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Abstract

We discuss the increasing literature on misspecifying structural breaks or more

general trends as long range dependence	 We consider tests on structural breaks

in the long�memory regression model as well as the behaviour of estimators of

the memory parameter when structural breaks or trends are in the data but

long�memory is not	 It can be seen that it is hard to distinguish deterministic

trends from long�range dependence	

KEY WORDS
 Long�memory� structural breaks� trends

� Introduction

Long�memory time series have been a popular area of research in econometrics

and statistics in the recent years because of their applicability in many sciences	

Long�range dependence or long�memory means that the correlation of a time

series decays hyperbolically� not exponentially like for example for ARMA�

processes	

Long�range dependence was �rst observed by the hydrologist Hurst who ana�

lyzed the minimal water ow of the Nile River when planning the Aswan dam	

�Research supported by Deutsche Forschungsgemeinschaft under SFB ���
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Hurst acknowledged that standard forecasting methods fail for this data� In�

stead of independence or weak correlations between data points far away from

each other� he observed strong dependencies� The phenomenon of long�range

dependence in water �ow data was observed in many other rivers by Mandel�

brot�Wallis ��	
	�� Also the Rhine River exhibits long�range dependence �see

Lohre�Sibbertsen ���� and references therein�� Additional geophysical appli�

cations of long�memory are for instance the temperature data of the northern

hemisphere� Other domains of application are Computer Science and Eco�

nomics� Many economic data sets show a persistent behaviour and therefore

it seems natural to apply long�memory models to these economic time series�

Beginning with Granger ��	

�� an intensive discussion about the application

of long�range dependence in Economics and its consequences was initiated� But

in many situations it is not clear whether the observed dependence structure is

real long�memory or an artefact of some other phenomenon such as structural

breaks or deterministic trends� Long�memory in the data would have strong

consequences� As described in section � the valuation of an option on stocks

would be changed entirely� The price of the option can in case of long�range

dependence double the price when long�memory is neglected� Also for fore�

casting future events as high water it is important to know whether the data

exhibits long�range dependence or if it is an artefact of a deterministic trend�

So far there is no acknowledged method to distinguish long range dependence

and structural breaks or more general trends� The purpose of this paper is

to review the literature concerning the in�uences of long�memory to tests on

structural breaks and on the other hand the consequences of trends to the

estimation of the dependence structure of the observed time series�

The paper is organized as follows� In the next section long�range dependence is

de�ned and the most relevant properties of long�memory models are discussed�

In section � a motivating example is considered� Section � discusses the be�

haviour of tests on structural breaks in the presence of long�range dependence�

Section � considers the consequences of trends added to a short�memory noise

for the estimation of the memory parameter�
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� Long�memory time series

