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Convergence Rates in Multivariate Robust Outlier

Identi�cation

Ursula GATHER� Claudia BECKER�

Abstract

In investigations on the behaviour of robust estimators� typically their consistency

and their asymptotic normality are studied as a necessity� Their rates of convergence�

however� are often given less weight� We show here that the rate of convergence of a

multivariate robust estimator to its true value plays an important role when using the

estimator in procedures for identifying outliers in multivariate data�
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� Introduction

In the past few years� there has been a growing interest in methods for identifying outliers in

multivariate data sets �see Barnett and Lewis ����� Especially in the light of the existence of

mere data	
oods to be analysed in high dimensional online monitoring situations nowadays�

the development of such methods has become a real need�

Many researchers in this �eld suggest the use of robust estimators in outlier identi�cation

procedures to avoid masking and swamping �Hampel ����� Rousseeuw ��
� ����� When

investigating properties of these estimators� their convergence to some true underlying model

parameter� i�e� consistency� is often studied �rst� neglecting the order of this convergence

or just relying on
p
N 	convergence� But similar to the importance of convergence rates in

limit theorems for distribution functions �Cram�er �
�� Butzer� Nessel ���� Theorem of Butzer�
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Hahn� Westphal in G�anssler� Stute ����� p� ��
� Butzer� Gather ��� ��� and many others�� the

convergence rate in the weak or strong convergence of estimators should not be disregarded

either� especially when investigating outlier identi�cation rules� We will show here� that in

the case of so	called outlier identi�ers� as introduced for the multivariate setting by Gather

and Becker ����� following a univariate approach of Davies and Gather ����� the use of robust

estimators with a su�cient rate of convergence is highly recommendable�

In Section �� we introduce the concept of outlier identi�ers and summarize some results

concerning estimators� which are used in such identi�cation procedures� The central part

of this paper is Section �� which deals with relations between the convergence rate of an

estimator and properties of an identi�er that is based on this estimator�

� Identi�cation of outliers in multivariate data

We concentrate here on methods for identifying outliers in data supposed to come from

a multivariate normal distribution� that is� the model distribution under consideration is

N������ with � � IR� � � IRp�p positive de�nite� Following Gather and Becker ����� an

� outlier with respect to this distribution is de�ned as an element of the � outlier region

out��� ���� �� fx � IRp � �x� ��T����x� �� � ��
p����g

for some given � � ��� ���

In the same way� we can consider an �N outlier region out��N � ���� when dealing with

a sample of size N � In this case� for � � ��� �� we have �N � �� ��� ����N � where

PN������X � out��� ����� � �

and

PN������X i �� out��N � ����� i � �� � � � � N� � � � ��

Usually� the outlier region will be unknown and it is a statistical task to identify all

�N outliers in a sample
�
xN � �x�� � � � � xN � which is possibly corrupted by �bad� obser	

vations itself� One possibility to do this is to estimate the unknown outlier region and

�



identify all observations of
�
xN lying in the estimated region as outliers� Such an empirical

outlier region may be de�ned by

OR�
�
xN � �N� �� fx � IRp � �x�m�TS���x�m� � cg�

where m � m�
�
xN� � IRp and S � S�

�
xN� � IRp�p� positive de�nite and symmetric�

are estimators for � and �� respectively� The constant c � c�p�N� �N � � IR is used for

normalization purposes� for example according to

PN������X i �� OR�
�
XN � �N �� i � �� � � � � N� � � � � ���

with �N � �� �� � ����N and � � ��� ���

The set OR itself is also referred to as an �N outlier identi�er�

Investigations of the properties of such identi�ers show that the use of very robust

estimators m and S with high �nite	sample breakdown points �cf� Donoho and Huber �����

helps to avoid unfavourable e�ects of such rules such as masking and swamping �see e�g�

Rosner ����� Simono� ���� ���� Hampel ����� Rousseeuw ��
� ���� Bendre� Kale ���� Barnett�

