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Abstract

The logistic regression model is commonly used to describe the e�ect of one or several explanatory

variables on a binary response variable. Here we consider an alternative model under which the

observed response is strongly related but not equal to the unobservable true response. We call this

the hidden logistic regression (HLR) model because the unobservable true responses are comparable

to a hidden layer in a feedforward neural net. We propose themaximum estimated likelihood method

in this model, which is robust against separation unlike existing methods for logistic regression.

We also consider outlier-robust estimation in this setting.

1 Introduction

The logistic regression model assumes independent Bernoulli distributed response variables with

success probabilities �(x

0

i

�) where � is the logistic distribution function, x

i

2 IR

p

are vectors of

explanatory variables, 1 � i � n, and � 2 IR

p

is unknown. Under these assumptions, the classical

maximum likelihood (ML) estimator has certain asymptotic optimality properties. However, even if

the logistic regression assumptions are satis�ed there are data sets for which the ML estimate does

not exist. This occurs for exactly those data sets in which there is no overlap between successes

and failures, cf. Albert and Anderson (1984) and Santner and Du�y (1986). This identi�cation

problem is not limited to the ML estimator but is shared by all estimators for logistic regression,

such as that of K�unsch et al. (1989).

One way to deal with this problem is to measure the amount of overlap. This can be done by

exploiting a connection between the notion of overlap and the notion of regression depth proposed

by Rousseeuw and Hubert (1999), leading to the algorithm of Christmann and Rousseeuw (2001).

A comparison between this approach and the support vector machine is given in Christmann,

Fischer and Joachims (2000).

In Section 2 we use an alternative model, which is an extension of the logistic regression model.

We assume that due to an additional stochastic mechanism the true response of a logistic regression

model is unobservable, but that there exists an observable variable which is strongly related to

the true response. E.g., in a medical context there is often no perfect laboratory test procedure

to detect whether a speci�c illness is present or not (i.e., misclassi�cation errors may sometimes

occur). In that case, the true response (whether the disease is present) is not observable, but the

result of the laboratory test is.

It can be argued that the true unobservable responses are comparable to a hidden layer in a

feedforward neural network model, which is why we call this the hidden logistic regression (HLR)

model. In Section 3 we propose the maximum estimated likelihood (MEL) technique in this model,

and show that it is immune to the identi�cation problem described above. The MEL estimator is

studied by simulations (Section 4) and on real data sets (Section 5). In Section 6 we also consider

outlier-robust estimation in this setting, whereas Section 7 provides a discussion and an outlook

to further research.
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2 The hidden logistic regression model

The classical logistic regressionmodel assumes n observable independent responses Y

i

with Bernoulli

distributions Bi(1;�(x

0

i

�)), where i = 1; : : : ; n and � 2 IR

p

. Throughout this paper we assume that

there is an intercept, so we put x

i;1

= 1 for all i, and thus p � 2.

The new model assumes that the true responses are unobservable (latent) due to an additional

stochastic mechanism. In medical diagnosis there is typically no test procedure (e.g. a blood test)

which is completely free of misclassi�cation errors. Another possible cause of misclassi�cations is

the occurrence of clerical errors.

To clarify the model, let us �rst consider a medical application with only n = 1 patient. His/her

true status (e.g. presence or absence of the disease) has two possible values, typically denoted as

success (s) and failure (f). We assume that the true status T is unobservable. However, we can

observe the variable Y which is strongly related to T as in Figure 1. If the true status is T = s

we observe Y = 1 with probability P(Y = 1jT = s) = Æ

1

, hence a misclassi�cation occurs with

probability P(Y = 0jT = s) = 1� Æ

1

. Analogously, if the true status is f we observe Y = 1 with

probability P(Y = 1jT = f) = Æ

0

and we obtain Y = 0 with probability P(Y = 0jT = f) = 1� Æ

0

.

We of course assume that the probability of observing the true status is higher than 50%, i.e.

0 < Æ

0

< 0:5 < Æ

1

< 1.

