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Abstract

The analysis of sensory profiling demands skillful statistical methods to account for different

variations that are unknown in other statistical appliances. Besides others, these are the

different use of the descriptors by the assessors and the different use of the scales. The two

most important approaches to cope with such data are given by Generalized Procrustes

Analysis (GPA) and STATIS. Recently, for the latter one several variants have been

proposed in order to either simplify the calculation or to improve the results. The aim of this

paper is to compare these methods with respect to their performance. For this purpose, a

model will be stated to describe the outcomes of a sensory profiling study. On the basis of

this model, we give a short insight into the ideas of the methods under consideration, and

simulations to compare these methods are realised. From those, systematical differences

between the methods occur. Finally, a comparison between the methods with respect to the

interpretation of the estimated consensuses is given by means of graphically displaying the

outcomes. It will be found that the choice of the method is accidental and can be made

according to the simplicity of use for each operator.



2 MICHAEL MEYNERS

Introduction

To analyse sensory profiling data, two different methods are mainly used, namely

Generalized Procrustes Analysis (GPA, Gower, 1975, ten Berge, 1977) and STATIS (Lavit,

Escoufier, Sabatier & Traissac, 1994, Schlich, 1996). To compare the performance of these

methods in practical applications, Meyners, Kunert & Qannari (2000) considered a

simulation study which showed the advantage of GPA. This result was also supported by

some theoretical considerations. From these it was outlined that the consensus of STATIS is

too complex and overestimates the number of relevant dimensions in order to explain the

differences between the products of interest. Meyners (2001) generalised these theoretical

results to other circumstances. In addition, he proposed a correction of the STATIS consensus

which effectuated an improvement of the results. Two other versions of STATIS have also

been considered: One uses the arithmetic mean of the association matrices instead of a

weighted mean (see also Kunert and Qannari, 1999) and hence simplifies the calculation of

the consensus. The other one uses the asymptotic weights in case of an increasing number of

products. Obviously, this method is not applicable with real data since the asymptotic results

depend on the unknown assessor error variances. It was only considered within a simulation

study to examine the outcomes of STATIS if the optimal weights were known. The outline of

this paper is to give some insight into the ideas of these methods and to compare them with

each other. For this, we give some simulation results as well as a graphical comparison with

respect to the interpretation of the results.
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The model

A model describing the outcomes of a sensory profiling study is essential to compare the

methods. Assuming n products and m descriptors, a first proposal has been given by Meyners

et al. (2000), being

Xi = λi (C + Ei) Ri + 1nui
T
. (1)

Here, Xi is the matrix that contains the judgements of assessor i, i = 1, ..., p, and in which the

products are arranged in lines and the descriptors in columns. C is the true underlying

consensus reflecting the true differences between the products of interest, and Ei contains the

random errors of the corresponding assessor. λi is a positive isotropic scaling factor that

allows a different range of the used scale and Ri a rotation matrix to model the different use

of the descriptors by the assessors. The last term represents a translation, i.e. the use of

different parts of the scale, and consists of the vector of ones of length n, 1n, and an arbitrary

vector ui of length m.

Obviously, for all values λi > 0, this model can be written as

Xi = (λiC + Fi) Ri + 1nui
T
. (2)

with an appropriate matrix Fi. This form allows an additional interpretation, namely that an

assessor does not perceive any differences at all but just gives random numbers as

judgements. This can be represented by λi = 0, which would lead to identical values for all

products in model (1). Therefore the modified model (2) will be used here.
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Methods

Five different methods are considered in this paper, namely GPA, STATIS in its original

version, a version of STATIS using the arithmetic mean instead of the original weighted

mean, a version of STATIS using asymptotic weights as they will be defined later on, and a

corrected version of STATIS.

The idea of GPA is to inverse the transformations given in model (1) respectively (2). For

this purpose, an optimal scaling factor, a rotation matrix and a translation are estimated for

each assessor such that the matrices match each other as well as possible. After this

adjustment, a weighted mean is calculated to estimate the true underlying consensus C. We

do not go into the well known details here but refer to the literature: For only two matrices a

solution is already given by Schönemann (1966), whereas more details about GPA can be

found in Gower (1975) and ten Berge (1977). A nice overview with respect to sensory

profiling data is also given by Dijksterhuis (1996).

