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Abstract

This paper proposes and analyzes an approach to estimating the generalization

performance of a support vector machine (SVM) for text classi�cation. Without

any computation intensive resampling, the new estimators are computationally much

more eÆcient than cross-validation or bootstrap, since they can be computed immedi-

ately from the form of the hypothesis returned by the SVM. Moreover, the estimators

delevoped here address the special performance measures needed for text classi�-

cation. While they can be used to estimate error rate, one can also estimate the

recall, the precision, and the F

1

. A theoretical analysis and experiments on three

text classi�cation collections show that the new method can e�ectively estimate the

performance of SVM text classi�ers in a very eÆcient way.

1 Introduction

Predicting the generalization performance of a learner is one of the central goals of learning

theory. From a practical perspective, a learning theory should provide accurate and

eÆcient methods for predicting how well a learner can handle the task at hand. Given a

particular learning task, a practitioner will ask:

� How well will the learner generalize given the training examples available?

� Given two parameter settings for the learner, which one leads to better predictions?

� From a set of available hypothesis spaces, which one is best for the task at hand?

The following presents an approach to answering these questions in the context of text

classi�cation with SVMs [Joachims, 1998][Dumais et al., 1998]. The aim is to develop

very operational performance estimators that are of actual use when applying SVMs. This

requires that the estimators are both e�ective and computationally eÆcient. While the

results presented in the following are general enough (or can easily be generalized) to apply

to arbitrary learning tasks, special emphasis is put on evaluation measures commonly used

in text classi�cation. In particular, the approach is not limited to estimating the error

rate. It also cover precision and recall, as well as combined measures like F

1

. These

measures are far more important for learning useful text classi�ers than error rate alone.

This paper is structured as follows. After a short description of the text classi�cation

problem, methods for estimating the generalization error of a learner are reviewed in sec-

tion 3. While some of these (e.g. uniform convergence bounds) are powerful theoretical

methods, they are of little use in practical applications. Others (e.g. cross-validation,

bootstrap) give good predictions, but are computationally ineÆcient. Section 5 decribes
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Figure 1: Representing text as a feature vector.

new estimators that overcome these problems, extending results of [Vapnik, 1998] (chap-

ter 10) and [Jaakkola and Haussler, 1999] to general SVMs. The new estimators are

both accurate and can be computed eÆciently. After their theoretical justi�cation, the

estimators are experimentally tested on three text classi�cation tasks in section 6. The

experiments show that they very accurately reect the actual behavior of SVMs on text

classi�cation tasks.

2 Text Classi�cation

The goal of text classi�cation is the automatic assignment of documents to a �xed number

of semantic categories. Each document can be in multiple, exactly one, or no category

at all. Using machine learning, the objective is to learn classi�ers from examples which

assign categories automatically. To facilitate e�ective and eÆcient learning, each category

is treated as a separate binary classi�cation problem. Each such problem answers the

question of whether or not a document should be assigned to a particular category. This

leads to the following type of supervised learning problem. Given is an i.i.d. training

sample S

n

of size n

(~x

1

; y

1

); (~x

2

; y

2

); : : : ; (~x

n

; y

n

) (1)

with ~x

i

representing the document content and y

i

2 f�1;+1g indicating the class. The

learner L aims to �nd a decision rule h

L

(~x) based on S

n

that classi�es new documents as

accurately as possible.

2.1 Representation

Documents, which typically are strings of characters, have to be transformed into a rep-

resentation suitable for the learning algorithm and the classi�cation task. Information

Retrieval research suggests that words work well as representation units and that for many

tasks their ordering can be ignored without losing too much information. This leads to

an attribute-value representation of text. Each distinct word w

j

corresponds to a feature

with TF (w

j

; d

i

), the number of times word w

j

occurs in the document d

i

, as its value.

Figure 1 shows an example feature vector for a particular document.

Re�ning this basic representation, it has been shown that scaling the dimensions of

the feature vector with their inverse document frequency IDF (w

j

) [Salton and Buckley,

1988] leads to an improved performance. IDF (w

j

) can be calculated from the document

2



label +1 label -1

predict +1 Pr(h(~x) = 1; y = 1) Pr(h(~x) = 1; y = �1) Pr(h(~x) = 1)

predict -1 Pr(h(~x) = �1; y = 1) Pr(h(~x) = �1; y = �1) Pr(h(~x) = �1)

Pr(y = 1) Pr(y = �1)

Figure 2: Contingency table.

frequency DF (w

j

), which is the number of documents the word w

j

occurs in.

IDF (w

j

) = log

 

n

DF (w

j

)

!

(2)

Here, n is the total number of documents. Intuitively, the inverse document frequency of

a word is low if it occurs in many documents and is highest if the word occurs in only

one. To abstract from di�erent document lengths, each document feature vector ~x

i

is

normalized to unit length.

2.2 Performance Measures

Unlike for other applications of machine learning, error rate alone is not necessarily a

good performance measure in text classi�cation. Instead, scores based on precision and

recall are of widespread use. Based on the contingency table in �gure 2, I de�ne the

recall Rec(h) of a decision rule h as the probability that a document with label y = 1 is

classi�ed correctly.

Rec(h) =

Pr(h(~x) = 1; y = 1)

Pr(h(~x) = 1; y = 1) + Pr(h(~x) = �1; y = 1)

(3)

The precision Prec(h) of a decision rule h is the probability that a document classi�ed

as h(~x) = 1 is indeed classi�ed correctly.

Prec(h) =

Pr(h(~x) = 1; y = 1)

Pr(h(~x) = 1; y = 1) + Pr(h(~x) = 1; y = �1)

(4)

Between high precision and high recall exists a trade-o�. To get a single performance

measure, the geometric mean of precision and recall is commonly used. It is called the

F1 measure and can be written as follows.

F1(h) =

2 Pr(h(~x) = 1; y = 1)

2 Pr(h(~x) = 1; y = 1) + Pr(h(~x) = �1; y = 1) + Pr(h(~x) = 1; y = �1)

(5)

3 Generic Performance Estimators

This section reviews the most common methods for estimating the generalization error

Err

n

(h

L

) =

Z

L(h

L

(~x); y)dPr(~x; y) = Pr(h

L

(~x) 6= yjS

n

) (6)

of a learner L based on a sample S

n

of size n, with L being the 0=1-loss function. In

particular, these are uniform convergence bounds for the training error (section 3.1), as

well as Hold-Out Testing (section 3.2), Bootstrapping (section 3.3), and Cross-Validation

(section 3.4).
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3.1 Training Error

The most obvious estimate of the error rate Err

n

(h

L

) is the training error (empirical

error, apparent error, resubstitution error)

Err

n

emp

(h

L

) =

1

n

n

X

i=1

L(h

L

(~x

i

); y

i

) (7)

on the training sample S = ((~x

1

; y

1

); � � � ; (~x

n

; y

n

)). For almost all learners this estimate

is readily available after training. The problem with using Err

n

emp

(h

L

) as an estimate for

Err

n

(h

L

) is its typically strong optimistic bias.

E(Err

n

emp

(h

L

)) << E(Err

n

(h

L

)) (8)

Especially for learners that minimize training error, Err

n

emp

(h

L

) is usually much lower

than the true error Err

n

(h

L

), since it is measured on the same data that the learner

used to �nd the hypothesis. For SVMs this e�ect is most extreme when kernels of high

capacity are used. They �t the data perfectly and so have a training error of zero while

the true error rate can be high.

VC-theory identi�es the situations for whichErr

n

emp

(h

L

) is suÆciently close to Err

n

(h

L

)

and upper bounds the di�erence. The bounds depend only on the VC-dimension d

H

of the

hypothesis space H that the learner considers and the number of training examples n, but

they are independent of the learner. One bound on the di�erence jErr

n

(h

L

)�Err

n

emp

(h

L

)j

can be derived from the bound in [Wapnik and Tscherwonenkis, 1979], page 161:

Pr(jErr

n

(h

L

)�Err

n

emp

(h

L

)j > �) � 6

�

e n

d

H

�

d

H

exp

 

�

�

2

(n� 1)

4

!

(9)

Using this bound can help quantify, by how much Err

n

emp

(h

L

) underestimates the true

error. This leads to an upper bound on the error rate as it is desired in practice. Solving

(9) for Err

n

(h

L

) gives such an upper bound. With probability 1� �

Err

n

(h

L

) � Err

n

emp

(h

L

) + 2

s

d

H

(ln

2 n

d

H

+ 1)� ln

�

4

n

(10)

Unfortunately, for most practical applications this bound is of little use. For the amount

of data usually available, it is too lose to make reasonable predictions about Err

n

(h

L

).

To a large extend this is due to the fact that the bound is independent of the learning

task P (~x; y). While this remarkable property makes the bound a very universal tool, it is

\worst-case" with respect to all P (~x; y). The methods discussed in the following use the

training sample as an approximation to P (~x; y).

Let's �nally look at the expected di�erence between training error and true error for

n > d

H

. Using a result from [Devroye et al., 1996], page 208, it is easy to translate bound

(9) into:

E(jErr

n

(h

L

)�Err

n

emp

(h

L

)j

2

) � O

 

d

H

ln(

n

d

H

)

n

!

