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1. Introduction

Combining results from di�erent experiments (or studies) has become common

in many �elds of scienti�c inquiry. One has, for example, balanced or unbal-

anced, homoscedastic or heteroscedastic samples to assess the overall treatment

e�ect. With treatment-by-centre interaction in such samples, we get a random

e�ects model, otherwise we have a �xed e�ects model.

The possibility of many false positives in meta-analysis due to the underes-

timate of the variance of the estimate of the overall treatment e�ect cannot

be overemphasized as indicated by Li et al. (1994) and Boeckenho� and Har-

tung (1998). This observation has also been made elsewhere in the context of

mixed linear models, for example, Kackar and Harville (1984), and Kenward

and Roger (1997). Suggested corrections for the �xed e�ects model with the

resulting test statistics being normally distributed do not extend naturally to

the random e�ects model.

As would be expected, there already exists some test procedures for the overall-

treatment e�ect, for example, those based on the Maximum Likelihood (ML)

as well as on the Restricted Maximum Likelihood (REML), cf: for instance,

Brown and Kempton (1994), and Kenward and Roger (1997). In meta-analysis,

inference is usually based on summary statistics reported from, say, trials in a

multicentre study. Such summaries may be some mean treatment di�erences

together with their standard errors, see Cochran (1954). In such absence

of original data, eÆcient estimates of the overall treatment e�ect and vari-

ance components cannot be obtained via REML analysis, observes Brown and

Kempton (1994). In addition, convergence of the estimates when using REML

(as well as ML) is not assured and one has to change to more time consuming

procedures, Kenward and Roger (1997).

By noting that the estimate of the variance of the estimate of the overall

treatment e�ect is dominated by a positive semi-de�nite quadratic form and
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approximating its distribution by a �

2

-distribution by equating its �rst two

moments, we obtain tests of signi�cance for the overall treatment e�ect which

are based on the t-distribution. Two related tests, cf. section 2, for the �xed

e�ects model are suggested and one test, cf. section 3, for the random e�ects

model. Accompanying simulation results, cf. Tables I and II, indicate that

our suggested test statistics improve greatly the attained type I error rates

compared with the commonly used test.

The procedures we suggest, being non-iterative, will be easier to apply and this

will make them more appealing for practical purposes, especially in medical

and epidemiological applications where meta-analysis is common place.

2. Fixed E�ects Model

For K � 2 independent experiments, let y

ij

be the observation on the j � th

subject of the i� th experiment, i = 1; : : : ; K and j = 1; : : : ; n

i

; such that

y

ij

= �+ e

ij

; i = 1; : : : ; K; j = 1; : : : ; n

i

; (1)

where � is the common mean for all the K homogeneous experiments, e

ij

are

error terms which are assumed to be mutually stochastically independent and

normally distributed, that is, e

ij

� N(0; �

2

i

); i = 1; : : : ; K; j = 1; : : : ; n

i

: The

best estimate for � in each study (experiment) is the individual sample mean

�̂

i

=

P

n

i

j=1

y

ij

=n

i

= �y

i:

with variance �

2

i

=n

i

; i = 1; : : : ; K: This means that

we have a �xed e�ects combinations model such that �̂

i

� N(�; �

2

i

=n

i

); i =

1; : : : ; K:

Our interest is in testing the hypothesis H

0

: � = 0 against H

1

: � 6= 0 at

some type I error rate, �: We emphasize here that in a typical meta-analysis

situation, what is usually available from the i� th trial is just the set of values

(�y

i:

; �̂

2

i

=n

i

); i = 1; : : : ; K:

Now, the best linear unbiased estimator of � which traces back to Cochran
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(1954) (see also Whitehead and Whitehead, 1991) is:

~� =

P

K

i=1

n

i

�

2

i

� �̂

i

P

K

i=1

n

i

=�

2

i

(2)

with variance �

2

~�

=

�

P

K

i=1

n

i

=�

2

i

�

�1

: Under H

0

the statistic

T =

~�

q

�

2

~�

� N(0; 1): (3)

In most practical situations, however, the individual error variances, �

2

i

; are

unknown and are estimated in the i � th trial by their unbiased estimators,

s

2

i

=

P

n

i

j=1

(y

ij

� �y

i:

)

2

=(n

i

� 1); so that �̂

2

i

=n

i

= s

2

i

=n

i

is made available for a

meta-analysis. Consequently we have the estimate of the overall mean to be

�̂ =

P

K

i=1

n

i

�̂

2

i

� �̂

i

P

K

i=1

n

i

=�̂

2

i

; (4)

so that when � = 0; the test statistic

T

1

=

�̂

q

�̂

2

~�

approx

� N(0; 1); (5)

cf: for example, Normand (1999).