For the original version of STATIS, the so called association matrices Wi = XiXi
T
 are

determined. These contain all information about the product differences given by assessor i.

From the association matrices a weighted mean is calculated, for which the weights are

determined such that an assessor who gives similar results as most of the other ones will get a

larger weight than an assessor who does not. This is meant to upweight good assessors, i.e.

those with small random errors as they are represented in matrix Ei respectively Fi. The

underlying true consensus is then estimated by means of the principal components of the

weighted mean. Details about STATIS can be found e.g. in Lavit et al. (1994) and Schlich

(1996).
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Also, three variants of STATIS are considered, all of which use the association matrices. For

two of these methods, only different weights are used. The first one uses the arithmetic mean,

i.e. the weight 1/p for each assessor. Therefore, all assessors are equally weighted without

respecting for their reliability in comparison to the other ones. This approach is similar to the

one of Kunert and Qannari (1999).

The second one uses asymptotic weights: Meyners (2001) considers the convergence of the

weights for a fixed number of assessors while the number of products tends to infinity. These

limits can be determined subject to the covariance matrix of the random errors of each

assessor and the true consensus C. Of course these matrices are not known in applications,

whereas they might be considered for simulations. Details are beyond the scope of this paper,

but it occurs that already for small numbers of products the weights of the original STATIS

version do not differ too much from the asymptotic values. Nevertheless it seems to be of

interest whether the results would improve if these asymptotic and therefore somehow

optimal weights were known.

The last version considered here is a corrected version of the STATIS method. Meyners et al.

(2000) as well as Meyners (2001) show that STATIS overestimates the complexity of the true

consensus. This is due to the use of the association matrices which prevents the random errors

to nullify one another even if the mean of these errors is zero. Therefore Meyners (2001)

proposes a correction of the STATIS-consensus to adjust for this systematic disadvantage.

Without going into details, this correction comprises the estimation of the scaling factors and

the errors by means of optimal Procrustes rotation and scaling (cf. Schönemann, 1966), from

which a weighted mean might be determined. This mean can then be subtracted from the

STATIS-consensus before calculating the principal components. Under additional
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assumptions, this correction has been proven to give an unbiased and consistent estimator of

the true consensus.

Comparison by means of simulations

Before we compare the methods of consideration with respect to the interpretation of the

results, we want to know whether or not the methods systematically differ at all. Therefore,

we simulate some data from a known consensus according to the model given above, and

calculate the consensuses of the different methods. These estimators are compared to the true

consensus in order to judge which method derives the most reasonable estimator. The

simulation of the data matrices is mainly according to the one presented by Meyners et al.

(2000), but we added some different covariance-structures of the random errors.

In a first step, only the STATIS versions have been considered. A measure of similarity is

given by the RV-coefficient between the estimated and the true consensus. The larger the

value of RV, the better the matrices match each other. We simulated 1000 repetitions each

and compared each pair of methods. For the underlying true consensus, we used the

judgements of the first assessor for nine carcasses with respect to seven descriptors as it is

reported by Gower (1975). The following tables give the number of simulations in which

each method, given in the column, outperformed the ones given in rows. In a first approach

we considered nine assessors with a medium error variance and uncorrelated descriptors. The

outcomes of the simulations are given in table 1.
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method original arithmetic asymptotic corrected

original STATIS 0 260 260 1000

arithmetic mean 740 0 0 1000

asymptotic weights 740 0 0 1000

corrected version 0 0 0 0

Table 1: Simulation results to compare the different STATIS variants, nine equally well

assessors, uncorrelated descriptors, 1000 repetitions.

It can been shown that in case of equal error variance for all assessors, the asymptotic

weights are given by 1/p, i.e. the version using these weights is identical with the one using

the arithmetic mean and therefore none of those methods performs better than the other one

(cf. Meyners, 2001). Since the original version outperforms these in about three out of four

cases, we conclude that the determination of the weights in STATIS is quite reasonable.

Finally, from table 1 we find that the corrected version outperforms all other versions by far

and therefore gives a reasonable alternative to the other methods.