(11)

3.2 Hold-Out Testing

In hold-out testing (see e.g. [Devroye et al., 1996]) the sample S

n

is devided randomly

into two parts S

train

l

[ S

val

k

= S

n

of size l and k. The learner uses the training sample

S

train

l

for training, while the validation sample S

val

k

serves as an independent test set for

estimating the true error of the classi�cation rule. The hold-out estimate Err

l;k

ho

(h

L

) is:

Err

l;k

ho

(h

L

) =

1

k

X

(~x

i

;y

i

)2S

val

k

L(h

L

(~x

i

); y

i

) (12)
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While Err

l;k

ho

(h

L

) is an unbiased estimate of Err

l

(h

L

), it is not unbiased with respect to

Err

n

(h

L

). The learner is trained only with l training examples instead of the full sample

S

n

containing n examples. Since we typically expect the performance of the learner to

increase with more training data, the hold-out estimate Err

l;k

ho

(h

L

) is negatively biased.

E(Err

l;k

ho

(h

L

)) > E(Err

n

(h

L

)) (13)

The expected deviation E((Err

l

(h

L

)� Err

l;k

ho

(h

L

))

2

) can easily be calculated, since each

test on an example from the validation set is an independent Bernoulli trial.

E(jErr

l

(h

L

)�Err

l;k

ho

(h

L

)j

2

) �

1

4 k

(14)

Equation (13) and (14) exhibit a trade-o� in selecting l and k. The larger l, the smaller

the bias. At the same time, the variance increases with k = n� l decreasing. The optimal

choice of l and k depend on the learner L, the hypothesis space H, and the learning task

Pr(~x; y) [Kearns, 1996]. Nevertheless, there are good heuristics for selecting reasonable

values for l and k [Kearns, 1996].

Let's �nally also look at worst case bounds for the deviation. Using Hoe�ding bounds

[Hoe�ding, 1963] it holds that

Pr(jErr

l

(h

L

)�Err

l;k

ho

(h

L

)j > �) � 2 exp(�2 k �

2

) (15)

Experimental results for hold-out estimates are given in [Kearns et al., 1997].

The hold-out estimate is eÆciently computable. It involves one training run on l

training examples and the classi�cation of k test examples.

3.3 Bootstrap and Jackknife

The methods based on boostrap [Efron, 1983][Efron, 1982][Shao and Tu, 1995] or jack-

knife [Efron, 1982] statistics try to estimate the bias of the training error Err

n

emp

(h

L

).

All bootstrap methods make use of bootstrap samples S

b

m

= ((~x

b

1

; y

b

1

); � � � ; (~x

b

m

; y

b

m

)), each

generated by independently drawing m examples from the training sample S

n

with re-

placement. Usually, the size of the bootstrap samples is chosen to be the same as the size

of the training sample (i.e. m = n). The learner is trained on each bootstrap sample and

outputs a corresponding hypothesis h

i

L

. For the k-th bootstrap sample the estimate of

the bias is

bias

n

k

=

n

X

i=1

0

@

1

n

�

1

n

m

X

j=1

L(~x

b

j

; ~x

i

)

1

A

L(h

i

L

(~x

i

); y

i

) (16)

The individual estimates bias

n

k

are averaged over B bootstrap samples to remove the

randomness introduced by the sampling.

bias

n

=

B

X

k=1

bias

n

k

(17)

The bootstrap estimate Err

n

b

(h

L

) of the true errorErr

n

(h

L

) is the training errorErr

n

emp

(h

L

)

minus the bootstrap estimate bias

n

of the bias.

R

n

b

(h

L

) = Err

n

emp

(h

L

)� bias

n

(18)

A jackknife approximation to the bootstrap estimate is described in [Efron, 1982].

Other version of the bootstrap estimator can be found in [Efron, 1983] and [Efron and

Tibshirani, 1993].
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Little is known about the bias and the variance of the bootstrap estimate R

n

b

(h

L

).

Experimental evidence suggests that its bias is comparatively large, while the variance

is small [Breiman et al., 1984][Bailey and Elkan, 1993][Kohavi, 1995]. Davison and Hall

[Davison and Hall, 1992] provide some theoretical results for a particular small example

that supports this observation.

The computational costs for computing the bootstrap estimate are high. The learner

is invoked B times, once for each bootstrap sample. In addition, the training set of n

examples needs to be classi�ed each time. Typical values for B are between 10 and 100.

3.4 Cross-Validation and Leave-One-Out

The most popular method for estimating the generalization error of a decision rule

is cross-validation [Lunts and Brailovskiy, 1967][Stone, 1974][Lachenbruch and Mickey,

1968] (delete-d method, rotation estimate). While there are several versions of the cross-

validation estimator, most theoretical results concern the leave-one-out (loo) estimator

described in the following. From the training sample S = ((~x

1

; y

1

); � � � ; (~x

n

; y

n

)) the �rst

example (~x

1

; y

1

) is removed. The resulting sample S

n1

= ((~x

1

; y

1

); � � � ; (~x

n

; y

n

)) is used

for training, leading to a classi�cation rule h

n1

L

. This classi�cation rule is tested on the

held out example (~x

1

; y

1

). This process is repeated for all training examples. The number

of misclassi�cations devided by n is the loo-estimate of the generalization error.

Err

n

loo

(h

L

) =

1

n

n

X

i=1

L(h

ni

L

(~x

i

); y

i

) (19)

Lunts and Brailovskiy showed that this estimate is almost unbiased in the following sense

[Lunts and Brailovskiy, 1967].

Theorem 1 ( Bias of Leave-One-Out Estimator) [Lunts and Brailovskiy, 1967]. The

leave-one-out estimator is almost unbiased; that is

E(R

n

loo

(h

L

)) = E(R

n�1

(h

L

)) (20)

The expectation on the left hand side is over training sets of size n, the one on the right

hand side is over training sets of size n� 1.

Proof Abbreviating Z

i

for (~x

i

; y

i

), the theorem follows from the following chain of trans-

formations:

E(R

n

loo

(h

L

)) =

Z

1

n

n

X

i=1

L(h

ni

L

(~x

i

); y

i

)dP (Z

1

):::dP (Z

n

) (21)

=

1

n

n

X

i=1

Z

L(h

ni

L

(~x

i

); y

i

)dP (Z

1

):::dP (Z

n

) (22)

=

1

n

n

X

i=1

Z

�

Z

L(h

ni

L

(~x

i

); y

i

)dP (Z

i

)

�

dP (Z

1

):::dP (Z

i�1

)dP (Z

i+1

) (23)

:::dP (Z

n

) (24)

=

1

n

n

X

i=1

Z

R

n�1

(h

L

)dP (Z

1

):::dP (Z

i�1

)dP (Z

i+1

):::dP (Z

n

) (25)

=

1

n

n

Z

R

n�1

(h

L

)dP (Z

1

):::dP (Z

n�1

) (26)

= E(R

n�1

(h

L

)) (27)
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The theorem identi�es that the bias depends on how much a single training example

changes the performance of the learner. On most practical problems this is neglectably

small.

The variability of the loo-estimator depends on both the learning algorithms as well

as the learning task. The dependence is captured in the following bound [Rogers and

Wagner, 1978][Devroye and Wagner, 1976]. The bound holds for all classi�ers that are

independent of the ordering of the training examples.

Theorem 2 (Variability of the LOO-Estimator) [Rogers and Wagner, 1978][Devroye

and Wagner, 1976]. It holds that

E(jErr

n

loo

(h

L

)�Err

n

(h

L

)j

2

) �

1

n

+ 6 Pr(h

n

L

(~x) 6= h

n�1

L

(~x)) (28)

Pr(h

n

L

(~x) 6= h

n�1

L

(~x)) is the probability that a decision rule h

n

L

(~x) (trained using all

n examples) will disagree on a randomly drawn example with a decision rule h

n�1

L

(~x))

(trained on the same sample with one example removed). The proof of the theorem is

given in [Devroye et al., 1996], pages 411-413. Theorem 2 can be used to upper bound

the variability of the loo-estimator for the special case of local decision rules [Devroye

and Wagner, 1979b][Devroye and Wagner, 1979a]. Somewhat surprising results about the

asymptotic behavior of the loo-estimate in the general case are given in [Stone, 1977].

Shao and Tu give a summary of the discussion about using cross-validation for model

selection in linear models [Shao and Tu, 1995]. A similar bound on the variability of the

loo-estimator is given in [Lunts and Brailovskiy, 1967]. A more general bound [Kearns

and Ron, 1997] based on uniform convergence arguments is discussed in section 5.1.

The computational demands of the loo-estimator are high. The learner is invoked

n times on training sets of n � 1 examples. This is prohibitively expensive for all but

very small n. To reduce running time it is common practice to combine cross validation

with hold-out testing [Toussaint and Donaldson, 1970][Mitchell, 1997]. Instead of training

on n � 1 examples and testing on only one, the training set is partitioned into k folds.

Assuming that

n

k

is an integer, each fold contains

n

k

examples. The learner now repeatedly

trains on k � 1 folds and each resulting decision rule is tested on the remaining fold.