The test in (5) above attains type I error rates which are much greater than

the nominal level, �; see Li et al. (1994) and Boeckenho� and Hartung (1998).

Now, consider a positive discrete random variable d taking on realizations

d

i

= 1=x

i

with probabilities !

i

; for i = 1; : : : ; K; and the convex function

g(d) = 1=d; then Jensen's inequality

gfE(d)g =

1

P

K

i=1

!

i

� d

i

� Efg(d)g =

K

X

i=1

!

i

�

1

d

i

provides us with the well known inequality between the harmonic and arith-

metic means.
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Lemma 1

For x

i

> 0; !

i

� 0; i = 1; : : : ; K;

P

K

i=1

!

i

= 1; there holds

�x

!;h

=

1

P

K

i=1

!

i

�

1

x

i

�

K

X

i=1

!

i

� x

i

= �x

!;a

:

Next, let

f

�̂;h

(s

2

) = �̂

2

~�

=

1

P

K

i=1

n

i

=s

2

i

=

1

N

�

1

P

K

i=1

n

i

=N

s

2

i

; (6)

Using Lemma 1 above and setting !

i

= n

i

=N we get

f

�̂;h

(s

2

) =

1

N

�

1

P

K

i=1

!

i

=s

2

i

�

1

N

�

K

X

i=1

!

i

s

2

i

=: f

�̂;a

(s

2

) (7)

with x

i

= s

2

i

: Clearly f

�̂;a

(s

2

) is a positive semi-de�nite quadratic form in the

random variables, which dominates the function f

�̂;h

(s

2

): Thus, the approxi-

mate distribution of f

�̂;h

(s

2

) can be obtained as follows:

Let

Q(f

�̂;h

) = � �

1

Eff

�̂;h

(s

2

)g

� f

�̂;h

(s

2

);

then Q(f

�̂;h

)

approx

� �

2

�

; where according to Patnaik (1949)

� = 2 �

[Eff

�̂;h

(s

2

)g]

2

V arff

�̂;h

(s

2

)g

Remember that in our considerations above, we have used Patnaik's approx-

imation to estimate the degrees of freedom. This approximation is a gen-

eralization of Satterthwaite's method which requires that the statistic under

consideration be a linear function (or can be expressed as) of mean squares;

the statistic �̂

2

~�

is not an explicit linear function of mean squares.

By convexity arguments similar to those of Hartung (1976, sec. 1), cf: also

Boeckenho� and Hartung (1998), we have

Eff

�̂;h

(s

2

)g � �

2

~�

:
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Further, it can be shown that

V arff

�̂;h

(s

2

)g � E

8

>

<

>

:

 

K

X

i=1

n

i

s

2

i

!

�2

�

0

@

K

X

i=1

q

n

2

i

� 1

n

i

� 3

�

n

i

s

2

i

1

A

�2

9

>

=

>

;

= E(

^

V

1

) (8)

V arff

�̂;h

(s

2

)g �

 

K

X

i=1

s

n

i

� 1

n

i

+ 1

�

n

i

�

2

i

!

�2

�

 

K

X

i=1

n

i

� 1

n

i

� 3

�

n

i

�

2

i

!

�2

= V

2

(9)

For the estimated degrees of freedom, �; we will make use of

^

V

j

; j = 1; 2; as

given in (8) and (9) above with the parameters �

2

i

=n

i

; i = 1; : : : ; K; in V

2

replaced by their estimators, s

2

i

=n

i

; to obtain

^

V

2

: That is,

�̂

j

= 2 �

ff

�̂;h

(s

2

)g

2

^

V

j

; j = 1; 2:

In the following, however, we propose to introduce some compensation to the

numerator of �

j

; j = 1; 2; which is an upper bound of the variance of f

�̂;h

(s

2

);

to avoid adverse underestimation. This can be done by adding some amount

of the standard deviation, say, Æ

j

= � �

q

^

V

j

; j = 1; 2; 0 < � < 1: Thus we

have the modi�ed operational �

j

; j = 1; 2; given by

�̂

j

(�) = 2 �

ff

�̂;h

(s

2

) + Æ

j

g

2

^

V

j

; j = 1; 2:

We now summarise the above considerations to formulate the following theo-

rem.