10Y
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Fig. 1. Unobservable truth T and observable response Y .

Ekholm and Palmgren (1982) considered the general case with n observations. In our nota-

tion, there are n unobservable independent random variables T

i

resulting from a classical logistic

regression model with �nite parameter vector � = (�

1

; : : : ; �

p

)

0

= (�; �

1

; : : : ; �

p�1

)

0

. Hence T

i

has

a Bernoulli distribution with success probability �

i

= �(x

0

i

�) where �(z) = 1=[1 + exp(�z)] and

x

i

2 IR

p

. Furthermore, they assume that the observable responses Y

i

are related to T

i

as in Figure

1. For instance, when T

i

= s we obtain Y

i

= 1 with probability P(Y

i

= 1jT

i

= s) = Æ

1

whereas

Y

i

= 0 occurs with the complementary probability P(Y

i

= 0jT

i

= s) = 1� Æ

1

. (The plain logistic

model assumes Æ

0

and Æ

1

= 1.) The entire mechanism in Figure 2 we call the hidden logistic re-

gression model because the true status T

i

is hidden by the stochastic structure in the top part of

Figure 2. This model can be interpreted as a special kind of neural net, with a single hidden layer

that corresponds to the latent variable T .

3 The maximum estimated likelihood method

a. Construction

We now need a way to �t data sets arising from the hidden logistic model. Two approaches already

exist, by Ekholm and Palmgren (1982) and by Copas (1988), but here we will proceed in a di�erent

way.
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Fig. 2. Hidden logistic regression model.

Let us start by looking only at Figure 1, where Y is observed but T is not. How can we then

estimate T ? This is actually the smallest nontrivial estimation problem, because any such problem

needs more than one possible value of the parameter and more than one possible outcome. Here

we have exactly two values for both, and the only distributions on two possible outcomes are the

Bernoulli distributions. Under f the likelihood of Y = 0 exceeds that of Y = 1, and under s the

opposite holds. Therefore, the maximum likelihood estimator of T given (Y = y) becomes simply

^

T

ML

(Y = 0) = f

^

T

ML

(Y = 1) = s

(1)

which conforms with intuition.

Let us now consider the conditional probability that Y = 1 given

^

T

ML

, yielding

P(Y = 1j

^

T

ML

) = Æ

0

if y = 0

= Æ

1

if y = 1

(2)

where y is the observed value of Y . Denoting (2) by

~

Y , we can rewrite it as

~

Y = Æ

0

+ (Æ

1

� Æ

0

)Y = (1� Y )Æ

0

+ Y Æ

1

which is a weighted average of Æ

0

and Æ

1

with weights 1� Y and Y .

In the model with n observations y

i

we obtain analogously

~y

i

= (1� y

i

)Æ

0

+ y

i

Æ

1

(3)

which we will call the pseudo-observations. In words, the pseudo-observation ~y

i

is the success

probability conditional on the most likely estimate of the true status t

i

.

We now want to �t a logistic regression to the pseudo-observations ~y

i

. (In the classical case,

~y

i

= y

i

.) There are several estimation methods, but here we will apply the maximum likelihood
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formula. The goal is thus to maximize

L(�j(~y

1

; : : : ; ~y

n

)) =

n

Y

i=1

[�(x

0

i

�)]

~y

i

[1� �(x

0

i

�)]

1�~y

i

(4)

over � 2 IR

p

. We call (4) the estimated likelihood because we don't know the true likelihood, which

depends on the unobservable t

1

; : : : ; t

n

. (We only know the true likelihood when Æ

0

= 0 and Æ

1

= 1.)

The maximizer

^

� of (4) can thus be called the maximum estimated likelihood (MEL) estimator.