Lewis ���� Becker ���� Becker� Gather ����� Estimators of this kind are for example the

MCD estimators of Rousseeuw and Leroy ���� and the S	estimators introduced by Davies

����� At the same time� using estimators with this property yields �nite limits for the so	

called maximum asymptotic bias of outlier identi�ers� More precisely� the estimators m

and S must have a bounded maximum asymptotic bias themselves� We do not give the

exact de�nition of the maximum asymptotic bias here �cf� Becker� Gather ��� for details��

Roughly spoken� this bias indicates� how far away the respective estimator �m� S� OR� can

lie from the true ��� �� out�� when there is a certain amount of maliciously placed outliers

in a sample� Therefore� a bounded maximum asymptotic bias is highly desirable�

However� the above mentioned condition of a bounded maximum asymptotic bias for the

estimators is only necessary� but not su�cient� We get an identi�er with bounded maximum

asymptotic bias though� if we use estimators with this property and additionally guarantee

a certain maximum growth rate for the normalizing constant�

Let OR be an outlier identi�er as de�ned above with corresponding normalizing constant

c�p�N� �N �� If the constant c ful�lls the condition c�p�N� �N � � O���
p����N

��N ���� then
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the use of estimators m and S with bounded maximum asymptotic bias in OR implies that

the bias of the identi�er OR is bounded� too� �Proof� Becker� Gather �����

The growth of c�p�N� �N � is related to the rate of convergence of the estimators m and

S used in OR�

� Growth of the normalizing constant

The relationship between the growth rate of c and the properties of m and S is not immedi	

ately obvious� First� notice that if m and S are consistent estimators for � and �� then with

X�� � � � �XN i�i�d� � N������ it follows that Yi �� �X i�m�TS���X i�m� are asymptotically

��
p distributed� Now� for the normalizing condition ��� we have

PN������X i � IRpnOR�
�
XN � �N �� i � �� � � � � N� � � � �

� PN������ max
i�������N

�X i �m�TS���X i �m� 	 c�p�N� �N �� � �� ��

Therefore� the constant c�p�N� �N � equals the �� � ��	quantile of the distribution of

max
i�������N

�X i �m�TS���X i �m�� This distribution can be determined asymptotically�

Theorem ��� Let denote Yi �� �X i �m�TS���X i � m�� i � �� � � � � N � with X i as above�

Then

lim
N��

P Nf��p��
�
p�����N��max�Y�� � � � � YN�� ��

p�����N� 	 y � exp�� exp��y���

Here� f��p denotes the Lebesgue density of the �� distribution with p degrees of freedom�

Proof� Using a result of Galambos ����� p� ���� it can be shown that the �� distribution lies

in the maximum domain of attraction of the double exponential� Consider a distribution

function F with Lebesgue density f and let 
�F � 	� be the right endpoint of the support

of F � Further� let there exist some x� � IR such that 
x � x� 	 x 	 
�F � the derivative

f ��x� exists and it holds that f�x� �� �� If

lim
x���F �

d

dx

�� F �x�

f�x�
� ��
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then F lies in the maximum domain of attraction of the double exponential� For the ��

distribution we only have to check the above limit� because all other conditions are obviously

ful�lled� Now� f�x� � f��p�x� � ��p����p�����xp����e�x��� x � �� thus

d

dx

� � F �x�

f�x�
� �f

��x���� F �x��

f��x�
� �

and
f ��x���� F �x��

f��x�
� �

p

�
� ��

�

x
� �

�

������x���

�� F �x�

f�x�
�

With the rules of l�Hospital we get

lim
x��

�� F �x�

f�x�
� � lim

x��

f�x�

f ��x�
� � lim

x��

�

�p
�
� �� �

x
� �

�

� ��

Therefore� we can conclude that

lim
x��

d

dx

�� F �x�

f�x�
� ����

�
� � � � � ��

Thus� the �� distribution lies in the maximum domain of attraction of the double exponen	