Theorem1:

The test statistics T

1;t

; t = 1; 2; under H

0

: � = 0; are such that:

a)

T

1;1

=

�̂

q

f

�̂;h

(s

2

)

approx

� t

�̂

1

(�)

b)

T

1;2

=

�̂

q

f

�̂;h

(s

2

)

approx

� t

�̂

2

(�)
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Using T

1;1

and T

1;2

with � = 0:5; we now demonstrate through a simulation

study that the two proposed tests attains type I error rates which are closer to

the nominal level than the commonly used test, T

1

; which attains levels well

above the prescribed level, �; especially for small sample sizes. For comparison,

we have also considered in our simulations T

1;0

= �̂=(

P

K

i=1

n

i

=�

2

i

)

�1=2

with the

true �

2

i

in the variance term of T

1

; and the critical values are taken from the

standard normal distribution.

Table I: Actual type I error rates (10 000 runs) for K = 3 and K = 6 for the

�xed e�ects model.

nominal level, �=5% Attained type I error rates, �̂%

Sample sizes Error variances K = 3 K = 6

(1 Replication of K=3)

(n

1

; n

2

; n

3

) (�

2

1

; �

2

2

; �

2

3

) T

1;0

T

1

T

1;1

T

1;2

T

1;0

T

1

T

1;1

T

1;2

(5,5,5) (1,3,5) 9.2 18.2 8.0 11.7 10.1 23.4 13.6 10.8

(4,4,4) 8.3 18.6 10.5 8.2 11.4 23.6 13.7 10.9

(10,10,10) (1,3,5) 6.6 10.0 5.4 4.9 7.0 11.0 6.0 5.4

(4,4,4) 6.9 10.8 6.0 5.4 7.3 11.7 6.5 5.9

(20,20,20) (1,3,5) 5.7 7.0 4.5 4.4 6.0 7.5 4.9 4.7

(4,4,4) 5.9 7.2 4.8 4.5 6.0 7.5 4.8 4.6

(5,10,15) (1,3,5) 7.3 13.3 6.9 5.9 9.5 16.8 9.0 7.6

(4,4,4) 8.0 13.1 7.2 6.4 8.8 13.4 7.6 6.8

(5,3,1) 7.2 10.1 6.0 5.6 8.4 12.3 6.8 6.3

(10,20,30) (1,3,5) 6.5 9.3 5.2 4.8 6.5 9.4 5.4 5.0

(4,4,4) 6.2 7.6 5.0 4.8 6.2 8.1 5.0 4.8

(5,3,1) 5.9 6.9 4.8 4.7 6.0 7.2 5.0 4.9

We consider �rst K = 3 with various combinings of sample sizes and error

variances (see Table I below). In order to see the e�ect of increasing the

number of experiments with all the other factors held constant, we make one

independent replication of K = 3 to obtain K = 6: The results given are for

testing H

0

: � = 0 against a two-sided alternative H

1

: � 6= 0:
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We notice that the attained type I error rates in column 4 and 8 of Table I are

far much greater than the nominal level of 5.0 percent . For small sample sizes,

this liberality of T

1

is relatively higher for balanced samples and increases with

the number of experiments (studies), that is, the attained levels are greater for

K = 6 than for K = 3: The proposed tests, T

1;1

and T

1;2

; improve the attained

levels appreciably, despite showing traces of liberality in small sample cases.

For balanced samples greater than 10, the proposed tests attain reasonable

stability with respect to increase in the number of experiments. This is also

conspicuous for unbalanced samples in cases where the smallest sample size is

equal to 10.