In order to compute the MEL estimator we can take the logarithm of (4), yielding

n

X

i=1

~y

i

ln(�(x

0

i

�)) + (1� ~y

i

) ln(1� �(x

0

i

�)) (5)

which always exists since � is �nite. Di�erentiating with respect to � yields the (p�variate) score

function

s(�j(~y

1

; : : : ; ~y

n

)) =

n

X

i=1

(~y

i

� �(x

0

i

�))x

i

(6)

for all � 2 IR

p

. Setting (6) equal to zero yields the desired estimate.

b. Properties of the MEL estimator

Unlike the classical ML estimator, the MEL estimator always exists.

Property 1. When 0 < Æ

0

< Æ

1

< 1 and the data set has a design matrix of full column rank,

the MEL estimator always exists and is unique.

(Note that when the design matrix is not of full column rank, we can �rst reduce the dimension

of the x

i

by means of principal component analysis.)

Proof. The Hessian matrix of (5) equals

@

@�

s(�) = �

n

X

i=1

�(x

0

i

�)(1� �(x

0

i

�))x

i

x

0

i

(7)

and is thus negative de�nite because the design matrix has rank p. Therefore the di�erentiable

function (5) is strictly concave. Now let us take any � 6= 0 and replace � in (5) by ��. If we let

�! +1 then (5) always tends to �1 because there is at least one x

i

in the data set with x

0

i

� 6= 0

due to full rank, and neither ~y

i

or (1� ~y

i

) can be zero. Therefore, there must be a �nite maximizer

^

�

MEL

of (5), which is unique because the concavity is strict. 2

This implies that the MEL estimator exists even when the data set has no overlap. Therefore

also the resulting odds ratios OR

j

= exp(

^

�

j

) always exist, i.e. they are never zero or +1.

A property shared by all logistic regression estimators is x�aÆne equivariance. This says that

when the x

i

are replaced by x

�

i

= Ax

i

where A is a nonsingular p� p matrix, then the regression

coeÆcients transform accordingly.

Property 2. The MEL estimator is x�aÆne equivariant.

Proof. From (6) it follows that

^

�

�

MEL

= (A

0

)

�1

^

�

MEL

hence (x

�

i

)

0

^

�

�

MEL

= x

0

i

A

0

(A

0

)

�1

^

�

MEL

=

x

0

i

^

�

MEL

. This also yields the same predicted values. 2

In linear regression there exist two other types of equivariance: one about adding a linear

function to the response (`regression equivariance') and one about multiplying the response by a

constant factor (`y�scale equivariance'), but these obviously do no apply to logistic regression.

c. Choice of Æ

0

and Æ

1

If Æ

0

and Æ

1

are known from the context (e.g. from the type I and type II error probabilities of a

blood test) then we can use these values. But in many cases, Æ

0

and Æ

1

are not given in advance.

Copas (1988, page 241) found that accurate estimation of Æ

0

and Æ

1

from the data itself is very
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diÆcult, if not impossible unless n is extremely large. He essentially considers them as tuning

constants that can be chosen, as do we.

The `symmetric' approach used by Copas is to choose a single constant 
 > 0 and to set

Æ

0

= 
 and Æ

1

= 1� 
: (8)

His computations require that 
 be small enough so that terms in 


2

can be ignored. In his Table

1 the values 
 = 0:01 and 
 = 0:02 occur, whereas he considers 
 = 0:05 to be unreasonably high

(page 238). In most of Copas' examples 
 = 0:01 performs well, and this turns out to be true

also for our MEL method, so we could use 
 = 0:01 as the default choice. This approach has the

advantage of simplicity.