tial� That means� there exist sequences aN � bN �bN � ��� such that

lim
N��

P
max�Y�� � � � � YN �� aN

bN
	 y � exp�� exp��y���

These sequences aN � bN can be chosen according to �Galambos ����� p� ��� ����

aN � inffx � �� F �x� 	 �

N
g� bN �

�� F �aN�

f�aN�
�

Hence we get�

aN � inffx � � � F �x� 	 �

N
g � inffx � F �x� � � � �

N
g � F����� �

N
�

� ��
p�����N �

where F�� denotes the inverse of the ��
p distribution function� and

bN �
� � F ���

p�����N�

f���
p�����N�

�
�
N

f���
p�����N�

�
�

Nf���
p�����N�

�

�



Here� F� f denote the distribution function and Lebesgue density of the ��
p distribution�

respectively�

Therefore� it follows that

lim
N��

P Nf��p��
�
p�����N��max�Y�� � � � � YN�� ��

p�����N� 	 y � exp�� exp��y��

or� for large N �

P �max�Y�� � � � � YN� 	 y� � exp�� exp��Nf��p��
�
p�����N��y � ��

p�����N����

�

Corollary ��� Let OR be an outlier identi�er� based on
p
N consistent estimators of lo�

cation and covariance and normalized according to ���� Then the normalizing constant

c�p�N� �N � can� for large sample sizes N � be approximated by

c�p�N� �N � � ��
p�����N �

ln�� ln��� ���

Nf��p��
�
p�����N�

�

where �N � �� ��� ����N �

With this approximation� we can calculate the growth rate of c for identi�ers� which are

based on
p
N consistent estimators�

Theorem ��� Consider an outlier identi�er OR with m� S as above� Then the growth of

the normalizing constant c�p�N� �N � is given by

c�p�N� �N � � O���
p����N

� �N ����

if condition ��� is used for normalization�

Proof� According to Corollary ��� we write �for large N�

c�p�N� �N � � ��
p�����N �

ln�� ln��� ���

Nf��p��
�
p�����N�

�
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where �N � �� �� � ����N � With this� we have

lim
N��

c�p�N� �N �

��
p����N

� lim
N��

��
p�����N

��
p��������N

�
� ln�� ln�� � ���

��
p��������N

Nf��p��
�
p�����N�

�

Application of the rules of l�Hospital to the second summand yields

lim
N��

Nf��p��
�
p�����N� � lim

N��

�

�
� p � �

���
p�����N

�
�

�
�

thus

lim
N��

�

Nf��p��
�
p�����N�

� �

and

lim
N��

� ln�� ln��� ���

��
p��������N

Nf��p��
�
p�����N�

� ��

By similar arguments we calculate the limit of the �rst summand�

lim
N��

��
p�����N

��
p��������N

� lim
N��

F��
��p
�� � ��N�

F��
��p

���� ����N�

� lim
N��

f��p��
�
p��������N

�

��� � ����N ln��� ��f��p��
�
p�����N�

� lim
N��

p � �

���
p��������N

� �

�

� ln�� � ��f��p��
�
p�����N� �

p � �

���
p�����N

� �

�

� ��

Therefore� we have

lim
N��

c�p�N� �N �

��
p����N

� ��

such that c�p�N� �N � � O���
p����N

� �N ����

�

These results show that the use of
p
N consistent estimators in outlier identi�ers must

be strongly recommended�
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� Conclusion

Often� very robust estimators are proposed when having to deal with corrupted samples

or for the purpose of outlier identi�cation� Sometimes we �nd the consistency of such

estimators proved� whereas the rate of convergence is not considered� For example� MVE

estimators� which are highly robust� only possess a converge rate of N��	 �Davies �����

and can therefore not be recommended as a choice for the use in outlier identi�ers as

de�ned above� On the other hand� MCD and S	estimators show the desired property of
p
N

consistency� Our investigations show that the rate of convergence of robust estimators plays

an important role in multivariate outlier identi�cation� Hence� calculating the convergence

rates of such estimators is indeed worth the trouble�
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