3 Random E�ects Model

For the one-way random e�ects model we add a random e�ect a

i

� N(0; �

2

a

); i =

1; : : : ; K; to model (1), see section 2 above, to obtain

y

ij

= �+ a

i

+ e

ij

; i = 1; : : : ; K; j = 1; : : : ; n

i

;

with a

1

; : : : ; a

K

; e

11

; : : : ; e

Kn

K

being mutually stochastically independent, so

that �̂

i

� N(�; �

2

a

+ �

2

i

=n

i

): Then the estimator of � equivalent to (4) is given

by

�̂ =

P

K

i=1

1

v

i

� �̂

i

P

K

i=1

1=v

i

; (10)

where v

i

= �̂

2

a

+�̂

2

i

=n

i

= �̂

2

a

+�

i

; i = 1; : : : ; K: Therefore, we have the commonly

used test statistic

T

r

1

=

�̂

(

P

K

i=1

1=v

i

)

�1=2

approx

� N(0; 1) (11)

This test su�ers from the same weaknesses as its �xed e�ects counterpart, with

the situation here being compounded by the estimation of the variance of the

random e�ect, �

2

a

:
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Let �

2

i

= �

2

a

+�

2

i

=n

i

; and de�ne the quadratic formQ =

P

K

i=1

h

i

(�̂

i

�

P

K

j=1

b

j

�̂

j

)

2

;

where h

i

> 0 and b

i

> 0 with

P

K

i=1

b

i

= 1; i = 1; : : : ; K: By a somewhat

lengthy derivation, it can be shown that, Hartung (1999), (cf: also Hartung,

1981; Mathai and Provost, 1992)

E(Q) =

K

X

i=1

h

i

(1� 2b

i

)�

2

i

+ (

K

X

i=1

h

i

)(

K

X

i=1

b

2

i

�

2

i

); (12)

V ar(Q) = 2 �

0

@

K

X

i=1

h

2

i

D

2

i

+

K

X

i=1

K

X

i6=j=1

h

i

h

j

C

2

ij

1

A

; (13)

where

D

i

= (1� 2b

i

)�

2

i

+

K

X

k=1

b

2

k

�

2

k

; (14)

C

ij

=

K

X

k=1

b

2

k

�

2

k

� b

i

�

2

i

� b

j

�

2

j

; i; j = 1; : : : ; K; (15)

which are also estimated by replacing parameters by their estimates. Set




�

=

P

K

i=1




i

; 


i

= n

i

=�

2

i

: Then for �xed weights

b

i

=




i




�

; h

i

=

b

i

1�

P

K

i=1

b

2

i

we obtain the so-called DerSimonian-Laird estimator for meta-analysis, cf:

DerSimonian and Laird (1986), and Whitehead and Whitehead (1991),

~�

2

a

=




�




2

�

�

P

K

i=1




2

i

8

<

:

K

X

i=1




i

(�̂

i

�

K

X

j=1

b

j

�̂

j

)

2

�K + 1

9

=

;

; (16)

which is an unbiased estimator of �

2

a

with variance, V ar(~�

2

a

) = V ar(Q): As in

section 2 above, V ar(�

i

) = 2 � �

4

i

=fn

2

i

(n

i

� 1)g and its best invariant unbiased

estimator is given by

d

V ar(�

i

) = 2 � �

2

i

=(n

i

+1); Hartung and Voet (1986). Note

that ~�

2

a

has a positive probability of taking negative values. For a realization

the parameter �

2

i

=n

i

in b

i

is replaced by �

i

so that ~�

2

a

becomes the estimator
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�̂

2

a

:

Making use now of Lemma 1 again, we have

1

P

K

i=1

1=v

i

�

1

K

�

K

X

i=1

1

K

� v

i

=

1

K

2

K

X

i=1

(~�

2

a

+ �

i

); (17)

and therefore,

1

P

K

i=1

1=v

i

= � � (~�

2

a

+

1

K

K

X

i=1

�

i

);

where � is a positive random variable. Next,

�

r

�

(

E

 

1

P

K

i=1

1=v

i

!)