The average performance is the k-fold cross validation estimate Err

n

kcv

(h

L

) (delete-

�

n

k

�

estimate, rotation estimate). Note that k-fold cross validation has a larger bias than

leave-one-out.

E(Err

n

kcv

(h

L

)) = E(R

n�

n

k

(h

L

)) (29)

Experimental results show that cross validation is a good estimator of the generaliza-

tion performance. It is repeatedly reported to have lower bias than the bootstrap estimate

[Efron, 1983][Breiman et al., 1984][Kohavi, 1995][Bailey and Elkan, 1993], but typically

has higher variability. The variability of 10-fold cross validation tends to be lower than

that of leave-one-out [Kohavi, 1995][Bailey and Elkan, 1993][Efron, 1983][Devroye et al.,

1996].

4 Support Vector Machines

Support vector machines [Cortes and Vapnik, 1995][Vapnik, 1998] were developed by

Vapnik et al. based on the Structural Risk Minimization principle [Vapnik, 1982] from

statistical learning theory. In their basic form, SVMs learn linear decision rules

h(~x) = signf~w � ~x+ bg =

(

+1; if ~w � ~x+ b > 0

�1; else

(30)

7



described by a weight vector ~w and a threshold b. The idea of structural risk minimization

is to �nd a hypothesis h for which one can guarantee the lowest probability of error. For

SVMs, Vapnik shows that this goal can be translated into �nding the hyperplane with

maximum soft-margin

1

. Computing this hyperplane is equivalent to solving the following

optimization problem:

Optimization Problem 1 (Soft-Margin SVM (primal))

minimize: V (~w;

~

�) = ~w � ~w + C

n

X

i=1

�

i

(31)

subject to: 8i 2 [1::n] : y

i

[~w � ~x

i

+ b] � 1� �

i

(32)

8

n

i=1

: �

i

> 0 (33)

In this optimization problem, the Euclidean length jj~wjj of the weight vector is in-

versely proportional to the soft-margin of the decision rule. The constraints (32) require

that all training examples are classi�ed correctly up to some slack �

i

. If a training exam-

ple lies on the \wrong" side of the hyperplane, the corresponding �

i

is greater or equal to

1. Therefor

P

n

i=1

�

i

is an upper bound on the number of training errors. The factor C in

(31) is a parameter that allows trading-o� training error vs. model complexity.

For computational reasons it is useful to solve the Wolfe dual [Fletcher, 1987] of

optimation problem 1 instead of solving optimation problem 1 directly [Vapnik, 1998].

Optimization Problem 2 (Soft-Margin SVM (dual))

minimize: W (~�) = �

n

X

i=1

�

i

+

1

2

n

X

i=1

n

X

j=1

y

i

y

j

�

i

�

j

(~x

i

� ~x

j

) (34)

subject to:

n

X

i=1

y

i

�

i

= 0 (35)

8i 2 [1::n] : 0 � �

i

� C (36)

In this paper, SVM

Light

[Joachims, 1999] is used for computing the solution of this

optimization problem

2

. All training examples with �

i

> 0 at the solution are called

support vectors. To di�erentiate between those with 0 < �

i

< C and those with �

i

= C,

the former will be called unbounded support vectors while the latter will be called bounded

support vectors. From the solution of optimization problem 2 the decision rule can be

computed as

~w �~x =

 

n

X

i=1

�

i

y

i

~x

i

!

� ~x =

n

X

i=1

�

i

y

i

(~x

i

�~x) and b = y

usv

� ~w �~x

usv

(37)

The support vector (~x

usv

; y

usv

) for calculating b has be be an unbounded support vector.

While it is highly unlikely in practice that one gets a solution of optimization problem

2 with only bounded support vectors, it is theoretically possible (see [Burges and Crisp,

1999][Rifkin et al., 1999] for a thorough discussion). In this case the solution of the SVM

will be called unstable, since the hyperplane is not uniquely determined. In particular, b

can take any value in a certain interval. If there is at least one unbounded support vector,

the solution is called stable.

For both solving optimization problem 2 as well as applying the learned decision rule,

it is suÆcient to be able to calculate inner products between attribute vectors. Exploiting

this property, Boser et al. [Boser et al., 1992] introduced the use of kernels K(~x

1

; ~x

2

) for

learning non-linear decision rules. Such kernels calculate an inner-product in some feature

space and replace the inner-product in the formulas above.

1

See [Cortes and Vapnik, 1995] for an introduction to SVMs.

2

SVM

Light

is available at http://www-ai.informatik.uni-dortmund.de/svm light
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5 EÆcient Performance Estimators for SVMs

While the estimation methods in the previous section are applicable to arbitrary learning

algorithms, this section presents special estimators for Support Vector Machines. The

estimators proposed in the following are based on the leave-one-out method, but require

and order of magnitude less computation time due to particular properties of the SVM. In

particular, they do not require actually performing resampling and retraining, but can be

applied directly after training the learner. The inputs to the estimators are the vector ~�

solving the dual SVM training problem 2 and the vector

~

� from the solution of the primal

SVM training problem 1. Due to this dependence, they will be called ��-estimators in

the following.

To get useful tools for text classi�cation I will propose and explore ��-estimators not

only for the error rate (section 5.1), but also for the recall (section 5.2), the precision

(section 5.3), and the F1-measure (section 5.4).

5.1 Error Rate

This section starts with the de�nition of the ��-estimator of the error rate. Based on

the solution ~� of the dual SVM training problem and the vector of training losses

~

�, the

��-estimator of the error rate Err

n

��

(h

L

) is de�ned as follows.

De�nition 1 (��-Estimator of the Error Rate) For stable soft-margin SVMs, the

��-estimator of the error rate is

Err

n

��

(h

L

) =

d

n

with d = jfi : (��

i

R

2

�

+ �

i

) � 1gj (38)

with � equals 2. ~� and

~

� are the solution of optimization problems 2 and 1 on the training

set S

n

. R

2

�

is an upper bound on K(~x; ~x)�K(~x; ~x

0

) for all ~x; ~x

0

.

The de�nition introduces the parameter �. While the theoretical results that are

derived below assume � = 2, we will see that � = 1 is a good choice for text classi�cation

3

.

The key quantity in de�nition 1 is d. d counts the number of training examples for which

the inequality (��

i

R

2

+ �

i

) � 1 holds. But how does one come to this de�nition of d and

what exactly does d count?

The key idea to the ��-estimator of the error rate is a connection between the training

examples for which the inequality (��

i

R

2

+ �

i

) � 1 holds and those training examples

that can produce an error in leave-one-out testing. In particular, if an example (~x

i

; y

i

) is

classi�ed incorrectly by a SVM trained on the subsample S

ni

n

, then example (~x

i

; y

i

) must

ful�ll the inequality (��

i

R

2

+ �

i

) � 1 for a SVM trained on the full sample S

n

. This

implies that d is an upper bound on the number of leave-one-out errors. The following

lemma establish this result formally.

Lemma 1 (Bound on Leave-One-Out Error of Stable Soft-Margin SVMs) The

number of leave-one-out errors

P

n

i=1

L(h

ni

L

(~x

i

); y

i

) of stable soft-margin SVMs on a train-

ing set S

n

is bounded by

n

X

i=1

L(h

ni

L

(~x

i

); y

i

) � jfi : (2 �

i

R

2

+ �

i

) � 1gj (39)

~� and

~

� are the solution of optimization problems 2 and 1 on the training set S

n

. R

2

is

an upper bound on K(~x; ~x) and K(~x; ~x

0

) � 0.

3

Although it is not proven here, the all theoretical results presented in the following also hold for

unbiased soft-margin SVMs with � = 1.
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Proof An error on a left out example (~x

t

; y

t

) occurs when at the solution of

W

t

(~�

t

) = max

~

0�~�

t

�

~

C

1

T

~�

t

�

1

2

~�

tT

H

t

~�

t

^ ~y

tT

~�

t

= 0 (40)

where ~�

t

, ~y

t

, and H

t

have the t-th example removed, the expression

y

t

2

4

X

i6=t

�

t

i

y

i

K(~x

t

; ~x

i

) + b

t

3

5

> 0 (41)

is false. What follows in this proof are conditions for when this expression must be true

based of the soft-margin SVM solution

W (~�) = max

~

0
�~��

~

C

1

T

~��

1

2

~�

T

H~� ^ ~y

T

~� = 0 (42)

that involves all n training examples. Three cases can occur based on the optimal value

of �

t

:

Case �

t

= 0: Example (~x

t

; y

t

) is not a support vector. Then W

t

(~�

t

) = W (~�) and

y

t

P

i6=t

y

i

�

t

i

K(~x

t

; ~x

i

) = y

t

P

i6=t

y

i

�

i

K(~x

t

; ~x

i

). Since the t-th example is not a support

vector, we know that y

t

P

i6=t

y

i

�

i

K(~x

t

; ~x

i

) � 1 and so (41) must be true. So the t-th

example cannot produce a leave-one-out error. Finally, it is not counted as a leave one

out error, since �

i

+ �

i

= 0 for non support vectors.

Case 0 < �

t

< C: Example (~x

t

; y

t

) is a support vector. From the solution ~�

t

of W

t

(:),

the following construction produces a feasible point

~

� for W (:).

