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Abstract

We investigate the D-optimal design problem in the common trigonometric regression model,

where the design space is a partial circle. The task of maximizing the criterion function is

transformed into the problem of determining an eigenvalue of a certain matrix via a di�erential

equation approach. Since this eigenvalue is an analytic function of the length of the design

space, we can make use of a Taylor expansion to provide a recursive algorithm for its calculation.

Finally, this enables us to determine Taylor expansions for the support points of the D-optimal

design.

AMS Subject Classi�cation: 62K05

Keywords and Phrases: trigonometric regression, D-optimality, implicit function theorem, di�er-

ential equation.

1 Introduction

Consider the common trigonometric regession model

y = �

0

+

m

X

j=1

�

2j�1

sin(jt) +

m

X

j=1

�

2j

cos(jt) + "; t 2 [c; d];(1.1)

�1 < c < d <1; which is widely used to describe a periodic relation between some observations

and the points, where these observations are taken. We will assume that the errors in model (1.1)
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are i.i.d. random values with zero expectation and a �nite variance. Much e�ort has been devoted to

the problem of designing experiments for model (1.1) to obtain eÆcient estimates for the coeÆcients.

Most authors concentrate on the design space [��; �], but Hill (1978) and Kitsos, Titterington and

Torsney (1988) point out that in many applications it is impossible to take observations on the

full circle [��; �]: We refer to Kitsos, Titterington and Torsney (1988) for a concrete example,

who investigated a design problem in rhythmometry involving circadian rhythm exhibited by peak

expiratory ow, for which the design region has to be restricted to a partial cycle of the complete

24-hour period.

In the present paper, we address the question of designing experiments in trigonometric models,

where the design space is not necessarily the full circle but an arbitrary interval [c; d] � R. Recently,

Dette, Melas and Pepelyshev (2001) considered D-optimal designs for estimating the coeÆcients

in this model using a functional approach. In the present paper, we combine this with an algebraic

approach, which is developed by transforming the original problem into a di�erential equation prob-

lem leading us to an eigensystem of a certain matrix. Taking into account some well-known facts

about matrix-algebra, we obtain Taylor expansions for the sought eigenvalue and the corresponding

(normalized) eigenvector. Finally, these �ndings yield a method to calculate Taylor expansions for

the support points of the D-optimal design.

2 Preliminary results for D-optimal designs in trigonometric re-

gression models on a partial circle

Consider the trigonometric regression model (1.1), de�ne � = (�

0

; �

1

; : : : ; �

2m

)

T

as the vector of

parameters and

f(t) = (1; sin t; cos t; : : : ; sin(mt); cos(mt))

T

= (f

0

(t); : : : ; f

2m

(t))

T

(2.1)

as the vector of regression functions. Due to the 2�-periodicity of the regression functions we

restrict ourselves without loss of generality to design spaces with length d� c � 2�. It was shown

in Dette, Melas and Pepelyshev (2001), that a D-optimal design on the interval [c; d], which means

a probability measure � on [c; d] maximizing the determinant of the information matrix

M(�) =

Z

f(t)f

T

(t)d�(t) 2 R

2m+1�2m+1

;(2.2)

can be obtained from a D-optimal design �(a) on the symmetric interval [�a; a] by subtracting

the value (d � c)=2 from the support points of �(a). Therefore, it is suÆcient to study D-optimal

designs on the interval [�a; a], 0 < a � �. Moreover, it was proved in the same reference that for

a � â := �(1�

1

2m+ 1

)(2.3)

designs with information matrix M(�) = diagf1; 1=2; 1=2; : : : ; 1=2g are D-optimal, such as, in

particular, the design

�

�

=

�

t

�

1

: : : t

�

2m+1

1

2m+1

: : :

1

2m+1

�

;

where t

�

i

= 2�(i� 1�m)=(2m+1), i = 1; : : : ; 2m+1. The case a < �(1� 1=(2m+1)) was studied

by means of a functional approach.