On the other hand, there is something to be said for an `asymmetric' choice which takes into

account how many y

i

's are 0 and 1 in the data set. Let us consider the marginal distribution of

the y

i

(that is, unconditional on the x

i

) from which we construct some estimate �̂ of the marginal

success probability P(Y = 1). It seems reasonable to constrain Æ

0

and Æ

1

such that the average of

the pseudo-observations ~y

i

corresponds to �̂. This yields

�̂ =

1

n

n

X

i=1

~y

i

= (1� �̂)Æ

0

+ �̂Æ

1

�̂ � �̂Æ

1

= Æ

0

� �̂Æ

0

1� Æ

1

Æ

1

� �̂

=

Æ

0

�̂ � Æ

0

:

Since it is natural to assume that Æ

0

< �̂ < Æ

1

the latter ratios equal a (small) positive number

which we will denote by Æ. Consequently we can write both Æ

0

and Æ

1

as functions of Æ, as:

Æ

0

=

�̂Æ

1 + Æ

and Æ

1

=

1 + �̂Æ

1 + Æ

: (9)

However, since we have assumed that Æ

0

< �̂ < Æ

1

we have to construct �̂ accordingly. We cannot

take the standard estimate �� =

1

n

P

n

i=1

y

i

= (number of y

i

= 1)=n because �� can become 0 or 1.

A natural idea is to bound �� away from 0 and 1 by putting

�̂ = max (Æ;min(1� Æ; ��)) (10)

which means truncation at Æ and 1� Æ. This is suÆcient because always

Æ

0

=

�̂Æ

1 + Æ

<

�̂ + �̂Æ

1 + Æ

= �̂

and

Æ

1

=

1 + �̂Æ

1 + Æ

>

�̂ + �̂Æ

1 + Æ

= �̂

hence Æ

0

< �̂ < Æ

1

. Note that both misclassi�cation probabilities in Figure 1 are less than Æ because

Æ

0

=

�̂Æ

1 + Æ

<

Æ

1 + Æ

< Æ

and

1� Æ

1

=

1 + Æ � 1� �̂Æ

1 + Æ

=

(1� �̂)Æ

1 + Æ

<

Æ

1 + Æ

< Æ :

Our default choice will be Æ = 0:01, which implies smaller classi�cation errors than by putting


 = 0:01 in formula (8).

When the data are `balanced' in the sense that there are as many y

i

= 1 as y

i

= 0, expression

(10) yields �̂ = 0:5 hence Æ

0

= 1 � Æ

1

by (9), yielding identical misclassi�cation probabilities, as

in the symmetric formulas (8). In all other, `unbalanced' cases, our asymmetric approach yields

less biased predictions. An extreme case is when all y

i

= 1. (This is a situation where the classical

ML estimator does not exist.) The MEL estimator will put all ~y

i

= Æ

1

yielding a �t with all
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slopes

^

�

1

= : : : =

^

�

p�1

= 0 and with intercept � = �

�1

(Æ

1

). Using the symmetric approach

(8) yields Æ

1

= 0:99 hence �̂ = logit(0:99) = ln(99) � 4:595 so the �tted values are constant

and equal to 0:99. On the other hand, the asymmetric approach yields �̂ = 0:99 and Æ

1

= (1 +

(0:99)(0:01))=(1 + 0:01) = 1:0099=1:01 = 0:999901. This again yields zero slopes but a larger

intercept �̂ = logit(0:999901) = ln(10099) � 9:22 so the �tted values are 0:9999 which is much

closer to 1.

Our recommendation is therefore to compute �̂, Æ

0

, and Æ

1

as in (9) and (10) with Æ = 0:01, to

compute the pseudo-observations ~y

i

according to (3) and to carry out the resulting MEL method.

Our S-PLUS code for this method can be downloaded from

http://win-www.uia.ac.be/u/statis/software/HLR readme.html

or

http://www.statistik.uni-dortmund.de/sfb475/berichte/rouschr2.zip

The ML estimator has the nice property under the logistic regression model that if

^

� is the ML

estimate for the data set f(x

0

i

; y

i

), 1 � i � ng, then �

^

� is the ML estimate for the data set

f(x

0

i

; 1 � y

i

), 1 � i � ng. Hence, recoding all response variables Y

i

to 1 � Y

i

a�ects the ML

estimator only in the way that it changes the signs of the regression coeÆcients, and the odds

ratios become exp(�

^

�

j

) = 1=OR

j

. We call this equivariance with respect to recoding the response

variable. The MEL estimator has the same property, whether Æ

0

and Æ

1

are given by (8) or (9) .