�

i

=

8

>

<

>

:

�

t

i

if �

t

i

= 0 _ �

t

i

= C

�

t

i

� y

i

y

t

�

i

if i 2 SV

t

�

i

if i = t

(43)

�

i

has to ful�ll the following constraints. Let's SV

t

be the set of indices corresponding

to support vectors of the solution W

t

(~�

t

) that are not at the upper bound C (that is

0 < �

t

i

< C). Then �

i

= 0 for all i 62 SV

t

. For i 2 SV

t

the �

i

are chosen to be

non-negative and so that

P

i2SV

t

�

i

= �

t

and 0 � �

i

� C. Finding such �

i

is always

possible, if there are at least two support vectors not at the upper bound C. The existence

of such two vectors follows from the assumption that the SVMs solution is stable. From

the construction of the �

i

it follows that ~y

T

~

� = 0 and 0 � �

i

� C. So

~

� is a feasible point

of W (:). After a series of transformations, W (

~

�) can be written as

W (

~

�) = W

t

(~�

t

)�

1

2

�

2

t

K(~x

t

; ~x

t

) + �

t

(44)

��

t

y

t

X

i2SV

t

�

t

i

y

i

K(~x

t

; ~x

i

)� y

t

2

4

X

i2SV

t

�

i

0

@

y

i

�

X

j2SV

t

�

t

j

y

j

K(~x

i

; ~x

j

)

1

A

3

5

(45)

�

1

2

X

i2SV

t

X

j2SV

t

�

i

�

j

K(~x

i

; ~x

j

) + �

t

X

i2SV

t

�

i

K(~x

i

; ~x

t

) (46)

For support vectors not at the upper bound the expression in the round brackets (line 45)

equals the threshold b

t

of the decision rule (compare equation (37)). Exploiting also that

P

i2SV

t

�

i

= �

t

by construction, it is possible to write:

�

t

y

t

2

4

X

i2SV

t

�

t

i

y

i

K(~x

t

; ~x

i

) + b

t

3

5

= �W (

~

�) +W

t

(~�

t

)�

1

2

�

2

t

K(~x

t

; ~x

t

) + �

t

(47)

�

1

2

X

i2SV

t

X

j2SV

t

�

i

�

j

K(~x

i

; ~x

j

) (48)

+�

t

X

i2SV

t

�

i

K(~x

i

; ~x

t

) (49)
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Let's now do a similar construction for producing a feasible point ~ of W

t

(:) based on

the solution ~� of W (:).



i

=

(

�

i

if �

i

= 0 _ �

i

= C

�

i

+ y

i

y

t

�

i

if i 2 SV n ftg

(50)

SV is the set of indices corresponding to support vectors not at the upper bound for the

solution ~� (that is 0 < �

i

< C). SV nftg excludes the index t corresponding to the left-out

example. �

i

is chosen non-negative for all i 2 SV n ftg such that

P

i2SV nftg

�

i

= �

t

and

0 � 

i

� C. From the construction of the �

i

it follows that ~y

T

~ = 0 and so ~ is a feasible

point of W

t

(:). After a series of transformations, W

t

(~) can be written as

W

t

(~) = W (~�) +

1

2

�

2

t

K(~x

t

; ~x

t

)� �

t

(51)

+�

t

y

t

X

i2SV nftg

�

i

y

i

K(~x

t

; ~x

i

) (52)

+y

t

2

4

X

i2SV nftg

�

i

0

@

y

i

�

X

j2SV nftg

�

j

y

j

K(~x

i

; ~x

j

)

1

A

3

5

(53)

�

1

2

X

i2SV nftg

X

j2SV nftg

�

i

�

j

K(~x

i

; ~x

j

) + �

t

X

i2SV nftg

�

i

K(~x

i

; ~x

t

) (54)

Now, the expression in the round brackets equals the threshold b of the decision rule based

on all examples. Substituting and rearraging leads to the equation

�W (~�) = �W

t

(~) +

1

2

�

2

t

K(~x

t

; ~x

t

)� �

t

(55)

+�

t

y

t

2

4

X

i2SV nftg

�

i

y

i

K(~x

t

; ~x

i

) + b

3

5

(56)

�

1

2

X

i2SV nftg

X

j2SV nftg

�

i

�

j

K(~x

i

; ~x

j

) + �

t

X

i2SV nftg

�

i

K(~x

i

; ~x

t

) (57)

It is now possible to substitute W (~�) for W (

~

�) in equation (47). Since W (~�) is larger

than W (

~

�) by de�nition, this results in the inequality

�

t

y

t

2

4

X

i2SV

t

�

t

i

y

i

K(~x

t

; ~x

i

) + b

t

3

5

� W

t

(~�

t

)�W

t

(~) (58)

+�

t

y

t

2

4

X

i2SV nftg

�

i

y

i

K(~x

t

; ~x

i

) + b

3

5

(59)

�

1

2

X

i2SV nftg

X

j2SV nftg

�

i

�

j

K(~x

i

; ~x

j

) (60)

+�

t

X

i2SV nftg

�

i

K(~x

i

; ~x

t

) (61)

�

1

2

X

i2SV

t

X

j2SV

t

�

i

�

j

K(~x

i

; ~x

j

) (62)

+�

t

X

i2SV

t

�

i

K(~x

i

; ~x

t

) (63)

Similarly, W

t

(~�

t

) �W

t

(~) so that

�

t

y

t

2

4

X

i2SV

t

�

t

i

y

i

K(~x

t

; ~x

i

) + b

t

3

5

� �

t

y

t

2

4

X

i2SV nftg

�

i

y

i

K(~x

t

; ~x

i

) + b

3

5

(64)
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�

1

2

X

i2SV nftg

X

j2SV nftg

�

i

�

j

K(~x

i

; ~x

j

) (65)

+�

t

X

i2SV nftg

�

i

K(~x

i

; ~x

t

) (66)

�

1

2

X

i2SV

t

X

j2SV

t

�

i

�

j

K(~x

i

; ~x

j

) (67)

+�

t

X

i2SV

t

�

i

K(~x

i

; ~x

t

) (68)

The term �

t

P

i2SV

t

�

i

K(~x

i

; ~x

t

) is non-negative, since all �

i

and K(~x

i

; ~x

t

) are non-negative.

The same holds for �

t

P

i2SV nftg

�

i

K(~x

i

; ~x

t

). Furthermore,

1

2

P

i2SV nftg

P

j2SV nftg

�

i

�

j

K(~x

i

; ~x

j

) �

1

2

�

2

t

R

2

and

1

2

P

i2SV

t

P

j2SV

t

�

i

�

j

K(~x

i

; ~x

j

) �

1

2

�

2

t

R

2

, since the K(~x

i

; ~x

j

) form

a positive semi-de�nite matrix with the diagonal elements bounded from above by R

2

. For

a positive semi-de�nite matrix the o�-diagonal elements must be less or equal to R

2

. Using

these inequalities and dividing by �

t

, it is possible to write

y

t

2

4

X

i2SV

t

�

t

i

y

i

K(~x

t

; ~x

i

) + b

t

3

5

� y

t

2

4

X

i2SV nftg

�

i

y

i

K(~x

t

; ~x

i

) + b

3

5

� �

t

R

2

(69)

This means a leave-one-out error can occur only when

y

t

2

4

X

i2SV nftg

�

i

y

i

K(~x

t

; ~x

i

) + b

3

5

� �

t

R

2

� 0 (70)

Or equivalently, after adding y

t

�

t

y

t

K(~x

t

; ~x

t

) and exploiting that y

t

[

P

i2SV

�

i

y

i

K(~x

t

; ~x

i

) + b]

= 1 for support vectors

1 � �

t

K(~x

t

; ~x

t

) + �

t

R

2

(71)

) 1 � 2�

t

R

2

(72)

Since �

i

= 0 for support vectors, the condition (2�

t

R

2

+�

t

) � 1 is always ful�lled if (~x

t

; y

t

)

produces a leave-one-out error.

Case �

t

= C: Example (~x

t

; y

t

) is a bounded support vector. The argumentation follows

that in the case of regular support vectors up to the point where it is shown, that a leave-

one-out error can occur only, if

y

t

2

4

X

i2SV nftg

�

i

y

i

K(~x

t

; ~x

i

) + b

3

5

� �

t

R

2

� 0 (73)

Adding y

t

�

t

y

t

K(~x

t

; ~x

t

) and exploiting that y

t

[

P

i2SV

�

i

y

i

K(~x

t

; ~x

i

) + b] = 1��

t

for bounded

support vectors

1� �

t

� �

t

K(~x

t

; ~x

t

) + �

t

R

2

(74)

) 1 � 2�

t

R

2

+ �

t

(75)

This shows that also in the case of a bounded support vector the condition (2�

t

R

2

+�

t

) � 1

is always ful�lled if (~x

t

; y

t

) produces a leave-one-out error.