�1

�

1

P

K

i=1

1=v

i

= �

r

�

� � (~�

2

a

+

1

K

P

K

i=1

�

i

)

E

n

� � (~�

2

a

+

1

K

P

K

i=1

�

i

)

o

� �

r

�

(~�

2

a

+

1

K

P

K

i=1

�

i

)

E(~�

2

a

+

1

K

P

K

i=1

�

i

)

approx

� �

2

�

r

;

and by the independence of Q and �

i

; i = 1; : : : ; K; �

r

is given by

�

r

= 2 �

h

E

n

� � (~�

2

a

+

1

K

P

K

i=1

�

i

)

oi

2

V ar

n

� � (~�

2

a

+

1

K

P

K

i=1

�

i

)

o

� 2 �

n

E(~�

2

a

+

1

K

P

K

i=1

�

i

)

o

2

V ar

�

~�

2

a

+

1

K

P

K

i=1

�

i

�

= 2 �

n

E(~�

2

a

+

1

K

P

K

i=1

�

i

)

o

2

V ar(Q) +

2

K

2

P

K

i=1

�

4

i

=fn

2

i

(n

i

� 1)g

:

With all parameters replaced by their suitable estimates, �

r

can be estimated

by

�̂

r

= 2 �

�

�̂

2

a

+

1

K

P

K

i=1

�

i

�

2

d

V ar(

^

Q) +

2

K

2

P

K

i=1

�

2

i

=(n

i

+ 1)

(18)

if �̂

2

a

> 0 and for �̂

2

a

� 0;

�̂

r

=

�

P

K

i=1

�

i

�

2

P

K

i=1

�

2

i

=(n

i

+ 1)

: (19)

10



So, for testing the hypothesis H

0

: � = 0 against H

1

: � 6= 0; we have the

following theorem

Theorem 2

Under H

0

there is

T

r

1;1

=

�̂

(

P

K

i=1

1=v

i

)

�1=2

(20)

distributed approximately as a central t-variable with �̂

r

degrees of freedom.

Now, by a simulation study (see Table II) we compare the attained type I error

rates for the commonly used statistic, T

r

1

; and the proposed test T

r

1;1

: For com-

parison, we have also included the statistic T

r

0

= �̂=(

P

K

i=1

1=�

2

i

)

�1=2

with the

true values �

2

i

in the variance term of T

r

1

and the critical values are obtained

from the standard normal distribution. To obtain K = 6 we independently

replicated K = 3 once for �

2

a

= 0; 0:5; 5; 25:

For �

2

a

= 0:0, (cf: Table II), the proposed test T

r

1

attains acceptable type I

error rates, despite being a liberal for K = 6; especially, for sample sizes of 5

per experiment. Also for unbalanced samples, when relatively large individual

error variances are paired with relatively small sample sizes, the test is too

conservative for K = 3:

For values of �

2

a

= 0:5; 5:0 and 25.0, the proposed test attains levels far more

acceptable than those of the commonly used statistic T

r

1

; save for some small

traces of liberality especially for small sample size combinations.
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Table II: Actual type I error rates (10 000 runs) for K = 3 and 6 for the

random e�ects model.

Nominal level, �=5% Attained type I error rates, �̂%

Sample sizes Error variances K = 3 K = 6

(1 Replication of K=3)