Property 3. The MEL estimator is equivariant with respect to recoding the response variable.

Proof. Writing y

�

i

= 1 � y

i

and recomputing (10) and (9) [or (8)] yields ~y

�

i

= 1 � ~y

i

by (3).

Applying the ML estimator to the (x

0

i

; ~y

�

i

) yields the desired result. 2

4 Simulations

In this section we carry out a small simulation to compare the bias and the standard error of the

usual ML estimator and the proposed MEL estimator with Æ = 0:01 under the assumptions of the

logistic regression model. We will estimate p = 3 coeÆcients, including the intercept term. Both

explanatory variables are generated from the standard normal distribution. As true parameter

vectors we use �

A

= (1; 0; 0)

0

and �

B

= (1; 1; 2)

0

. The number of observations n will be 20, 50, and

100. For each situation 1; 000 samples are generated.

We use the depth-based algorithm (Christmann and Rousseeuw 2001) to check whether the

data set has overlap, i.e. whether the ML estimate exists. It turned out that there were 12 data

sets without overlap for n = 20 with �

A

, and 129 data sets without overlap for n = 20 with �

B

.

This contrasts sharply to the MEL estimate, which existed for all data sets.

Table 1 compares ML and MEL for the data sets with overlap. In situation A, where the true

slopes are zero, there is not much di�erence between the estimators. But in situation B, the MEL

estimator has a substantially smaller bias and standard error than the ML estimator. This can be

explained by the well-known phenomenon that ML tends to overestimate the magnitude of nonzero

coeÆcients, whereas MEL exhibits a kind of `shrinkage' behavior.

5 Examples

In this section we consider some benchmark data sets. Both the banknotes data set (Riedwyl

1997) and the hemophilia data set (Hermans and Habbema 1975) have no overlap, hence their ML

estimate does not exist. The vaso constriction data (Finney 1947, Pregibon 1981) and the food

stamp data (K�unsch et al. 1989) are well-known in the literature on outlier detection and robust

logistic regression. They both have little overlap: it suÆces to delete 3 (resp. 6) observations in

these data sets to make the ML estimate nonexistent (see Christmann and Rousseeuw 2001). Some

of these observations are considered as outliers in K�unsch et al. (1989). The cancer remission data

set (Lee 1974) is chosen because n=p � 4 is small. The toxoplasmosis data set (Efron 1986) and

the IVC data set (Jaeger et al. 1997, 1998) have a large n.
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Table 1: Bias and Standard Error of the ML estimator and the MEL estimator with Æ = 0:01.

ML MEL

n Bias SE Bias SE

Case A with � = (1; 0; 0)

0

20 � 0.291 0.032 0.272 0.028

�

1

0.010 0.031 0.009 0.029

�

2

-0.014 0.035 -0.004 0.030

50 � 0.097 0.012 0.095 0.012

�

1

-0.015 0.011 -0.015 0.011

�

2

-0.021 0.012 -0.021 0.012

100 � 0.053 0.008 0.052 0.008

�

1

0.004 0.008 0.004 0.008

�

2

-0.004 0.008 -0.004 0.008

Case B with � = (1; 1; 2)

0

20 � 0.586 0.067 0.360 0.039

�

1

0.652 0.083 0.364 0.045

�

2

1.372 0.159 0.780 0.057

50 � 0.133 0.019 0.097 0.017

�

1

0.156 0.022 0.104 0.019

�

2

0.350 0.030 0.247 0.025

100 � 0.061 0.011 0.038 0.010

�

1

0.085 0.012 0.050 0.011

�

2

0.154 0.016 0.084 0.015

The IVC data set describes an in vitro experiment to study possible risk factors of the thrombus-

capturing eÆcacy of inferior vena cava (IVC) �lters. We focus on the study of a particular conical

IVC �lter, for which the design consisted of 48 di�erent settings x

i

. For each vector x

i

there were

m

i

replications with m

i

2 f50; 60; 90; 100g, yielding a total of n = 3200.