In the present paper, we will obtain a number of new results concerning D-optimal designs on the

interval [�a; a], 0 < a < �(1 � 1=(2m + 1)). In particular, these results provide a more eÆcient

version of the functional approach for solving the problem at hand.
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3 The di�erential equation and the eigenvalue problem

To proceed to the di�erential equation form of the problem, we will need the following auxiliary

result. The proof can be found in Dette, Melas and Pepelyshev (2001).

Lemma 3.1. a) There exists a unique D-optimal design for the trigonometric regression model on

the segment [�a; a], 0 < a < �(1� 1=(2m+ 1)), which is of the form

� = �(a) =

�

�t

m

: : : �t

1

t

0

t

1

: : : t

m

1

2m+1

: : :

1

2m+1

1

2m+1

1

2m+1

: : :

1

2m+1

�

;(3.1)

t

m

= a; t

0

= 0.

b) For any design � of the form (3.1) we have

detM(�) = C �(x; a)

=

2

2m

2

(2m+ 1)

2m+1

m

Y

i=1

(1� x

2

i

)(1� x

i

)

2

Y

1�i<j�m

(x

j

� x

i

)

4

;(3.2)

where x = (x

1

; : : : ; x

m

); x

i

= cos(t

i

); i = 1; : : : ;m. Moreover, for �xed a the function �(x; a) is

strictly concave.

Note that due to formula (3.2), the support points of the D-optimal design on the interval [�a; a],

t

i

(a); i = 1; : : : ;m, can be written in the form

t

i

(a) = arccos(x

�

i

);

where x

�

= (x

�

1

; : : : ; x

�

m

) is the unique point of maximum of the function �(x; a) on the set

X = fx = (x

1

; : : : ; x

m

); 0 < x

1

< : : : < x

m

= cos(a)g:

Calculating the �rst partial derivatives of �(x; a), we obtain

1

1 + x

i

�

3

1� x

i

+

4

x

i

� 1 + �

+

m�1

X

j=1;j 6=i

4

x

i

� x

j

= 0;

i = 1; : : : ;m� 1 with x

i

= x

�

i

, where � = 1� cos(a). Consider the supporting polynomial

 (z) =

m�1

Y

i=1

(z � x

�

i

) = z

m�1

+

m�2

X

i=0

 

i

z

i

:

Applying the following well-known equality (see, for instance, Fedorov (1972)),

m�1

X

j=1;j 6=i

1

x

�

i

� x

�

j

=

1

2

 

00

(x

�

i

)

 

0

(x

�

i

)

; i = 1; : : : ;m� 1;

we receive the relations

�1� 2z

1� z

2

+

2

z � 1 + �

+

 

00

(z)

 

0

(z)

= 0
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for z = x

�

1

; : : : ; x

�

m�1

. Multiplying the equation by the common denominator, we obtain

(1� z

2

)(z � 1 + �) 

00

(z) + (�4z

2

+ (1� 2�)z + 3� �) 

0

(z) = 0

again for z = x

�

1

; : : : ; x

�

m�1

.

Since on the left hand side, there is a polynomial of degree m vanishing at the m � 1 points

x

�

i

; i = 1; : : : ;m� 1, we can equate this to the polynomial  multiplied by a linear factor, so that

the problem turns out to be one of solving a second order di�erential equation

P (z) := (1� z

2

)(z � 1 + �) 

00

(z) + (�4z

2

+ (1� 2�)z + 3� �) 

0

(z)

� (#

0

z + �) (z) � 0(3.3)

where #

0

= �(m� 1)(m+2) is obtained by comparing coeÆcients of z

m

and � is an unknown real

constant.