�

2

a

(n

1

; n

2

; n

3

) (�

2

1

; �

2

2

; �

2

3

) T

r

0

T

r

1

T

r

1;1

T

r

0

T

r

1

T

r

1;1

0.0 (5,5,5) (1,3,5) 9.0 10.1 5.5 9.3 9.7 6.5

(4,4,4) 6.7 10.4 5.7 7.2 10.1 7.0

(20,20,20) (1,3,5) 6.9 4.6 3.6 6.4 4.9 4.0

(4,4,4) 5.4 4.7 3.5 5.5 4.9 3.7

(5,10,15) (1,3,5) 5.8 7.4 5.1 6.4 7.9 6.2

(4,4,4) 6.7 6.7 3.9 7.2 7.1 4.6

(5,3,1) 12.0 5.5 2.8 10.5 5.4 3.4

(10,20,30) (1,3,5) 5.6 5.2 4.0 5.8 5.6 4.4

(4,4,4) 5.8 4.6 3.4 6.2 5.1 3.6

(5,3,1) 10.5 4.4 2.8 8.2 4.6 3.5

0.5 (5,5,5) (1,3,5) 6.3 16.4 9.1 5.9 12.2 8.5

(4,4,4) 5.6 13.8 7.5 6.3 11.5 7.6

(20,20,20) (1,3,5) 5.3 18.3 9.7 4.9 11.5 6.5

(4,4,4) 5.1 14.3 7.6 5.0 10.2 5.4

(5,10,15) (1,3,5) 5.3 14.9 8.3 5.6 11.3 6.9

(4,4,4) 5.4 13.3 7.2 5.7 10.8 6.5

(5,3,1) 5.7 19.9 11.6 6.1 13.7 9.4

(10,20,30) (1,3,5) 4.6 15.4 7.8 5.0 10.6 5.4

(4,4,4) 4.9 15.3 8.1 4.8 10.4 5.8

(5,3,1) 5.8 21.0 13.4 5.3 13.2 8.8

1.0 (5,5,5) (1,3,5) 5.5 18.4 10.0 5.4 12.8 8.0

(4,4,4) 5.6 14.6 7.4 5.4 11.2 6.7

(20,20,20) (1,3,5) 4.9 19.3 8.6 5.3 12.6 5.9

(4,4,4) 5.1 15.9 7.2 5.5 10.4 5.1
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Table II: Cont.

Nominal level, �=5% Attained type I error rates, �̂%

Sample sizes Error variances K = 3 K = 6

(1 Replication of K=3)

�

2

a

(n

1

; n

2

; n

3

) (�

2

1

; �

2

2

; �

2

3

) T

r

0

T

r

1

T

r

1;1

T

r

0

T

r

1

T

r

1;1

1.0 (5,10,15) (1,3,5) 5.6 16.9 8.4 5.2 11.4 6.1

(4,4,4) 5.2 15.6 7.6 5.3 11.4 6.7

(5,3,1) 6.0 21.0 11.8 5.7 13.8 8.7

(10,20,30) (1,3,5) 4.8 17.3 6.8 5.0 10.7 5.4

(4,4,4) 5.0 17.0 7.9 5.2 11.3 6.0

(5,3,1) 5.5 21.2 11.8 5.0 12.8 6.8

5.0 (5,5,5) (1,3,5) 5.4 20.1 8.1 4.8 11.8 5.2

(4,4,4) 5.0 18.9 7.4 5.0 11.1 5.2

(20,20,20) (1,3,5) 5.0 19.1 5.5 5.4 12.3 4.8

(4,4,4) 4.7 19.2 5.7 4.5 10.4 5.0

(5,10,15) (1,3,5) 5.0 18.9 5.7 5.4 11.0 4.7

(4,4,4) 5.3 19.3 7.0 4.9 10.9 5.2

(5,3,1) 5.1 21.2 9.0 5.2 12.8 5.8

(10,20,30) (1,3,5) 5.0 19.4 5.8 5.3 11.4 5.0

(4,4,4) 4.9 19.0 6.0 5.3 11.4 5.0

(5,3,1) 5.1 21.5 7.3 5.1 13.1 4.7

25 (5,5,5) (1,3,5) 4.8 19.9 5.3 5.3 12.1 4.1

(4,4,4) 4.9 19.3 5.0 4.9 12.0 4.5

(20,20,20) (1,3,5) 4.9 20.9 4.6 4.9 11.8 4.1

(4,4,4) 5.1 19.4 5.1 4.9 11.1 4.8

(5,10,15) (1,3,5) 5.1 19.4 5.1 5.0 11.9 4.6

(4,4,4) 5.1 19.5 5.2 5.0 11.8 4.7

(5,3,1) 4.9 20.7 5.5 4.8 13.5 4.2

(10,20,30) (1,3,5) 4.8 19.1 4.8 4.9 11.0 4.6

(4,4,4) 4.9 19.4 5.0 5.0 11.2 4.8

(5,3,1) 5.1 21.5 4.6 4.5 13.1 4.0
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4. Conclusion

The problem of frequent liberal decisions is very common in meta-analysis. In

comparison with the commonly used test in meta-analysis, the proposed tests

greatly improve the attained type I error rates for both the �xed and random

e�ects model. In the absence of original data from the individual trials, most

of the procedures, for example, REML analysis, cannot be eÆciently used.

The proposed approximate tests being non-iterative, are easier to apply and

require no specialist knowledge in programming. We would recommend the

use of these tests, especially, in place of the commonly used method.

Acknowledgement. The authors would like to thank Dogan Argac for his
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improved version of the paper.
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