��� De�nition of long�memory

Long�memory or long�range dependence means that observations far away from

each other are still strongly correlated� The correlations of a long�memory

process decay slowly that is with a hyperbolic rate� We have the following

de�nition of long�range dependence�

De�nition ��� �Long�memory process� Let Xt be a stationary process

with correlation function ��k� and let H � ���	� ��� Furthermore let c� be

a positive constant with

lim
k��

��k�

c�k�H��

 �� �	���

Then Xt exhibits long�memory or long range dependence�

It follows from this de�nition that the correlations of a long�memory process

decay with a hyperbolic rate� They are not summable� Instead of the parameter

H we use in this paper also in some situations the parameter d �
 H � ��	� H

is called Hurst parameter� The use of the parameter d is standard because it is

commonly used in the ARFIMA modeling of long�memory processes discussed

below�

An equivalent de�nition of long�range dependence can be given by using the

spectral density f��� of the process Xt� Note that the long�term behaviour

of a process is speci�ed by the small frequencies of the periodogram� A long�

memory process has a pole of the spectral density at the origin� We have the

following de�nition�

De�nition ��� Let Xt be a stationary process and H � ���	� �� real� Let also

be cf a positive constant such that

lim
���

f���

�cf j�j���H �

 �� �	�	�





Then Xt is called stationary process with long�memory�

These de�nitions are equivalent� The details are omitted here� From these

de�nitions of long�range dependence we obtain important properties of long�

memory time series�

� the covariances behave asymptotically like a constant cH times k�H�� for

��� � H � ��

� the correlations are not summable	 that is
P
�

k��� �
k� ���

� the spectral density f has a pole at the origin and behaves like a constant

cf times ����H near the origin for ��� � H � ��

� the variance of the sample mean behaves asymptotically for t�� like

a constant cvar times t�H�� for ��� � H � ��

Also some qualitative properties of a typical trajectory of a long�memory pro�

cess can be enumerated�

� the trajectory has local trends and cycles�

� it is mean stationary	 so no overall trends or cycles are observable�

� it is mean reverting�

� it shows a persistent behaviour�

In �gure � a typical trajectory of a long�memory time series of length N � �

and memory parameter H � �� is given�

The process Xt is stationary and exhibits long�range dependence	 if ��� �

H � �� For  � H � ��� the process has short�memory� In this situation the

spectral density is zero at the origin and the process is said to be antipersistent�

For H � ��� we have independence or standard short�memory� In the case

� � H � ��� the process is non�stationary but still persistent� For this reason

in the literature it is often called non�stationary long�memory� Every other
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Figure �� Path of a long�memory time series with N � ���� and H � ���

situation can be reduced to these cases by di�erencing the process	 In this

paper we restrict ourselves to the stationary long�memory case because this is

the relevant situation in practise	

��� Modeling long�memory processes

A 
rst model for long�memory processes was the fractional Brownian motion

introduced by Mandelbrot�van Ness �����	 This approach generalizes stan�

dard Brownian motion by using self�similar processes	 Here a process Xt is

called self�similar with parameter d � ������ ���� if Xt

D
� tdX�	 Notice that

these equality is only equality in distribution	 Self�similarity is not a property

of the paths of the process	 For the paths the equality above does not hold in

general	 In what follows fractional Brownian motion is denoted by Bd�t�	

Another model class are ARFIMA processes introduced by Granger�Joyeux

������ and independently by Hosking ������	 They generalize the class of

ARIMA models by allowing for a fractional degree of di�erencing	 Denot�

ing with B the Backshift operator� with ��B� and ��B� the AR� and MA�
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polynomials respectively and with �t a white noise process� ARFIMA�models