Table 2: Comparison between MEL estimates with Æ = 0:01 and ML estimates.

Data set (n; p) Method �̂

^

�

1

^

�

2

^

�

3

^

�

4

^

�

5

^

�

6

Banknotes ML � no overlap, ML does not exist �

(200; 7) MEL 147.09 0.46 -1.02 1.33 2.20 2.32 -2.37

Hemophilia ML � no overlap, ML does not exist �

(52; 3) MEL -5.43 -56.59 47.39

Vaso constriction ML -2.92 5.22 4.63

(39; 3) MEL -2.77 4.98 4.41

Food stamp ML 0.93 -1.85 0.90 -0.33

(150; 4) MEL 0.89 -1.83 0.88 -0.33

Cancer remission ML 58.04 24.66 19.29 -19.60 3.90 0.15 -87.43

(27; 7) MEL 58.51 18.20 12.20 -12.19 3.68 0.14 -81.42

Toxoplasmosis ML 0.10 -0.45 -0.19 0.21

(697; 4) MEL 0.10 -0.44 -0.19 0.21

IVC ML -1.79 0.67 -1.05 -1.25 1.83

(3200; 5) MEL -1.73 0.65 -1.03 -1.22 1.79

Table 2 shows that the MEL estimates with Æ = 0:01 were quite similar to the ML estimates for

the data sets with overlap. This is even true for the cancer remission data set taking into account

the huge standard errors of the ML coeÆcients, namely 71:23; 47:84; 57:95; 61:68; 2:34; 2:28; and

67:57. The odds ratios exp(

^

�

j

) based on the ML and MEL estimates were quite similar too (see

Table 3).

Figure 3 shows that the choice of Æ has relatively little impact on the MEL estimates for the
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food stamp data set, which has overlap. Figure 4 shows the e�ect of Æ for the banknotes data.

Because the latter data set has no overlap we know that jj

^

�jj tends to +1 as Æ goes to 0 (since

Æ = 0 corresponds to the ML estimator). One could therefore use Æ like a `ridge parameter' in

Figure 4.

Table 3: Comparison of odds ratios based on ML and MEL.

Data set (n; p) Method �̂

^

�

1

^

�

2

^

�

3

Vaso constriction ML 0.05 185.03 102.64

MEL 0.06 146.13 81.97

Food stamp ML 2.53 0.16 2.45 0.72

MEL 2.44 0.16 2.42 0.72

Toxoplasmosis ML 1.10 0.64 0.83 1.24

MEL 1.10 0.64 0.83 1.24

6 Outlier-robust estimation

In the literature on logistic regression, many robust alternatives to the maximum likelihood estima-

tor have been proposed. They can easily be modi�ed for the hidden logistic regression model in the

same way that we constructed the MEL estimator, i.e. by applying them to the pseudo-observations

(3).

As an example we will consider a modi�cation of the least trimmed weighted squares (LTWS)

estimator of Christmann (1994a) which is de�ned as follows. We assume large strata, i.e. each

design point x

i

has m

i

responses Y

j

i

for j = 1; : : : ;m

i

. One then adds all the Y

j

i

corresponding to

that x

i

yielding

Z

i

=

m

i

X

j=1

Y

j

i

2 f0; : : : ;m

i

g

and rede�nes n as the number of the x

i

's (which is less than the total number of original re-

sponses Y

j

i

). The large strata assumption says that n and p are �xed while min

1�i�n

m

i

! 1

and m

i

=(

P

n

j=1

m

j

) ! k

i

2 (0; 1). One then puts �

i

= Z

i

=m

i

and Z

�

i

= (m

i

�

i

(1� �

i

))

1=2

�

�1

(�

i

)

as well as X

�

i

= (m

i

�

i

(1� �

i

))

1=2

x

i

. For large values of m

i

the Z

�

i

approximately follow a linear

regression model in the X

�

i

. Christmann (1994a) de�ned the LTWS estimator of � as the least

trimmed squares estimator (Rousseeuw 1984) applied to the transformed variables Z

�

i

and X

�

i

,

that is

^

�

LTWS

=
argmin

� 2 IR

p

h

X

i=1

r

2

i:n

where r

2

1:n

� : : : � r

2

n:n

are the ordered squared residuals where r

i

= Z

�

i

� �

0

X

�

i

. The robustness

aspects and asymptotic behavior of

^

�

LWTS

were investigated in Christmann (1994a, 1998) .

