of membership values, and thus

precision is no longer a quantity for comparison.

The measure of accuracy is based on the Euclidean distances between scaled membership

vectors
~
m

s

(x) and the vector representing the corresponding true class corner ~e(c(x)) for the

examples (x; c

x

) in the test set T. We standardize the mean of these distances such that a

measure of 1 is achieved if all vectors lie in the correct corners, and zero if they

Analogously, the measure of the ability to separate is based on the Euclidean distances

between scaled membership vectors
~
m

s

(x) and the vector representing the corresponding

assigned class corner ~e(cl(x;
~
m(x))). We standardize the mean of these distances in the same

way as above.

2.5 Potential use of scaled membership values

Once we can trust the quantitative assessment of an observations membership in classes

according to some rule, we can use them as surrogates for the optimal features. This makes

all kinds of analyses possible for interpretation. e.g.:

� For up to four classes, one can visualize scaled membership vectors of various

classi�er on the same data in a barycentric coordinate system to explore di�erences in

the classi�ers' patterns.

� Observations with highest membership can be used as prototypes for objects in certain

classes
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� For each predictor variable, one can plot membership values versus the rank of the

predictor variable for some data to explore their connection in a scale-independent

manner.

In this paper we will present the membership-predictor plots.

3 Experiment

We demonstrate the use of standardized partitions spaces in analyzing the astonishing phe-

nomenon that simple classi�cation methods do pretty well on real data sets though their

underlying premises about the true relation between predictors and classes can not reason-

ably be assumed to hold. We will implement a screening experiment to detect the main

inuencing factors for the performance of various classi�ers.

In general, inuencing factors for the goodness of any classi�cation methods are data char-

acteristics like the number of classes (we �x as three), the number of predictor variables (we

�x as 12), the number of training objects as such (we vary), the number of training objects

in classes (we use balanced design only) the number of missing values (we ignore this factor

at this stage), and the form of the joint distribution of classes and predictors on objects.

Our main interest is on the inuence of the form of the joint distribution of classes and

predictors on objects.

The form determines the shape of the optimal partition. The joint faces of partitions

between the classes g = 1; :::G is given implicitly by the equations

f

g;h

: X! X

g;h

� X;p(gj~x; �) = p(hj~x; �):

We view these implicit functions as random variables Y

g;h

:= f

g;h

(

~

X).

For a direct systematic scanning of this space of implicit functions via simulations, we

would have to �x various functions f

g;h

(

~

X) of increasing complexity, and determine from

there possible joint distributions of C and

~

X .

This is rather complicated, and moreover, the connection of this to something one can

potentially know about the problem at hand, or see by exploration of the data, is diÆcult to

understand. Thus we do not want to model the complexity of the relation via these implicit

functions, but via the conditional distributions P (

~

Xjc; �), c = 1; :::; G.

One aspect of the joint distribution is the dependency structure between predictors. Often

this makes the learning results less stable. Some classi�cation methods, like e.g. the naive

bayes, even assume independence of variables. In all cases, the analysis of the relevance of

predictors for the detection of classes is obscured by this inner dependency.

Concerning the shape of the bivariate distributions between one predictor and the class,

we de�ne easiness from the perspective of the classi�er from a linear discriminant analysis:

easy are linear functions f

g

; h, which we know can be generated from multivariate normal

distributions with equal covariance matrices. These are the assumptions, a linear discriminant

analysis is based on. In that case, Y

g;h

- as a sum of normally distributed variables - is also

normally distributed.

To see the e�ect of instability on the di�erent types of classi�cation methods, we model

instability by deected observations accounting for three factors: the percentage of deected
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Table 1: De�nition of Expectation of Predictors in Groups in the non-dependent case

V G1 G2 G3 relevant for V G1 G2 G3 relevant for

V1 0 -1.64 1.64 G2 vs G3 V7 0 -1 1 G2 vs G3

V2 1.64 0 -1.64 G1 vs G3 V8 1 0 -1 G1 vs G3

V3 -1.64 1.64 0 G1 vs G2 V9 -1 1 0 G1 vs G2

V4 0 1.64 1.64 G1 vs rest V10 0 0 0 Annoyance

V5 1.64 0 1.64 G2 vs rest V11 0 0 0 Annoyance

V6 1.64 1.64 0 G3 vs rest V12 0 0 0 Annoyance

observations, the percentage of relevant variables in which the deection takes place and the

direction of the deection.

Deection only takes place on the test data. Thus the "true" generating process for the

test data di�ers from that of the training data.

3.1 Classi�cation Methods

We compared a set of classi�cation methods, that are quite di�erent in the assumptions they

make about any underlying generating process of the data, and that are famous in di�erent

communities and for di�erent tasks: the classi�ers from linear and quadratic discriminant

analysis 'LDA' 'QDA' from statistics, the na��ve Bayes 'NB' (famous for good performance in

text classi�cation), a Neural Network 'NN' (a tool for non-linear function approximation),

the strikingly simple k-Nearest neighbor classi�er 'k-NN', and some decision tree classi�er

'rPart' (mainly famous in the machine learning community). In Sondhau� and Weihs (2001)

you �nd a more detailed description of the implementation of these classi�cation methods.