are de�ned as the solution of

��B���� B�dXt 	 
�B��t� ����

The operator ��� B�d can be written as

��� B�d 	
dX

k��

�
d

k

�
����kBd�k�

The binomial coe�cient is de�ned by terms of the ��function

�
d

k

�
	

��d� ��

��k � ����d� k � ��
�

Near the origin the spectral density of an ARFIMA process behaves like a

constant cf times j�j��d� Thus these processes exhibit long�range dependence

for � � d � ����

��� Estimating the memory parameter

There are several methods for estimating the memory parameter of a long�

memory process� As this is outside the focus of the present paper we con�ne

ourselves to methods used in below�

The results discussed in this paper are mostly based on the R�S�statistic� a

rescaled�range technique� The range of the process Xt is de�ned by

RN �	 max
��u�N

�
uX

i��

�Xi � �XN��� min
��u�N

�
uX

i��

�Xi � �XN��� �����

Let

SN �	

vuut �

N

NX
i��

�Xi � �XN��� �����

�



where �XN �� �

N

P
N

i��
Xi be the sample standard deviation� The R�S�statistic

is then de�ned by

QN ��
RN

SN
� �	�
�

For the R�S�statistic the following holds�

Theorem ��� Let Xt be a stochastic process with X�

t
ergodic and �p

N

P
N

s��
Xs

converges to a Brownian motion� Then �p
N
QN converges to a non�degenerated

random variable�

Thus a plot of lnQ against lnN scatters around a straight line with slope ��	

in the case where the central limit theorem holds�

In the case of long�range dependence Mandelbrot ����� showed the following�

Theorem ��� Let Xt again be a stationary process with X�

t
ergodic and

N�HPN

s��
Xs converges to a fractional Brownian motion� Then N�HQN con�

verges to a non�degenerated random variable�

Thus in the case of long�range dependence a plot of lnQ against lnN scatters

around a straight line with slope H�

Giraitis et al� �	���b� derive a test for long�range dependence based on the

R�S�statistic� the so�called V�S�statistic by replacing the range of the par�

tial sums of the process by the estimated variances of the partial sums� This

statistic has good power properties� Denoting with S�
k
��
P

k

i��
�Xi �

�XN� and

�Var�S�
�
� � � � � S�

N
� �� �

N

P
N

i��
�S�

i
�

�S�
N
�� the V�S�statistic has the form

MN �� N��
�Var�S�

�
� � � � � S�

N
�

S�
N

� �	���

This test statistic will mainly be used in the last section of this paper�

For other estimators of the memory parameter and for tests for long�memory

and further details concerning long�memory processes see for example Beran

���� or Sibbertsen ��� and references therein�
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� A motivating example

In economics long�memory is most important for volatilities of stock returns�

This has important consequences for the valuation of options�

A standard class of models introduced for modeling volatilities of stock returns

consists of the Autoregressive Conditional Heteroscedasticity �ARCH� models

�see Engle ����	��� These models assume that the conditional variance depends

on the currently known information in a nontrivial way� But they do not al�

low for modeling long�range dependence
 because shocks to the conditional

variance decay exponentially and thus have almost no in�uence for long time

optimal forecasts as it is expected due to the persistence property� Empirical

�ndings show for many stock returns that shocks to the conditional variance

have a slowly decaying in�uence to optimal forecasts of the variance� Thus in

the recent years long�memory models were used to model the behaviour of the

conditional variance of stock returns�

Estimating the dependence structure for daily returns
 their absolute values

and the squares of daily returns of many German stocks such as BMW
 Daim�

ler
 Dresdner Bank
 Deutsche Bank
 Hoechst and BASF show a long�memory

behaviour of the absolute values and the squares of daily returns� Figure

	 shows for instance the autocorrelation function of the absolute returns of

Deutsche Bank� It clearly seems to point to long�range dependence�

This has important consequences on the valuation of the price of an asset as

discussed in BollerslevMikkelsen ������
 by simulating call option prices for

the Standard and Poor�s ��� composite index� Taking into account a long�

memory structure of the volatilities
 the price of the call option becomes much

higher and in some situations it doubles the price compared with the situation

when long�memory is neglected�

A natural question is whether the observed phenomenon is long range depen�

dence or if the estimated dependence structure is an artefact of any other phe�

nomenon as for example structural breaks or trends� GrangerHyung ������
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argue that structural breaks cause the long�memory structure of Standard and