In the hidden logistic model, we apply the LTWS method to the pseudo-observations ~y

i

de�ned

in (3), with Æ

0

and Æ

1

given by (9) and (10). That is, we put

~

Y

j

i

= (1� Y

j

i

)Æ

0

+ Y

j

i

Æ

1

yielding the corresponding variable

~

Z

i

=

P

m

i

j=1

~

Y

j

i

. Substituting

~

Z

i

for Z

i

yields ~�

i

=

~

Z

i

=m

i

and

~

Z

�

i

= (m

i

~�

i

(1� ~�

i

))

1=2

�

�1

(~�

i

)

~

X

�

i

= (m

i

~�

i

(1� ~�

i

))

1=2

x

i

to which we apply LTS regression. Like the MEL estimator, this modi�ed LTWS estimator exists

for all data sets (and it is still x�aÆne equivariant). In addition, it is also robust to outliers in

Z

i

and x

i

. (The latter means that the modi�ed LTWS estimator can resist the e�ect of leverage

points, unlike some other robust approaches.)
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Fig. 3. Graphs of the MEL coeÆcients versus Æ for the food stamp data set,

for Æ = 0:0001; 0:001; 0:005; 0:01; 0:05; and 0:1.



10 Robustness against separation and outliers in binary regression

0.00 0.04 0.08

2
0
0

4
0
0

6
0
0

8
0
0

α̂

δ

0.00 0.04 0.08

0
.2

0
.6

1
.0

β
^

1

δ

0.00 0.04 0.08

0
2

4
6

8

β
^

2

δ

0.00 0.04 0.08

−
6

−
4

−
2

0

β
^

3

δ

Fig. 4. Graphs of the �rst four MEL coeÆcients versus Æ for the banknotes data set,

for Æ = 0:0001; 0:001; 0:005; 0:01; 0:05; and 0:1.
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Let us illustrate the modi�ed LTWS estimator on the toxoplasmosis data set (Efron 1986) of

Section 5. In aggregated form this data set has n = 34 observations, with m

i

ranging from 1 to

82 with a mean of 20:5. We ran the modi�ed LTWS method with the default choices Æ = 0:01

and h = [[0:75n]] = 25, which took only a few seconds because we used the FAST-LTS program

(Rousseeuw and Van Driessen 1999b). The resulting coeÆcients were (�0:37;�1:26;�0:17; 0:42)

0

which clearly di�er from the non-robust coeÆcients given in Table 2. Of course, the odds ratios

0:69, 0:28, 0:84, and 1:52 based on the outlier-robust approach also di�er from the non-robust odds

ratios in Table 3. The observations 27, 28, and 30 stick out in the robust residual plot (Figure 5),

which agrees with �ndings based on a robust minimum Hellinger distance approach (Christmann

1994b).
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Fig. 5. Toxoplasmosis data: Index plot of residuals based on modi�ed LTWS.

7 Discussion and outlook

The main problem addressed in this paper is that the coeÆcients of the binary regression model

(with logistic or probit link function) cannot be estimated when the x

i

's of successes and failures

don't overlap. This is a de�ciency of the model itself, because the �t can be made perfect by letting

jj�jj tend to in�nity. Therefore, this problem is shared by all reasonable estimators that operate

under the logistic model.