The idea of connecting the leave-one-out error with properties of the solution vector ~�

for unbiased hyperplanes goes back to Vapnik (cf. [Vapnik, 1998], pages 418-421). Unlike

the work presented here, Vapnik's result is limited to the case where the training data is

separable and it is used to derive bounds on the expected error - not estimators. Jaakkola
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and Haussler [Jaakkola and Haussler, 1999] present a generalized bound for inseparable

data that is similar to that of lemma 1. Similarly, an approximation to the leave-one-out

error of SVMs was recently proposed in [Wahba, 1999]. Nevertheless, like Vapnik's bound

both are restricted to unbiased hyperplanes and do not apply to regular SVMs.

While lemma 1 is valid for all kernel functions that return positive values, it is tightest

when the minimum value is zero. The following lemma shows that this can always be

achieved.

Lemma 2 (Invariance of Soft-Margin SVM) The soft-margin SVM is invariant un-

der addition of a real value c to the kernel function.

Proof Let K

0

be a kernel function derived from a positive semide�nite kernel K by adding

a constant c 2 < to K. Then the soft-margin SVM solution involving K is also a solution

of the soft-margin SVM problem involving K

0

. The following series of transformations

shows this. Subject to

P

n

i=1

y

i

�

i

= 0 it holds for all ~� that

W (~�) = �

n

X

i=1

�

i

+

1

2

n

X

i=1

n

X

j=1

y

i

y

j

�

i

�

j

(K(~x

i

; ~x

j

) + c) (76)

= �

n

X

i=1

�

i

+

1

2

n

X

i=1

n

X

j=1

y

i

y

j

�

i

�

j

K(~x

i

; ~x

j

) +

c

2

n

X

i=1

n

X

j=1

y

i

y

j

�

i

�

j

(77)

= �

n

X

i=1

�

i

+

1

2

n

X

i=1

n

X

j=1

y

i

y

j

�

i

�

j

K(~x

i

; ~x

j

) +

c

2

n

X

i=1

y

i

�

i

n

X

j=1

y

j

�

j

(78)

= �

n

X

i=1

�

i

+

1

2

n

X

i=1

n

X

j=1

y

i

y

j

�

i

�

j

K(~x

i

; ~x

j

) (79)

Similarly, the resulting decision rules can be shown to be equivalent. For the solution

vector ~�

~w�~x =

n

X

i=1

�

i

y

i

(K(~x

i

; ~x

j

) + c) (80)

=

n

X

i=1

�

i

y

i

K(~x

i

; ~x

j

) + c

n

X

i=1

�

i

y

i

(81)

=

n

X

i=1

�

i

y

i

K(~x

i

; ~x

j

) (82)

The previous two lemmas and theorem 1 complete the tools needed to characterize

the bias of the ��-estimator of the error rate.

Theorem 3 (Bias of ��-Estimator of the Error Rate) The ��-estimator of the er-

ror rate is pessimistically biased in the following sense

E(Err

n

��

(h

L

)) � E(R

n�1

(h

L

)) (83)

Proof Theorem 1 shows that the leave-one-out estimator Err

n

loo

(h

L

) of the error rate on

training sets of size n gives an unbiased estimate of the error rate after training on n� 1

examples. After adding a constant c to the kernel function so that minK(~x

i

; ~x) = 0, the

theorem follows directly from the bound in lemma 1 using lemma 2. The lemma establishes

that Err

n

��

(h

L

) � Err

n

loo

(h

L

) with R

2

= c +maxK(~x; ~x) and therefore E(Err

n

��

(h

L

)) �

E(Err

n�1

(h

L

)).
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In other words, the theorem states that the ��-estimator tends to overestimate the

true error rate. This means that \on average" the estimate is higher than the true

error. Given a low variance of the estimate it is now possible to guarantee with a certain

probability that the true error is lower than the estimate. Nevertheless, known bounds

on the variance depend on further assumptions about the learner and/or the learning

task. Theorem 2 requires that the probability Pr(h

n

L

(~x) 6= h

n�1

L

(~x)) is small. For SVMs

this quantity depends on the learning task. Bounds on the variability of the leave-one-

out estimator presented in [Kearns and Ron, 1997] are independent of the learning task.

Assuming that the learner returns a decision rule with minimum training error, Kearns

and Ron bound the variability based on the VC-dimension of the hypothesis space.

Theorem 4 (Bound on the Variability of Err

n

loo

(h

L

)) [Kearns and Ron, 1997]. Let

A be any algorithm performing training error minimization over a hypothesis space h of

VC dimension d. Then for every � > 0, with probability 1� �,

jErr

n

loo

(h

L

)�Err

n

(h

L

)j �

8

q

(d+1)(ln(9 n=d)+2)

n

�

(84)

This bound can easily be used to upper-bound the probability that the ��-estimator

underestimates the true error. Nevertheless, the bound would be too lose to be of practical

importance. Therefor, the variability of the ��-estimator will be assessed empirically in

section 6.

5.2 Recall

The presentation of the ��-estimator of the recall follows the structure of the previous

section. First, the estimator is de�ned and then characterized in the following.

De�nition 2 (��-Estimator of the Recall) For stable soft-margin SVMs, the ��- es-

timator of the recall is

Rec

n

��

(h

L

) = 1�

d

+

n

+

with d

+

= jfi : y

i

= 1 ^ (��

i

R

2

�

+ �

i

) � 1gj (85)

n

+

= jfi : y

i

= 1gj (86)

with � equals 2. ~� and

~

� are the solution of optimization problems 2 and 1 on the training

set S

n

. R

2

�

is an upper bound on K(~x; ~x)�K(~x; ~x

0

) for all ~x; ~x

0

.

d

+

is the number of positive training examples for which the inequality (��

i

R

2

�

+�

i

) �

1 holds. n

+

is the number of positive examples in the training sample. The following

lemma shows that d

+

is an upper bound on the number loo

+

of positive examples that

produce a leave-one-out error.

Lemma 3 (Bound on loo

+

for Stable Soft-Margin SVMs) The number loo

+

of leave-

one-out errors on positive examples for stable soft-margin SVMs on the training set S

n

,

is bounded by

loo

+

� jfi : y

i

= 1 ^ (2 �

i

R

2

+ �

i

) � 1gj (87)

~� and

~

� are the solution of optimization problems 2 and 1 on the training set S

n

. R

2

is

an upper bound on K(~x; ~x) and K(~x; ~x

0

) � 0.

Proof The proof of lemma 1 is easily specialized to this case.

loo

+

can be used to design an almost unbiased estimator of the false positive rate.
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Corollary 1 (Leave-One-Out Estimator of the False Positive Rate) The leave-one-

out estimator

Err

n

+loo

(h

L

) =

loo

+

n

(88)

gives an almost unbiased estimate of the false positive rate R

n�1

+

(h

L

) in the following

sense.

E(Err

n

+loo

(h

L

)) = E(R

n�1

+

(h

L

)) (89)

Proof For the loss function

L

+

(h(~x); y) =

�

1 y = 1 ^ h(x) = �1

0 else

(90)

the risks correspond to the false positive rates. Since theorem 1 also holds for L

+

, the

result follows immediately.

Using the common de�nition of bias to characterize the ��-estimator of the recall is

diÆcult. The recall estimate depends on the number of positive training examples in

a non-linear way. The situation is even worse for the precision. Given a decision rule

that classi�es all examples into the negative class with probability one, the precision is

not de�ned at all. Researchers in information retrieval have worked around this problem

by di�erentiating between micro-averaging and macro-averaging. Macro-expectation, the

analog of macro-averaging, corresponds to the conventional expected value. In micro-

averaging the arguments are averaged before the function is applied. This removes the

artifacts discussed above. The following de�nition generalizes micro-averaging to the

expectation of a function.

De�nition 3 (Micro-Expected Value of a Function) The micro-expected value

E

micro

(f(X)) of a function f(x) is de�ned as

E

micro

(f(X)) = f(E(X)) (91)

The random variable X can be a vector.

It is possible to de�ne micro-expected recall and micro-expected Rec

n

��

(h

L

) now. The

micro-expected recall E

micro

(Rec(h)) is

E

micro

(Rec(h)) =

E(Pr(h(~x) = 1; y = 1))

E(Pr(h(~x) = 1; y = 1)) + E(Pr(h(~x) = �1; y = 1))

(92)

Note that the expectation is over h, the random variable representing the hypotheses.

Similarly, the micro-expected ��-estimate of the recall E

micro

(Rec

n

��

(h

L

)) is

E

micro

(Rec

n

��

(h

L

)) = 1�

E(d

+

)

E(n

+

)

(93)

The expectation is over training sets of size n. The bias of the ��-estimator in terms of

a micro-expectation is characterized by the following theorem.

Theorem 5 (Bias of the ��-Estimator of the Recall) The ��-estimator of the re-

call Rec

n

��

(h

L

) is pessimistically biased in the following sense:

E

micro

(Rec

n

��

(h

L

)) � E

micro

(Rec

n�1

(h

L

)) (94)
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Proof Starting with the de�nition of micro expected recall, the following transformations

lead to a more suitable form.