For table 2, again 1000 simulations were considered for the same data set. In this case, we

simulated three good, three medium and three poor assessors according to different error

variances. Furthermore, we assume that in applications the errors between descriptors may be

correlated with each other and we therefore considered a correlation of ρ = 0.2 for each pair

of descriptors.

method original arithmetic asymptotic corrected

original STATIS 0 1 1000 995

arithmetic mean 999 0 1000 998

asymptotic weights 0 0 0 632

corrected version 5 2 368 0

Table 2: Simulation results to compare the different STATIS variants, nine assessors with

different error variance, all pairs of descriptors correlated with ρ = 0.2, 1000 repetitions.
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From table 2, we find again that the corrected version outperforms the other ones, while this

holds to a larger extent for the original version and the one using the arithmetic mean. Also,

the original version performs better than the one using the arithmetic mean, which supports

our interpretation from above. The asymptotic weights differ from each other which is due to

the different error variances of the assessors. In this case, the judgements of the good

assessors were weighted with 0.202 and those of the medium assessors with 0.091, while the

asymptotic weight of the poor assessors is given by 0.040. This results in better estimates for

the underlying consensus than given by the other methods known by now, whereas the

corrected version still gives better results, albeit the difference it not as large as in table 1

anymore. Note again that, in application, the asymptotic weights are unknown and therefore

cannot be used. They are considered only to judge upon the possible performance in case the

variances and covariances of the random errors were known.

Many other circumstances have been considered, e.g. with different correlation structures,

different numbers and performances of assessors and different true consensuses. In all cases,

similar results have been found: The corrected version performs much better than the original

version and the one using the arithmetic mean, i.e. better than those methods that are

applicable in practice. Mostly, it performed also better than the version using the asymptotic

weights, while sometimes the latter one performed equally well. From these simulations we

therefore should recommend the use of the corrected version.
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Comparison with GPA

By means of simulations and theoretical considerations, Meyners et al. (2000) found that

GPA outperforms STATIS. Hence it seems that a reasonable alternative is already given by

this latter method. However, as stated by Langron and Collins (1985), for p > 2 a drawback

of GPA is its iterative algorithm with yet unknown convergence properties. Even though the

proposed corrected version needs more computational skills than the original version, it still

has no need of an iterative algorithm and is therefore easier to compute, in particular for an

increasing number of assessors. Therefore, the corrected version of STATIS might prove as a

reasonable alternative to GPA if it is not outperformed by the latter one. To judge upon the

performance of the corrected version in comparison to GPA, we compared these methods

again by means of simulations. In this case, not only the RV-coefficient was used to judge

upon the similarity between the estimated and the true consensus, but also the Euclidean

distance after an optimal Procrustes rotation and scaling as proposed by Schönemann (1966).

The RV-coefficient is induced by STATIS method, while the Euclidean distance is motivated

by GPA, therefore each of these criteria might give an advantage to the method from which it

is derived. Hence we conclude that one method performs better than the other one if and only

if both criteria give the same result. All other simulations will be judged as undecided. More

details about the rationale behind this procedure can be found by Meyners et al. (2000).

As we did before, once again we considered different circumstances for the data set of Gower

(1975). In each circumstance, 1000 repetitions were simulated and the performance of these

methods was compared. The number of assessors varied as well as the number of so called

outliers, which are assumed to be assessors for whom two products have been confounded.

The assessors were of three possible kind: medium assessors are assumed to have an error

variance which is equal to the empirical variance within the underlying consensus. Good
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assessors will then have an error variance of 1/5
th

 from this empirical variance, while poor

assessors are assumed to have five times this variance. Note that these values differ from

those used by Meyners et al. (2000). In the simulations presented here, the random errors

between descriptors are assumed to be independent from each other. Table 3 gives the result

for several circumstances.