Using that the solution  

�

of the di�erential equation is supposed to be a polynomial of degree

m� 1, we can rewrite P (z) in the matrix-vector form

P (z) = (z

m

; : : : ; z; 1) A(�; �)  ;(3.4)

where  = ( 

m�1

; : : : ;  

0

)

T

and A = A(�; �) is some (m + 1) � m-matrix. Note that the �rst

row of A consists of zeros. Let B = B(�; �) be the matrix obtained from A by deleting the �rst

row with elements b

i;j

= (B(�; �))

i;j

; i; j = 1; : : : ;m. Comparing the coeÆcients of the monomials

z

j

; j = 0; : : : ;m in (3.4) yields

b

i;j

=

8

>

>

>

>

<

>

>

>

>

:

�(m� j)(m � j + 3)� #

0

j � i = 1

(m� j)((1 � �)(m� j + 1)� 1)� � j � i = 0

(m� j)(m � j � �+ 2) j � i = �1

(m� j)(m � j � 1)(� � 1) j � i = �2

0 otherwise

:(3.5)

Note that the matrix B is of the form B = B(�; �) =

~

B(�) � � I

m

, and � is an eigenvalue of the

matrix

~

B(�). Therefore, we can rewrite equation (3.3) in the form

(

~

B(�) � � I

m

)  = 0:(3.6)

For known �, we conclude from (3.5) that the vector  can be calculated by the following recursive

relations

 

m�1

= 1

 

�

= �

m�1

X

j=�+1

b

m���1;m�j

 

j

= b

m���1;m��

(3.7)

� = m� 2;m� 3; : : : ; 0.

A method to calculate the eigenvalue of interest will be described in the following section. Our

approach based on the algebraic equation (3.6) will be called an algebraic approach. Note that a

similar method was suggested in Dette, Haines and Imhof (1999) and in Melas (1999) for studying

(locally)D-optimal designs for rational models. In the present paper, we will combine this approach

with the functional approach suggested in Dette, Melas and Pepelyshev (2001).
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4 A functional-algebraic approach

Consider the function

g(�; �) = det(

~

B(�)� � I

m

):

The unknown value � in equation (3.3) is a function of � (�

�

(�), say), to be explicitly given by the

equation

g(�; �) = 0:

Since � is a simple eigenvalue of

~

B(�) (recursive formula (3.7) shows that the corresponding nor-

malized eigenvector is unique), the following equation holds.

d

d�

g(�; �)

�

�

�

�=�

�

(�)

6= 0

Due to the implicit function theorem (see Gunning and Rossi (1965)), �

�

(�) is a real analytic

function on the interval (0; �̂), where �̂ = 1�cos(â) and â is de�ned in (2.3). This also follows from

the fact that simple eigenvalues of a matrix are real analytic (see Lancaster (1969)). Consequently,

the function �

�

(�) can be expanded into a Taylor series on this interval. To expand this function

in a neighbourhood of the origin, we must continue it to the interval (��̂; �̂). So our aim is to �nd

the limit of �

�

(�) when � ! 0, which can be realized by taking the limit in (3.3). Since all the

points in the D-optimal design tend to zero, it follows that x

�

i

! 1; i = 1; : : : ;m � 1 and for the

supporting polynomial  (z)! (1� z)

m�1

. By direct calculations, we obtain

lim

�!0

�

�

(�) = 1�m

2

:

Hence the function

^

�(�) =

8

<

:

�

�

(�) 0 < � < �̂

�

�

(��) 0 > � > ��̂

1�m

2

� = 0

is real analytic on the interval (��̂; �̂). Consider its Taylor expansion

^

�(�) =

1

X

i=0

�

(i)

�

i

; �

(0)

= 1�m

2

;(4.1)

and let

�

<n>

(�) =

n

X

i=0

�

(i)

�

i

;

(g(�

<n>

(�); �))

(n)

=

1

n!

@

n

@�

n

g(�

<n>

(�); �)

�

�

�

�=0

:

To determine the coeÆcients �

(i)

in this expansion, we will use the following recursive formulas,

which have been explicitly found in Dette, Melas and Pepelyshev (2000):

�

(n+1)

= �J

�1

(0) (g(�

<n>

(�); �))

(n+1)

; n = 0; 1; : : :

J(�) =

@

@�

g(�; �):

The �rst values of the scaled coeÆcients

�

�

(i)

= �

(i)

2

i

are given in Table 1.
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Table 1: CoeÆcients

�

�

(i)