Poor�s ��� composite index


Thus long�range dependence and trends including structural breaks can easily

be confused
 This paper is reviewing the increasing literature concerning this

topic
 The behaviour of tests on structural breaks in a long�memory model is as

well discussed as the behaviour of tests on long�memory if the true underlying

process is a weakly dependent process plus a small trend
 Distinguishing both

of these phenomena is still an open problem


� Tests for structural breaks in the presence

of long�memory

In this section we consider the behaviour of tests on structural breaks in the

linear regression model with long�memory disturbances
 Thus the point of

departure in this section is the linear regression model

y  X� � �� ��
��

�



where y is the N �dimensional dependent variable� X is the N � k matrix of

non�stochastic and �xed regressors� � is the k�dimensional unknown parameter

vector and here � is a long�memory zero mean gaussian time series� For the

regressors we assume the following

�

N

NX
t��

xt � c �� and ���	


�

N

NX
t��

xtx
�

t
� Q ��nite� nonsingular
� ����


These are standard assumptions in linear regression large sample asymptotics�

they exclude trending data� which require separate treatment� But that is not

topic of this paper�

The problem is to test the null hypothesis that the parameter vector � is

constant for all observations�

For the case of a known breakpoint HidalgoRobinson �����
 obtained that

a Wald test procedure rejects the null hypothesis with probability tending to

one�

Unfortunately in most practical situations the breakpoint is unknown� Thus

we focus here on the CUSUM test for structural change� This test has a lack of

power but other methods like the optimal test by AndrewsPloberger �����


show a similar behaviour as the CUSUM test in the long�memory model� We

consider here the CUSUM test because of its more intuitive asymptotics� For

an overview about tests on structural change� see for example Stock �����
� Let

us �rst introduce the standard CUSUM test� It is based on recursive residuals

and was �rst introduced by Brown et al� �����
� In detail the standard CUSUM

test is de�ned by

�et �
yt � x�

t
���t���

ft
� ���t��� �

�
X�t����X�t���

�
��

X�t����y�t��� ����


ft �
�
� � x�

t
�X�t����X�t���
��xt

� �

� �t � K � �� � � � � N
� ����


��



where the superscript t� � means that only observations �� � � � � t� � are used�

It rejects the null hypothesis of no structural break for large values of

SN � sup
�����

WN������ � ���� �	�
�

where

WN��� �� N�

�

� �����

�N��X

t�K��

et� �	���

Here ����� denotes a consistent estimator for the variance of the error term� In

the case of iid or weakly dependent disturbances WN ��� tends to a standard

Brownian motion� The asymptotic behaviour of the test in the long�memory

regression model is given in the following theorem�

Theorem ��� In the regression model ������ with long�memory disturbances

we have

N�dWN ���� Bd���� �	���

where Bd��� denotes fractional Brownian Motion with self�similarity parameter

d � ��� �����

Proof� See Kr�amer�Sibbertsen �������

This theorem shows that the null distribution of the standard CUSUM test

tends to in�nity in the presence of long�memory disturbances� Likewise the

standard CUSUM test has an asymptotic size of unity�

The standard CUSUM test has bad properties in the case of structural

breaks occuring at the end of the observation period� For this reason

Ploberger�Kr�amer ������ modi�ed the standard CUSUM test by replacing

the recursive residuals by standard OLS residuals� This OLS�based CUSUM

test is sensitive to structural breaks at the end of the data� The test statistic

is de�ned by

��



TS �� sup
�����

jCN���j� where �����

CN��� �� N�

�

� �����

�N��X

t��

et� ���	
�

and where et �� yt�x�t
�� are the OLS�residuals from ���	�� In the case of iid or

short�memory disturbances CN��� converges to a standard Brownian bridge�

In our situation we obtain the following limiting null distribution�

Theorem ��� In the regression model ������ with long�memory disturbances

we have

N�dCN���� Bd���� c�Q������� ���		�

where Bd��� is fractional Brownian Motion with self�similarity parameter d �

�
� 	�� and ���� � N�
� ���
�Q��

Proof� See Kr�amer�Sibbertsen �


��

The process on the right hand side of ���		� is called fractional Brownian

bridge� For d � 
 it is standard Brownian bridge�

Thus also the test statistic of the OLS�based CUSUM test tends in probability

to in�nity under the null hypothesis of no structural break� Both� the standard

CUSUM test as well as the OLS�based CUSUM test is extremely non�robust

to long�memory disturbances� in the sense that long�range dependence is easily

mistaken for structural change when conventional critical values are employed�

The reason for these results is the bad rate of convergence of the OLS�estimator

in the long�memory regression model� In the case of long�range dependent error

terms the least squares estimator has a rate of convergence of N����d� where

d is the memory parameter instead of N��� in the case of independent or

short�memory disturbances� But both types of the CUSUM test depend on

the least�squares estimation of the parameter vector �� Because this is the

	



optimal rate of convergence for estimates of � also tests which are optimal in

the case of independent or short�memory regressors have similar properties in

the long�memory regression model�

Sibbertsen ������ generalized these results to robust CUSUM�M tests be�

cause also outlier can cause the size of the test tending to one� Therefore

M �estimation of the parameter vector is used instead of least�squares estima�

tion� The results for robust tests are similar to the non�robust case� Details

are omitted here�

� Long�memory versus trends

A more general problem than distinguishing long�memory and structural

breaks is in a way the question if general trends in the data can cause the Hurst