better performance of

p good poor outlier GPA corr. STATIS

9 0 0 0 105 591

9 9 0 0 133 379

9 0 9 0 374 457

9 0 0 1 100 640

9 9 0 1 68 584

9 0 9 1 318 489

9 0 0 2 74 674

9 9 0 2 53 652

9 0 9 2 375 463

9 3 3 0 531 200

9 3 3 1 546 223

9 3 3 2 498 270

9 5 4 0 506 179

9 5 4 1 593 196

9 5 4 2 608 193

15 0 0 0 28 756

15 15 0 0 46 455

15 0 15 0 248 600

15 5 5 0 319 300

15 5 5 1 318 329

15 5 5 2 332 345

15 8 0 0 138 423

15 0 8 0 457 302

15 7 8 0 527 175

15 3 3 0 216 435

15 9 3 0 48 388

15 3 9 0 726 127

15 3 3 1 224 429

15 9 3 1 40 469

15 3 9 1 706 148

15 3 3 2 225 460

15 9 3 2 31 465

15 3 9 2 723 148

Table 3: Simulation results to compare GPA and the corrected STATIS version, different

assessor constellations, uncorrelated descriptors, 1000 repetitions.
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It can be seen that neither method systematically outperforms the other one. Instead,

depending on the circumstances, each of the methods gives better results than the other one

sometimes. It seems like GPA performs better whenever we have a rather heterogeneous

group of assessors (e.g. 7 good and 8 poor assessors out of 15), while the corrected STATIS

version performs better for homogeneous assessor groups, e.g. for 15 medium or 15 good

assessors. For additional different circumstances and data sets, the results are similar and will

therefore not be given here. In all, we conclude that neither method is superior to the other

one, while still the iterative algorithm of GPA might be seen as a drawback in case of a large

number of assessors.

Graphical comparison of the results

The results of the simulation study showed systematic differences between the methods

considered here. With it, the corrected version proposed by Meyners (2001) outperformed the

other versions of STATIS by far except for the one using the asymptotic weights which

performed equally well. Furthermore, the corrected STATIS version performed as well as

GPA does. Even though it is more complicated than the original STATIS version, it is still

easier to perform than GPA since it has no need of an iterative algorithm with unknown

convergence properties. Hence it might be considered as a reasonable alternative to the latter

one.

In this section, we will consider the differences within the methods with respect to practical

aspects. For this purpose, we re-analyse different data sets given in the literature later on (cf.

Gower 1975, Dijksterhuis and Gower 1991), but begin with an artificial example. We
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consider a rectangular true consensus of four products in two dimensions, from which the

assessments of a couple of judges has been simulated according to the model given earlier in

this paper. From these assessors, the consensuses of the different methods mentioned above

are calculated and graphically displayed after being matched to each other as good as possible

to allow for a better comparison. The graphical representation of the consensuses can be

found in figure 1.

Figure 1: Graphical representation of the consensuses obtained by different methods for an

artificial underlying consensus: 0 = theoretical consensus, 1 = original version of STATIS, 2

= STATIS version using the arithmetic mean, 3 = STATIS version using the asymptotic

weights, 4 = corrected version of STATIS, 5 = GPA.

In this figure, the edges of the tetragons closest to each other belong to the same artificial

product, that is why the "product names" have be omitted. Knowing this, it can be found that

the calculated consensuses are quite similar to each other with respect to the interpretation of

the results: On each side of figure 1, there are two products that are estimated to be rather

similar, while there are large differences to the ones on the other side. Furthermore, the
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products on the right hand side are estimated to be more similar than the ones on the left hand

side. It does not seem not to make much difference which method is used.

Nevertheless, the theoretical results of Meyners et al. (2000) and Meyners (2001) can be

confirmed by these figures: All methods overestimate the complexity of the true consensus,

which is due to the random errors given by the assessors. Also, we find that the consensuses

of the original STATIS version and the one using the arithmetic mean are more complex than

the true consensus, whereas this is only given to a lower extent for the corrected version, the

one using the asymptotic weights and GPA, as can be expected from the references given

above.

Figure 2: Graphical representation of the consensuses obtained by different methods for the

data set presented by Dijksterhuis and Gower (1991): 1 = original version of STATIS, 2 =

STATIS version using the arithmetic mean, 4 = corrected version of STATIS, 5 = GPA.