= 2

i

�

(i)

in the expansion (4.1) of the eigenvalue and coeÆcients

�

 

j(i)

in

the expansion (4.2) of the components of the corresponding eigenvector (

^

 

0

; : : : ;

^

 

m�1

).

i 0 1 2 3 4 5

m = 2

�

 

0(i)

-1 .85714 -.06997 -.02856 -.00886 -.00133

�

�

(i)

-3 -.57143 -.27988 -.11424 -.03544 -.00533

m = 3

�

 

0(i)

1 -1.81818 .67618 -.02666 -.00204 .00190

�

 

1(i)

-2 1.81818 -.07012 -.03345 -.01963 -.01248

�

�

(i)

-8 -1.09091 -.42074 -.20068 -.11779 -.07489

m = 4

�

 

0(i)

-1 2.80000 -2.22277 .48317 -.00808 .00222

�

 

1(i)

3 -5.00000 2.29169 -.05781 -.01309 -.00261

�

 

2(i)

-3 2.80000 -.06892 -.03375 -.02060 -.01400

�

�

(i)

-15 -1.60000 -.55138 -.27001 -.16480 -.11199

m = 5

�

 

0(i)

1 -3.78947 4.74901 -2.23711 .32001 -.00380

�

 

1(i)

-4 11.36842 -9.56600 2.36016 -.03433 -.00019

�

 

2(i)

6 -11.36842 4.88488 -.08948 -.02490 -.00831

�

 

3(i)

-4 3.78947 -.06792 -.03357 -.02072 -.01430

�

�

(i)

-24 -2.10526 -.67923 -.33566 -.20720 -.14296

Note that since the eigenvectors of a matrix are real analytic functions (see Lancaster (1969)),

the coeÆcients  

j

=  

j

(�); j = m � 2; : : : ; 0 are real analytic functions on the interval (0; �̂).

So the problem of determining the components of the (normalized) eigenvector can be dealt with

analogously to that of calculating the eigenvalue. By the relations

^

 

j

(�) =

8

<

:

 

j

(�) 0 < � < �̂

 

j

(��) 0 > � > ��̂

 

j

(0) � = 0

where  

j

(0) = (�1)

m�j�1

(m� 1)! = (j !(m� j � 1)!) these functions can be analytically expanded

on the interval (��̂; �̂). The Taylor expansions

^

 

j

(�) =

1

X

i=0

�

 

j(i)

�

i

= 2

i

(4.2)

can be constructed using the recursive formulas (3.5). The �rst coeÆcients are listed in Table 1.

Using the values of the  

i

(�) for the components of the eigenvector, the Taylor expansions of the

functions (which give the support points of the D-optimal design) t

i

(a); i = 1; : : : ;m � 1 can be

constructed as follows. Note that these functions are real analytic because the roots of a polynomial

are real analytic functions of its coeÆcients.

Let us de�ne the polynomial �(u; �) by the relation

�(u; �) = �

1�m

 (1 � �u):

Denote by u

i

(0); i = 1; : : : ;m � 1, the roots of �(u; 0) = const P

(1;1=2)

m�1

(2u � 1), where P

(�;)

m�1

is the Jacobi polynomial with parameters (�; ) of degree m � 1. Construct expansions of the
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solutions u

i

(�) = u(�) of the equation �(u; �) = 0 with the initial condition u(0) = u

i

(0) by the

functional approach described above and return to the original variables t

i

(a) = arccos(x

i

(�)) =

arccos(1� � u

i

(�)); � = 1� cos(a); i = 1; : : : ;m� 1.

Proceeding as described above, we obtained the �rst coeÆcients of the Taylor expansions for the

support points t

i

(a); i = 1; : : : ;m�1 of theD-optimal design for the trigonometric regression model

(1.1) on the interval [�a; a] (if a < â), which are the same as in Dette, Melas and Pepelyshev (2001).

However, the present approach appears to be preferable in computer time and memory compared to

the direct functional approach of that paper. This is not surprising, since the algebraic-analytical

approach takes into account the special structure of the problem at hand.
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