e�ect� So in this section we consider tests of long�memory and their behaviour

when trends are present in the data generating process� In the next subsection

we restrict the considerations to monotonic trends� Thereafter general trends

are considered� At the end of this section SEMIFAR�models are introduced�

They allow for modeling trends and long�range dependence simultaneously�

��� Long�memory and monotonic trends

The 	rst paper dealing with this problem is Bhattacharya et al �
���� They

show that adding a deterministic trend to a short memory process can cause

spurious long�memory� They consider the model

Xt � f�t� � Yt� ���
�

At 	rst f�t� is a deterministic trend of the form

f�t� � k�m� t��� �����






where m is nonnegative and k does not equal zero� The exponent � is assumed

to be in the interval ������ ��� The parameter m can be interpreted as a

location parameter� Notice that the trend is decreasing for k positive and

increasing for negative values of k�

The process Yt in ����� is assumed to have short	memory in the following

sense� We say a stationary process Yt has short	memory
 if the covariances are

absolutely summable
 that is

�X

k���

jCov�Yk� Y��j ��

and the functional central limit theorem holds
 that is

N����
�nt�X

j��

Yj �� �B�t��

Here � denotes the variance of the process and B�t� denotes the standard

Brownian motion� This is a quite general de�nition of short	memory following

Giraitis et al� �����a�� It includes standard models like ARMA�p
q�	models as

well as GARCH�p
q�	processes� Using rescaled	range techniques Bhattacharya

et al� ����� show that a trend of type ����� produce long	range dependence of

order � � �� Thus a weak monotonic trend of form ����� can be confused with

long	range dependence of order �� �� Following the notation of Bhattacharya

et al� ����� we denote

pt �
�

t

tX

n��

f�n�� p� �� �� t � �� �� � � � � N

and

�N�t� � t�pt � pN �� t � �� �� � � � � N�

Using this notation and RN as de�ned in ����� the following holds�

��



Theorem ��� Let �Xn�n�IN be a sequence of random variables of the form

������ Let

�N ��
�p
N
�max

t
�N�t��min

t
�N�t���

Then ���NH�RN converges in distribution as N �� to a limit almost surely

not � with H � ��	 if and only if

�N � cNH�����

where � denotes asymptotic equality as N � � and c denotes a positive

constant�

Proof� See Bhattacharya et al
 �����


Thus the theorem says that RN�N
H converges in probability to the positive

constant c
 So this theorem gives a necessary and su�cient condition for trends

to produce spurious long�memory


We also have the following result�

Theorem ��� Let again �Xn�n�IN be a sequence of random variables of the

form ������ If�N � o��� as N �� then ���
p
N�RN converges in distribution

to a limit which is almost surely not ��

Proof� See Bhattacharya et al
 �����


Note that these results of course depend strongly on the use of R�S methodo�

logy
 As we see in the following other methods lead to di�erent results


K�unsch ������ proposed a method for distinguishing monotonic trends

and long�memory by considering the periodogram instead of rescaled�range

methodology
 He proved that the periodogram behaves di�erent in case of a

deterministic monotonic trend function compared to long�memory
 De�ne the

periodogram of the process X as usual by

IX�j� �
	�

N
j
NX

n��

Xn exp��in	�j�N�j�� � � j �
N

	
� ��
�

��



He obtained the following result concerning the periodogram�

Theorem ��� Under model ����� ��IX�j� has a non�central ��
�
�distribution

with non�centrality parameter

��j� N�� �
�

N
j
NX

n��

f�n� exp��in��j�N�j��

Proof� See K�unsch �	
���

Note that for di�erent indices j the periodogram values are independent

In comparison with the results of Bhattacharya et al �	
��� we consider for

example the speci�c trend

f�t� � kt�� � � � � 	

and k is a constant Following Bhattacharya et al �	
��� this trend produces a

Hurst e�ect of order 	� � On the other hand it can be shown that for such a