E

micro

(Rec(H)) =

E(Pr(h(~x) = 1; y = 1))

E(Pr(h(~x) = 1; y = 1)) + E(Pr(h(~x) = �1; y = 1))

(95)

=

E(Pr(h(~x) = 1; y = 1))

E(Pr(h(~x) = 1; y = 1) + Pr(h(~x) = �1; y = 1))

(96)

=

E(Pr(h(~x) = 1; y = 1))

E(Pr(y = 1))

(97)

The probability of drawing a positive example is independent of the training set, so Pr(y =

1) = E(Pr(y = 1)). Since Pr(h(~x) = 1; y = 1) = Pr(y = 1) � Pr(h(~x) = �1; y = 1), it

holds that

E(Pr(h(~x) = 1; y = 1)) = E(Pr(y = 1)� Pr(h(~x) = �1; y = 1)) (98)

= E(Pr(y = 1))� E(Pr(h(~x) = �1; y = 1)) (99)

= Pr(y = 1)� E(Pr(h(~x) = �1; y = 1)) (100)

It follows that the micro-expected recall (the expectation is taken over training sets of size

n� 1) is bounded from below by

E

micro

(Rec

n�1

(h

L

)) =

E(Pr(h(~x) = 1; y = 1))

E(Pr(y = 1))

(101)

=

Pr(y = 1)� E(Pr(h(~x) = �1; y = 1))

Pr(y = 1)

(102)

= 1�

E(Pr(h(~x) = �1; y = 1))

Pr(y = 1)

(103)

� 1�

E(d

+

)

n

Pr(y = 1)

(104)

= 1�

E(d

+

)

E(n

+

)

(105)

= E

micro

(Rec

n

��

(h

L

)) (106)

The inequality holds since d

+

is an upper bound on loo

+

(shown in lemma 3, possibly after

invariant transformation of the kernel function according to lemma 2), and E(loo

+

) =

E(Pr(h(~x) = �1; y = 1)) (shown in corollary 1).

The theorem shows that the ��-estimate of the recall is \on average" lower than the

true recall in terms of a micro-average. Assuming that the variance of the estimate is low,

Rec

n

��

(h

L

) can be used as a lower bound on the true recall. The variance will be analyzed

empirically in section 6.

5.3 Precision

The ��-estimator of the precision is de�ned as follows.

De�nition 4 (��-Estimator of the Precision) For stable soft-margin SVMs, the ��-

estimator of the precision is

Prec

n

��

(h

L

) =

n

+

� d

+

n

+

� d

+

+ d

�

with d

+

= jfi : y

i

= 1 ^ (��

i

R

2

�

+ �

i

) � 1gj (107)

d

�

= jfi : y

i

= �1 ^ (��

i

R

2

�

+ �

i

) � 1g (108)

n

+

= jfi : y

i

= 1gj (109)

with � equals 2. ~� and

~

� are the solution of optimization problems 2 and 1 on the training

set S

n

. R

2

�

is an upper bound on K(~x; ~x)�K(~x; ~x

0

) for all ~x; ~x

0

.
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In analogy to d

+

the value of d

�

is an upper bound on the number loo

�

of leave-one-out

errors on negative training examples.

Lemma 4 (Bound on loo

�

for Stable Soft-Margin SVMs) The number loo

�

of leave-

one-out errors on negative examples for stable soft-margin SVM on the training sample

S

n

, is bounded by

loo

�

� jfi : y

i

= �1 ^ (� �

i

R

2

+ �

i

) � 1gj (110)

~� and

~

� are the solution of optimization problems 2 and 1 on the training set S

n

. R

2

is

an upper bound on K(~x; ~x) and K(~x

i

; ~x

j

) � 0.

Proof The proof of lemma 1 is easily specialized to this case.

Like for the false positive rate it is possible to get a leave-one-out estimate of the false

negative rate.

Corollary 2 (Leave-One-Out Estimator for the False Negative Rate) The leave-

one-out estimator

Err

n

�loo

(h

L

) =

loo

�

n

(111)

gives an almost unbiased estimate of the false positive rate R

n�1

�

(h

L

) in the following

sense.

E(Err

n

�loo

(h

L

)) = E(R

n�1

�

(h

L

)) (112)

Proof For the loss function

L

�

(h(~x); y) =

�

1 y = �1 ^ h(x) = 1

0 else

(113)

the risks correspond to the false negative rates. Since theorem 1 also holds for L

�

, the

result follows immediately.

Again, micro-expectation is used to characterize the bias of the estimator. The micro-

expected precision E

micro

(Prec(h)) is

E

micro

(Rec(h)) =

E(Pr(h(~x) = 1; y = 1))

E(Pr(h(~x) = 1; y = 1)) + E(Pr(h(~x) = 1; y = �1))

(114)

and the micro-expected ��-estimate of the precision E

micro

(Prec

n

��

(h

L

)) is

E

micro

(Prec

n

��

(h

L

)) =

E(n

+

)� E(d

+

)

E(n

+

)� E(d

+

) + E(d

�

)

(115)

Again, the ��-estimator underestimates the true value \on average".

Theorem 6 (Bias of the ��-Estimator of the Precision) The ��-estimator of the

precision Prec

n

��

(h

L

) is pessimistically biased in the following sense:

E

micro

(Prec

n

��

(h

L

)) � E

micro

(Prec

n�1

(h

L

)) (116)
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Proof Recall from the proof of theorem 5 that

E(Pr(h(~x) = 1; y = 1)) = Pr(y = 1)� E(Pr(h(~x) = �1; y = 1)) (117)

� Pr(y = 1)�

E(d

+

)

n

(118)

The following chain of transformations proves the theorem:

E

micro

(Prec

n�1

(h

L

)) =

E(Pr(h(~x) = 1; y = 1))

E(Pr(h(~x) = 1; y = 1)) + E(Pr(h(~x) = 1; y = �1))

(119)

�

Pr(y = 1)�

E(d

+

)

n

Pr(y = 1)�

E(d

+

)

n

+ E(Pr(h(~x) = 1; y = �1))

(120)

�

Pr(y = 1)�

E(d

+

)

n

Pr(y = 1)�

E(d

+

)

n

+

E(d

�

)

n

(121)

=

E(n

+

)� E(d

+

)

E(n

+

)� E(d

+

) + E(d

�

)

(122)

= E

micro

(Prec

n

��

(h

L

)) (123)

The �rst inequality holds since d

+

is an upper bound on loo

+

(shown in lemma 3, pos-

sibly after invariant transformation of the kernel function according to lemma 2), and

E(loo

+

) = E(Pr(h(~x) = �1; y = 1)) (shown in lemma 1). The second inequality holds

since d

�

is an upper bound on loo

�

(shown in lemma 4), and E(loo

�

) = E(Pr(h(~x) =

1; y = �1)) (shown in lemma 2).

5.4 F1-Measure

The following de�nes an estimator of the F1-measure.

De�nition 5 (��-Estimator of the F1-Measure) For stable soft-margin SVMs, the

��-estimator of the F1-measure is

F1

n

��

(h

L

) =

2 n

+

� 2 d

+

2 n

+

� d

+

+ d

�

with d

+

= jfi : y

i

= 1 ^ (��

i

R

2

�

+ �

i

) � 1gj (124)

d

�

= jfi : y

i

= �1 ^ (��

i

R

2

�

+ �

i

) � 1g (125)

n

+

= jfi : y

i

= 1gj (126)

with � equals 2. ~� and

~

� are the solution of optimization problems 2 and 1 on the training

set S

n

. R

2

�

is an upper bound on K(~x; ~x)�K(~x; ~x

0

) for all ~x; ~x

0

.

De�ning micro-expected F1 in analogy to precision and recall it is again possible to

show that the ��-estimator is \on average" below the true value.

Theorem 7 (Bias of the ��-Estimator of the F1-Measure) The ��-estimator of the

F1-measure F1

n

��

(h

L

) is pessimistically biased in the following sense:

E

micro

(F1

n

��

(h

L

)) � E

micro

(F1

n�1

(h

L

)) (127)

Proof The following chain of transformations proves the theorem. It starts with the

micro-expectation of F1, and then uses corollaries 2 and 1 in combination with lemmas

3, 4, and 2.

E

micro

(F1

n�1

(h

L

)) = 2 E(Pr(h(~x) = 1; y = 1))= (2 E(Pr(h(~x) = 1; y = 1))+ (128)

E(Pr(h(~x) = �1; y = 1)) + E(Pr(h(~x) = 1; y = �1))) (129)
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� 2 (Pr(y = 1)�

E(d

+

)

n

)=

�

2 (Pr(y = 1)�

E(d

+

)

n

) (130)

+E(Pr(h(~x) = �1; y = 1)) + E(Pr(h(~x) = 1; y = �1)))(131)

�

2 Pr(y = 1)� 2

E(d

+

)

n

2 Pr(y = 1)�

E(d

+

)

n

+

E(d

�

)

n

(132)

=

2 E(n

+

)� 2 E(d

+

)

2 E(n

+

)� E(d

+

) + E(d

�

)

(133)

= E

micro

(F1

n

��

(h

L

)) (134)

6 Experiments

The following experiments explore how well the ��-estimators work in practice. The

evaluation is done on the three text classi�cation tasks Reuters, WebKB, and Ohsumed.

The results for Reuters are discussed in detail. The �ndings are validated on the other

two collections.