For the data sets from the literature, of course the true consensus is unknown as well as the

assessor variances are, and hence also the asymptotic weights cannot be used anymore. Thus
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we only compare the remaining four consensuses from three STATIS versions and GPA. The

respective numbers are therefore omitted in figures 2 and 3. For figure 2, we re-analysed the

data set presented by Dijksterhuis and Gower (1991) and determined the different estimators

of the true consensus.

Again, the corners of the polygon that are displayed closest together refer to the same

product. The most important interpretation is that the estimated consensuses scarcely differ at

all. There occur minor differences, which will, however, not lead to different interpretations.

In the left and right lower corner, there are two similar products each, as well as in the upper

part. In applications, our concern it to determine the products that differ very much from each

other and those that do not. For this data set, we would state product differences for exactly

the same products irrespective of the method that has been used to calculate the consensus.

Nevertheless, a closer look at figure 2 shows again that the theoretical results mentioned

earlier can be supported. Even though the differences are minor, the original version of

STATIS as well as the one using the arithmetic mean give less importance to the first and

more importance to the second dimension (which are represented by the x- respectively y-

axis), i.e. the consensus of these methods is more complex than the one of the corrected

version and GPA.

Finally, we consider the data set of Gower (1975). From the representation in figure 3, it

seems that there are larger differences between the outcomes of the different methods.

Regardless, the interpretation of which products are similar to respectively differ from each

other will probably be the same for all methods. It has to be noticed that this data set contains

only three assessors, i.e. random differences might cause more disturbance than given in the

examples above. In application, sensory profiling studies with only three assessors will

scarcely be found.
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For the sake of completeness, with a closer look at figure 3 we find again that the estimated

consensuses of the original STATIS version as well as the version using the arithmetic mean

are of a higher dimensionality than the ones of the corrected version and GPA. The

consensuses of the latter ones mainly differ in the first dimension, while the other ones also

estimate larger differences in the second dimension as is given e.g. for the products in the

mean part of figure 3. This once more confirms the theoretical results given in the literature.

Figure 3: Graphical representation of the consensuses obtained by different methods for the

data set presented by Gower (1975): 1 = original version of STATIS, 2 = STATIS version

using the arithmetic mean, 4 = corrected version of STATIS, 5 = GPA.
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Conclusions

We considered different methods to analyse the outcomes of a sensory profiling study,

Generalized Procrustes Analysis and STATIS. From the latter one, also three variants were

studied. Two of those are given by another weighting than induced by the original version,

namely an arithmetic mean and the asymptotic weights in case of an increasing number of

products. The third version uses a correction as it was proposed by Meyners (2001).

The methods under consideration were compared by means of simulations and graphical

representations of the outcomes. The results of the simulation study showed systematic

differences between the methods considered here. With it, the corrected version proposed by

Meyners (2001) outperformed the other versions of STATIS by far, except for the one using

the asymptotic weights, which performed equally well in some circumstances. Furthermore,

the corrected STATIS version performed as well as GPA does. Even though it is more

complicated than the original STATIS version, it may still remain easier to perform than

GPA since it has no need of an iterative algorithm with unknown convergence properties.

Hence it might be considered as a reasonable alternative to the latter one.

Afterwards, the results of the methods have been compared by means of their graphical

representation. We re-analysed some data sets from the literature as well as an artificial data

set which allowed to take into account both the underlying true consensus and the asymptotic

weights. The resultant figures support that the estimated consensus of  the original STATIS

version as well as the one using the arithmetic mean is too complex and in particular more

complex than the one determined by means of GPA and the corrected STATIS version. This

gives another confirmation of the simulation results presented by Meyners et al. (2000).

On the other hand side, it can be seen that the graphical representation of the product spread

only slightly differs between the methods. The main differences between the products are

identically displayed, thus, which is of even more importance, the interpretation of the
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outcomes will be identical for all methods. Therefore, it might be reasonable to use the

simplest version to analyse the data. This might indeed be the version using the arithmetic

mean. However, usually different methods are available for the user, from which she or he

might choose the one that is the simplest to use for her-/himself. If some software application

is available for GPA or STATIS, it seems not to be of much use to investigate in also

programming another method. We therefore recommend the use of the method which goes

easiest at hand.
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