Our approach to resolve this problem is to work with a generalized model, which we call the

hidden logistic model. Here we compute the pseudo-observations ~y

i

, de�ned as the probability that

y

i

= 1 conditional on the maximum likelihood estimate of the true status t

i

. The resulting MEL

estimator always exists and is unique, even though the hypothetical misclassi�cation probabilities

(based on our default setting Æ = 1%) are so small that they would not be visible in the observed

data.

The hidden logistic model was previously used (under a di�erent name) in an important paper

by Copas (1988). However, his approach and ours are almost diametrically opposite. Copas' moti-

vation is to reduce the e�ect of the outliers that matter, which are the observations (x

i

; y

i

) where x

i

is far away from the bulk of the data and y

i

has the value which is very unlikely under the logistic
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model. In the terminology of Rousseeuw and van Zomeren (1990) these are bad leverage points. In

logistic regression their e�ect is always to 
atten the �t, i.e. to bring the estimated slopes close to

zero. Copas' approach shrinks the logistic distribution function � away from 0 and 1 (by letting

it range between 
 and 1 � 
), so that bad leverage points are no longer that unlikely under his

model, which greatly reduces their e�ect. On the other hand, his approach aggravates the problems

that arise when there is little overlap between successes and failures, as in his analysis of the vaso

constriction data.

Our approach goes into the other direction: rather than shrinking � while leaving the responses

y

i

unchanged, we leave � unchanged and shrink the y

i

to the pseudo-observations ~y

i

which are

slightly larger than zero or slightly less than 1. This completely eliminates the overlap problem.

It does not help at all for the problem of bad leverage points, but for that problem we can use

existing techniques from the robustness literature. For instance, for grouped data (i.e. tied x

i

's)

we saw in Section 6 that the �tting can be done by the LTS regression method, which is robust

against leverage points.

In general, also other robust techniques can be applied to the (x

i

; ~y

i

). For instance, note that

the score function (6) is similar to an M-estimator equation. Since the (pseudo-)residual is always

bounded due to

j~y

i

� �(x

0

i

�)j < 1

the main problem comes from the factor x

i

which need not be bounded (this corresponds to the

leverage point issue). A straightforward remedy is to downweight leverage points, yielding the

weighted maximum estimated likelihood (WEMEL) estimator de�ned as the solution

^

� of

n

X

i=1

(~y

i

� �(x

0

i

�))w

i

x

i

= 0 (11)

where the weights w

i

only depend on how far away x

i

is from the bulk of the data. For instance,

we can put

w

i

=

M

maxfRD

2

(x

�

i

);Mg

(12)

where x

�

i

= (x

i;2

; : : : ; x

i;p

) 2 IR

p�1

, RD(x

�

i

) is its robust distance, and M is the 75th percentile of

all RD

2

(x

�

j

), j = 1; : : : ; n.

When all regressor variables are continuous and there are not more than (say) 30 of them,

we can use the robust distances that come out of the minimum covariance determinant (MCD)

estimator of Rousseeuw (1984), for which the fast algorithm of Rousseeuw and Van Driessen (1999a)

is available. This algorithm has been incorporated in the packages S-Plus (as the function cov.mcd)

and SAS/IML (as the routine MCD), and both provide the robust distances in their output. In case

that not all regressor variables are continuous or there are very many of them (even more than one

thousand), we can use the robust distances provided by the robust principal components algorithm

of Hubert, Rousseeuw and Verboven (2001).

We have not yet studied the WEMEL estimator in any detail, but we note that it is easy to

compute because most GLM algorithms (including the one in S-Plus) allow the user to input prior

weights w

i

.

We also have not yet addressed the issue of bias correction for either MEL or WEMEL, which is

a subject for further research. It may be possible to apply the same type of calculus as for formula

(27) of Copas (1988).

Last but not least are the computation of in
uence functions and breakdown values. It would

be interesting to connect our work in the hidden logistic model with the existing body of literature

on outlier detection and robust estimation in the classical logistic model, including the work of

Pregibon (1982), Stefanski et al. (1986), K�unsch et al. (1989), and M�uller and Neykov (2000).
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