The Reuters-21578 dataset

4

was collected from the Reuters newswire in 1987. The

\ModApte" subset is used, leading to a corpus of 12,902 documents. Of the 135 potential

topic categories only the most frequent 10 are used, while keeping all documents.

The WebKB collection

5

consists of WWW pages made available by the CMU text-

learning group. Following the setup in [Nigam et al., 1998], only the classes course,

faculty, project, and student are used. Documents not in one of these classes are

deleted. After removing documents which just contain the relocation command for the

browser, this leaves 4,183 examples.

The third test collection is taken from the Ohsumed corpus

6

compiled by William

Hersh. From the 50,216 documents in 1991 which have abstracts, the �rst 20,000 are

used in the following experiments. The task is to assign documents to one or multiple

categories of the 5 most frequent MeSH \diseases" categories. A document belongs to a

category if it is indexed with at least one indexing term from that category.

Two values for the parameter � are evaluated in the following, namely � = 2 and

� = 1. The setting � = 2 is a direct consequence of lemma 1, while the setting � = 1 is

suggested as a better choice for text classi�cation by the following argument. The factor

� = 2 in the ��-estimates was introduced to upper bound the expressions

1

2

X

i2SV nftg

X

j2SV nftg

�

i

�

j

K(~x

i

; ~x

j

) and

1

2

X

i2SV

t

X

j2SV

t

�

i

�

j

K(~x

i

; ~x

j

) (135)

in the proof of lemma 1. In the worst case, each expression can be

1

2

�

2

t

R

2

as argued above.

For this worst case to happen, it is necessary that all support vectors have identical feature

vectors ~x

i

. For text classi�cation problems the opposite is true. Most support vectors

are almost orthogonal. This means that most entries in the corresponding part of the

Hesse-matrix are small or zero for the linear kernel. Consequently both expressions in

(135) are close to zero, leading to a ��-estimate with � � 1 instead of � = 2. Similar

arguments can be made also for non-linear kernels that are based on the dot-product.

Unless noted otherwise, the following results are averages over 10 random test/training

splits and the variance around each average is estimated. Training and test set are

designed to be of equal size to be able to compare variance estimates. The ��-estimators

4

Available at http://www.research.att.com/�lewis/ reuters21578.html

5

Available at http://www.cs.cmu.edu/afs/cs/project/ theo-20/www/data

6

Available at ftp://medir.ohsu.edu/pub/ohsumed
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� = 1 Err

��

(h

L

) Err(h

L

) Rec

��

(h

L

) Rec(h

L

) Prec

��

(h

L

) Prec(h

L

) F1

��

(h

L

) F1(h

L

)

earn 2.68 � 0.08 1.87 � 0.15 92.3 � 0.3 94.8 � 0.5 98.8 � 0.1 99.1 � 0.1 95.4 � 0.1 96.9 � 0.2

acq 3.54 � 0.16 2.53 � 0.20 88.1 � 0.8 92.5 � 0.5 92.1 � 0.4 93.6 � 0.7 90.0 � 0.5 93.1 � 0.4

money-fx 2.67 � 0.12 1.92 � 0.14 64.9 � 2.0 73.6 � 2.4 83.4 � 1.4 89.8 � 1.9 73.0 � 1.4 80.9 � 1.4

grain 1.23 � 0.09 0.82 � 0.11 74.4 � 1.7 82.7 � 2.1 98.2 � 0.8 98.5 � 0.5 84.7 � 1.2 89.9 � 1.2

crude 1.58 � 0.08 1.30 � 0.10 72.5 � 1.7 76.6 � 2.6 90.9 � 1.0 92.7 � 1.2 80.6 � 1.0 83.9 � 1.3

trade 1.99 � 0.11 1.42 � 0.10 60.4 � 2.1 70.0 � 2.4 83.5 � 1.3 89.0 � 1.5 70.0 � 1.7 78.3 � 1.6

interest 2.20 � 0.18 1.67 � 0.20 54.0 � 5.2 63.8 � 4.3 80.2 � 2.9 87.2 � 2.8 64.5 � 4.4 73.6 � 3.4

ship 1.23 � 0.10 0.96 � 0.13 47.5 � 5.6 61.2 � 3.9 93.3 � 1.9 93.8 � 2.5 62.7 � 5.0 74.0 � 2.9

wheat 0.91 � 0.07 0.65 � 0.08 62.8 � 1.8 71.1 � 2.3 95.0 � 1.5 97.8 � 1.0 75.6 � 1.2 82.3 � 1.4

corn 0.90 � 0.05 0.71 � 0.06 52.4 � 4.1 61.8 � 1.7 97.3 � 1.8 99.1 � 0.6 68.1 � 3.6 76.1 � 1.3

� = 2 Err

��

(h

L

) Err(h

L

) Rec

��

(h

L

) Rec(h

L

) Prec

��

(h

L

) Prec(h

L

) F1

��

(h

L

) F1(h

L
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earn 6.79 � 0.21 1.87 � 0.15 84.4 � 0.4 94.8 � 0.5 92.7 � 0.5 99.1 � 0.1 88.3 � 0.4 96.9 � 0.2

acq 12.99 � 0.28 2.53 � 0.20 59.3 � 1.4 92.5 � 0.5 66.0 � 1.2 93.6 � 0.7 62.5 � 1.2 93.1 � 0.4

money-fx 5.38 � 0.22 1.92 � 0.14 38.4 � 2.0 73.6 � 2.4 52.1 � 1.8 89.8 � 1.9 44.2 � 1.8 80.9 � 1.4

grain 3.20 � 0.19 0.82 � 0.11 48.1 � 2.0 82.7 � 2.1 72.8 � 1.8 98.5 � 0.5 57.9 � 2.0 89.9 � 1.2

crude 3.69 � 0.20 1.30 � 0.10 45.3 � 2.1 76.6 � 2.6 62.8 � 2.4 92.7 � 1.2 52.6 � 2.1 83.9 � 1.3

trade 3.80 � 0.15 1.42 � 0.10 34.7 � 1.8 70.0 � 2.4 51.2 � 2.2 89.0 � 1.5 41.4 � 1.9 78.3 � 1.6

interest 4.19 � 0.26 1.67 � 0.20 27.5 � 4.2 63.8 � 4.3 40.8 � 5.0 87.2 � 2.8 32.8 � 4.6 73.6 � 3.4

ship 2.21 � 0.08 0.96 � 0.13 18.2 � 2.6 61.2 � 3.9 49.4 � 5.2 93.8 � 2.5 26.6 � 3.5 74.0 � 2.9

wheat 1.79 � 0.14 0.65 � 0.08 43.2 � 1.8 71.1 � 2.3 65.8 � 2.7 97.8 � 1.0 52.2 � 1.9 82.3 � 1.4

corn 1.72 � 0.12 0.71 � 0.06 28.1 � 2.1 61.8 � 1.7 57.1 � 3.2 99.1 � 0.6 37.6 � 2.2 76.1 � 1.3

Table 1: Table comparing average ��-estimate of the error, the recall, the precision, and

the F1 with the average true error, true recall, true precision, and true F1 for the ten

most frequent Reuters categories. The upper half shows the estimates for � = 1, the lower

half for � = 2. The \true" values are estimated from a holdout set of the same size as the

training set (6451 examples each). All values are averaged over 10 random test/training

splits exhibiting the standard deviation printed after each average.

are applied to the SVM trained on the training set. The test set is used to get a holdout

estimate as an approximation to the true parameter. For simplicity reasons, all results

in this section are for linear SVMs with C = 0:5. This value of C is chosen since it

was selected by the ��-estimates in model selection experiments [Joachims, 2000]. No

preprocessing like stemming or stopword removal is performed and all words that occur

in at least 3 training documents are used as features. These features are TFIDF weighted

[Salton and Buckley, 1988] as described in [Joachims, 1998]. The resulting document

vectors are normalized to unit length. This implies R

�

= 1.

6.1 How Large are Bias and Variance of the ��-Estimators?

Figure 3 illustrates the results for the Reuters dataset with � = 1. The �ndings are

as expected. The ��-estimators overestimate the true error and underestimate precision,

recall, and F1 as desired. For the 100 experiments (10 splits for 10 classes) the estimate of

the error was lower than the error measured on the holdout set in 3 cases. The estimated

recall was higher in only 1, precision in 15, and F1 in 2 experiments. Since the average

��-estimates are generally close to the average holdout estimates, this indicates a small

variance of the ��-estimate, in particular, since the holdout estimate is subject to variance,

too. This is also supported by table 1, which gives additional details on the results. The

top half of the table contains the ��-estimates with � = 1, the lower half with � = 2. For

� = 2 the ��-estimates are substantially more biased than for � = 1. After each average

the table includes an estimate of the standard deviation. The standard deviation of the