3.2 Quality Characteristics

The target values in our experiment are correctness rate (CR), accuracy (Ac) and ability to

separate (AS).The more overlapping the true distribution are the more diÆcult is the problem

as such. Thus we use as target values not the goodness criteria as such but their relation

ratios (rCR, rAc, rAS) to the best that can be achieved: the values of these criteria for the

optimal bayes classi�er.

3.3 Predictors

We also want to demonstrate the use of SPS for analysing the relevance of variables for the

di�erent classes. For that purpose we generate our predictor variables such that we have a

clear concept for the relevance at least in the non-dependent case.

All univariate distributions have variance 1. They only di�er in expectation, kurtosis and

skewness. Table gives the de�ned expectations, which are either zero, one, or the upper or

lower 5%-quantile of the standard normal distribution, u

:05

:

= �1:64 and u

:95

:

= 1:64.

We �x this expectations for the normal and the non-normal case. The resulting expecta-

tions, variances an covariances in the dependent case can be calculated.
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3.4 Factors

We de�ne the low (level=-1) and the high level (level=1) for our experimental design by

looking at the easiness of the learning task.

The more training data we have, the more information we have to learn classi�cation rules,

thus we consider the number of examples in the training set as inuencing factor TO. We

set N = 1000 as low (diÆculty) level and N = 100 as high (diÆculty) level.

To model the deviance of the true distribution from the normal distribution, we use the

Johnson System (Johnson, 1949), where random variables can be generated such that they

have pre-de�ned �rst four central moments. Low and high skewness values (0:1

2

and 1:15

2

),

and low and high kurtosos values (2.7 and 5.0) are selected such that all combinations are

valid, and that a wide range of distributions in the skewness-kurtosis-plane is spanned.

On the low level of dependency Dp, we generate independent predictor variables X

k

; k =

1; :::;K. The high level of dependence is constructed by calculating "inverted" variables:

~

X

k

:=

P

K

i=1

X

i

�X

k

, k = 1; :::;K:

We do want deection to be the deviance from the ordinary, thus the chosen high level of

40% for the percentage of deected observations DO assures that more than a half of the

observations is "ordinary". We de�ne the low level as 10%. For the low level of the percentage

of deected variables DV only one of the nine relevant predictor variables is deected, on

the high level, all but one.

The direction of deection DD of an observation is either determined by a shift of the value

in each a�ected predictor variable towards its mean in the true group of the observation, or

away from it towards the nearest true mean of this variable in another group.

3.5 Experimental design

To do the screening for detect the relevant factors for the relative performance of the analyzed

set of classi�ers, we use a standard Plackett-Burman design for seven factors.

4 Results

In Table 2 we present the values of those coeÆcients of the approximated linear response

functions that are signi�cant to a �ve percent level, the measure of the �t of the linear model

based on all factors R

2

, and based only on the signi�cant factors R

2

5%

.

The classi�ers di�er strongly in the factors that most heavily inuence their relative perfor-

mance: NB, k-NN, and rPart react strongly negative on the dependency, whereas QDA, and

LDA react both negative on kurtosis, most others react positively, only NN does not react at

all on kurtosis. The reaction on the deection is all in all not very strong (relatively to the

best that could have been learnt), only LDA is reacting positively!

The astonishing result that LDA also reacts positively on skewness, may be turn out to

be the result of interactions. Especially for LDA, QDA, and NN, the low R

2

-values indicate

that models with interactions should be �tted.



7

Table 2: Descriptions of Approximated Response Functions

Meth. Crit. Intc. TO K S DP DO DV DD R

2

R

2

5%

LDA rCR .9997 �.0189 �.0071 .0062 .0072 .89 .83

rAc .9973 �.0503 �.0158 .0173 .0175 .87 .81

rAS .999 �.0347 �.013 .0117 .0142 .89 .82

QDA rCR .9963 �.0583 .90 .82

rAc .9917 �.1334 �.0238 .91 .86

rAS .9933 �.0965 �.0192 .0165 .91 .88

rPart rCR .929 �.0966 .0479 �.1171 .91 .90

rAc .779 �.166 .1005 �.237 .91 .90

rAS .8873 �.1342 .0688 �.1806 .92 .91

NB rCR .999 �.1498 .1241 �.2816 .97 .96

rAc .9973 �.2308 .1665 �.5473 .0733 .97 .97

rAS .9983 �.2406 .1926 �.4381 .97 .96

k-NN rCR .9973 �.0586 .0286 .0167 �.0528 .0129 .98 .98

rAc .9927 �.1345 .0933 �.1213 .93 .91

rAS .9967 �.0983 .0426 .0319 �.0868 .0251 .98 .98

NN rCR .976 �.0384 .0139 .73 .65

rAc .9247 �.0894 .0396 �.0401 �.0586 .74 .72

rAS .9657 �.06 .0212 .74 .67

In Figure 1 you see that the inuence of the third variable for the separation between group

1 and 3 can easily be read o� the membership-predictor plot for plan No. 1, where all factors

are set on their low values. Because of the scaling, the high level of the assignment values

reect the fact that these assignments can be trusted. Due to the black-box-nature of neural

networks this information could typically not be read o� that easily.
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Plan No.1: Run of NN
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Figure 1: Example of a membership-predictor plot. Scaled membership values in all three

groups are plotted versus the rank of V3 within a subsample of 150 points of the test set.

Crosses mark the assignment values. The forth plot displays the run of the actual value of V3,

and the shape of the marginal distribution of V3 is visualized in the boxplot at the bottom

on the right side.