��-estimates is very similar to that of the holdout estimates, especially for � = 1. This

shows that in terms of variance the ��-estimates are as good as holdout testing without

requiring an additional test set of the same size as the training data.
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Figure 3: Diagrams comparing average ��-estimate (� = 1) of the error, the recall, the

precision, and the F1-measure with the average true error, true recall, true precision, and

true F1 measured on a holdout set for the ten most frequent Reuters categories.
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course 3.48 � 0.30 2.43 � 0.34 85.9 � 1.2 90.7 � 1.2 98.0 � 0.3 98.0 � 0.5 91.6 � 0.7 94.2 � 0.8

faculty 13.40 � 0.64 9.80 � 0.33 55.7 � 2.2 69.2 � 1.0 90.5 � 1.2 92.2 � 1.3 68.9 � 1.8 79.0 � 0.7

project 9.56 � 0.46 7.75 � 0.34 22.4 � 3.6 37.0 � 3.1 91.3 � 2.5 95.9 � 1.2 35.9 � 4.8 53.3 � 3.1

student 10.14 � 0.59 7.64 � 0.36 82.3 � 0.9 87.0 � 0.4 90.9 � 0.7 93.0 � 0.6 86.4 � 0.8 89.9 � 0.4

� = 2 Err
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) Err(h
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course 11.93 � 0.47 2.43 � 0.34 60.0 � 1.8 90.7 � 1.2 81.0 � 1.2 98.0 � 0.5 68.9 � 1.4 94.2 � 0.8

faculty 31.98 � 0.78 9.80 � 0.33 23.8 � 1.7 69.2 � 1.0 35.3 � 2.2 92.2 � 1.3 28.4 � 1.9 79.0 � 0.7

project 14.80 � 0.23 7.75 � 0.34 2.3 � 0.9 37.0 � 3.1 8.2 � 3.0 95.9 � 1.2 3.6 � 1.4 53.3 � 3.1

student 32.42 � 0.50 7.64 � 0.36 52.5 � 1.1 87.0 � 0.4 59.8 � 0.6 93.0 � 0.6 55.9 � 0.8 89.9 � 0.4

Table 2: Same as table 1, but for the WebKB dataset. The training/test sets contain

2092 examples.

6.2 What is the Inuence of the Training Set Size?

All results presented so far were for a large training set containing more than 6000 ex-

amples. Do the estimator work for smaller training sets as well? Figures 4 to 6 show

learning curves for the Reuters categories \earn", \acq", and \money-fx". To save space,

only error rate and F1 are plotted, since precision and recall behave similar to F1. The

top two curves of each graph show the average ��-estimate and the average holdout-

estimate on an additional test set of the same size as the training set. The averages are

over 20 random training/test splits. Except for very small training sets, the graphs show

no strong systematic connection between bias (i. e. the di�erence between the top two

curves of each graph) and the training set size. For small training sets, the SVM behaves

almost like the default classi�er for \acq" and \money-fx". In this situation the average

��-estimate and the holdout-estimate are almost equal. In terms of variance, the training

set size has a strong inuence on both the holdout-estimate and the ��-estimate. The

bottom two curves of each graph show the empirical standard deviation of each estimator.

As expected, the variance increases with decreasing training set size. Nevertheless, when

moving to very small training sets, the variance decreases again. This is a consequence of

the SVM behaving more and more like the default classi�er. Interestingly, the variance

curves of the ��-estimator are very similar to those of the holdout-estimator. This con-

�rms that the ��-estimators have approximately the same variance as holdout testing,

but save the cost an additonal test set.

6.3 Do the Findings Transfer to Other Text Classi�cation Tasks?

To make sure that the ��-estimator are not tailored to the properties of the Reuters

dataset, but apply to a wide range of text classi�cation tasks, similar experiments were

conducted also for the WebKB dataset (table 2) and the Ohsumed data (table 3). For

both collections, the results are qualitatively the same as for Reuters.

The conclusion from the experimental �ndings is that for text classi�cation the ��-

estimates with � = 1 are preferable over those with � = 2. The ��-estimates with � = 1

exhibit a moderate pessimistic bias and a variance essentially as low as that of holdout-

testing using twice as much data.

7 Summary and Conclusions

This chapter proposes an approach to estimating the generalization performance of a

SVM without any computation intensive resampling. The new estimators are much more

eÆcient than cross-validation or bootstrap, since they can be computed immediately from

the form of the hypothesis returned by the SVM. Moreover, the estimators delevoped

here are the �rst that address the special measures used to evaluate text classi�cation
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Figure 4: Learning curves for the Reuters category \earn" comparing the ��-estimator of

the error rate (left) and the F1 (right) with holdout testing. The x-axis denotes the size of

the training set on a log-scale. Each test set for holdout testing contains as many examples

as the corresponding training set. All values are averages over ten random test/training

splits. The upper curves show the average, the lower curves show the standard deviation.

Individual data points are connected to improve readability.
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Figure 5: Same as �gure 4, but for the Reuters category \acq".
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Figure 6: Same as �gure 4, but for the Reuters category \money-fx".
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Pathology 20.96 � 0.22 18.56 � 0.36 18.9 � 1.2 25.8 � 1.3 67.0 � 1.0 81.2 � 2.1 29.5 � 1.6 39.1 � 1.4

Cardiovascular 8.73 � 0.24 7.13 � 0.15 55.3 � 1.5 64.0 � 0.8 84.0 � 1.0 88.0 � 0.8 66.7 � 1.3 74.1 � 0.7

Neoplasm 6.51 � 0.15 5.42 � 0.14 60.7 � 1.0 67.3 � 0.8 94.0 � 0.4 95.2 � 0.6 73.8 � 0.7 78.8 � 0.6

Nervous System 8.41 � 0.21 7.31 � 0.15 29.0 � 2.3 38.3 � 1.3 82.0 � 1.1 89.6 � 1.5 42.8 � 2.5 53.6 � 1.2

Immunologic 6.04 � 0.19 5.28 � 0.22 37.5 � 1.1 45.4 � 1.2 86.8 � 1.2 90.8 � 1.0 52.3 � 1.1 60.5 � 1.0

� = 2 Err
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Pathology 33.33 � 0.50 18.56 � 0.36 7.4 � 0.6 25.8 � 1.3 12.6 � 0.9 81.2 � 2.1 9.3 � 0.7 39.1 � 1.4

Cardiovascular 15.41 � 0.25 7.13 � 0.15 34.9 � 1.1 64.0 � 0.8 51.8 � 1.1 88.0 � 0.8 41.7 � 1.1 74.1 � 0.7

Neoplasm 11.77 � 0.21 5.42 � 0.14 42.4 � 1.0 67.3 � 0.8 67.6 � 1.0 95.2 � 0.6 52.1 � 0.9 78.8 � 0.6

Nervous System 13.22 � 0.19 7.31 � 0.15 11.2 � 1.0 38.3 � 1.3 25.4 � 1.8 89.6 � 1.5 15.5 � 1.3 53.6 � 1.2

Immunologic 9.37 � 0.29 5.28 � 0.22 19.8 � 1.1 45.4 � 1.2 43.6 � 1.6 90.8 � 1.0 27.3 � 1.3 60.5 � 1.0

Table 3: Same as table 1, but for the Ohsumed dataset and a training/test set size of

10000.

performance. While they can be used to estimate error rate like standard cross-validation,

they can also predict the recall, the precision, and the F1.

The theoretical analysis of the estimators shows that they tend to be conservative.

This is a desireable property for practical applications, since they are less likely to falsely

predict a high generalization performance. In addition to the theoretical analysis, the bias

and the variance of the estimates are evaluated experimentally on three text classi�cation

collections. As predicted by the theory, the empirical results show a conservative bias

for all ��-estimators. Typically, the bias is acceptably low and the variance of the ��-

estimates is essentially as low as that of a holdout estimator which has access to twice

as much labelled data. The ��-estimators are therefor a very promising method for

estimating the performance of SVMs on text classi�cation tasks. They make very eÆcient

use of the data and they are computationally very eÆcient.

Currently, the ��-estimators are applied to automatic model and parameter selection

for text classi�cation [Joachims, 2000]. They can eÆciently select between di�erent pre-

processing steps (e.g. stemming or no stemming), appropriate kernel parameters, and

good values for C. Open questions are, whether the bias can be removed with only a

modest increase of computational expense. One approach could be to perform actual

leave-one-out testing only on those examples for which ��R

2

�

+ � > 1. It might be pos-

sible to integrate these test directly into the optimization process. Finally, it is an open

question whether the ��-estimators work well on other tasks besides text classi�cation.
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A Notation

~x

i

input patterns

y

i

target values (classes)

n number of training examples

N dimensionality of input space

L learner

H hypothesis space

h hypothesis from hypothesis space

h

L

hypothesis that learner L returns

R(h) (expected) risk of hypothesis h

R

emp

(h) empirical risk of hypothesis h on a training sample

~w weight vector

b constant o�set (or threshold)

d VC-dimension

K Mercer kernel

F feature space

Err Error Rate

Rec Recall

Prec Precision

F1 F1-measure

�

i

Lagrange multiplier

~� vector of all Lagrange multipliers

�

i

slack variables

H Hessian of the quadratic program

R the set of reals

N the set of natural numbers

(~x

1

� ~x

2

) dot product between patterns ~x

1

and ~x

2

k:k L

2

-norm (Euclidean distance), k~xk :=

p

(~x � ~x)

e 2.7182818

exp(a) e

a

ln logarithm to base e

log

2

logarithm to base 2

The di�erence between a random variable and its realizations is not reected in the

notation. The meaning is either clear from the context, or explicitly explained in the

text.
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