trend the non�centrality parameter ��j� N�� tends uniformly to zero in regions

	N� � j � N
�
for any 	 
 � and � 


�

�
��

���
 This means that the proportion of

frequencies of the periodogram e�ected by such a trend tends to zero fast

If we consider a process exhibiting real long�range dependence its spectral

density is of the form

g��� � kj�j���� � �  � 	 ����

as mentioned in the introduction Such a process has long�memory with mem�

ory parameter H � 	� �
�
 The spectral density of a long�memory process has

a pole at the origin and thus standard results concerning the periodogram do

not hold in this situation K�unsch �	
��� proves that the periodogram of a

long�memory process follows a multiple of a ��
�
distributed random variable

In detail we have�

	�



Theorem ��� Let Xt be a Gaussian process with long�range dependence and

thus having a spectral density g��� of the form ����� and let jN��� � � � � �

jN�k� be a sequence of frequencies with jN ���N
����

��� and jN �k�N
�� ��

�� Then for � � i � k the IX�jN�i���
jN �i�
N

���� are asymptotically iid� each being

distributed like a constant multiple of a ��
� distributed random variable�

Proof� See K�unsch ������	

Hence it can be seen that the periodogram converges to di
erent distributions

in case of trends and long�range dependence	 This enables us to distinguish

between monotonic trends and long�range dependence	

��� Long�range dependence and non�monotonic trends

Unfortunately in most practical situations trends are not monotonic	 A natural

question is which shapes of non�monotonic trends added to a short�memory

process cannot be distinguished from long�memory	 This problem is considered

for example by Giraitis et al	 �����a�	 TeverovskyTaqqu ������ considered the

behaviour of a variance�type estimator of the memory parameter by adding a

model with shifts in the mean or a slowly decaying trend of the same type as

in Bhattacharya et al	 ������ and K�unsch ������ to the noise process	 These

trends are special cases of the model of Giraitis et al	 �����a� and thus of the

considerations below	 Again the point of departure is model ��	��	 But from

now on f�t� is a general deterministic trend ful�lling only some weak regularity

conditions	 Assume for the trend the following�

Assumption T�� �f �N��k��k�������N � N � �� is an array of real numbers for

which there exists a positive sequence pN and a function h on ��� ��� which is

not identically zero� such that for N ��

p��
N

�Nt�X

k��

f �N��k�� h�t�

and

pN

N���
� a�

��



where a � ������ We further on assume for the trend

Assumption T�� There exists a positive sequence rN � � and a number

� � b ��� such that as N ��

r��N

NX

k��

�f �N��k��� � b�

N��X

k��

jf �N��k�� f �N��k 	 
�jk��� � O�r
���
N ��

qNX

k��

jf �N��k�j� � o�rN�

for any qN � o�N��

jf �N��k�j� � O�rN�N�

for k � N and

p�N
NrN

� b� ���

Note that these trends include as well the change point model considered in

the previous section as monotonic trends� Giraitis et al� �����a� use for their

analysis the V�Sstatistic� It turns out that the V�Sstatistic rejects the null

hypothesis of a shortmemory structure of the data with a probability tending

to one� if the trend decreases with a rate higher than N�
�

� � Otherwise the

added trend has no in�uence to the test statistic� This again shows that R�S

based methods are not able to distinguish between longrange dependence

and �large� trends independently of their shape� They detect spurious long

memory�

Denote in what follows � �� a � b�h��
�� h��t� �� h�t� � th�
� and B��t� �

B�t�� tB�
� is a standard Brownian Bridge� De�ne

�s�N�q �



N

NX

j��

�Xj � �XN �
� 	 �

qNX

j��

�
�
j

�qN 	 
�
��j��


�



where ��j denote the empirical covariances�

We have the following theorem describing the behaviour of the V�S statistic�

Theorem ��� Suppose the process �Xn�n�IN is given by model ����� and as�

sumptions �T�� and �T�� for the trend hold� Let rN ��	 qN ��	 qN�N � �

and there exists the limit qNrNN
��
� c � ����	� Then

�TNUN�
��

VN
�s�N�q

d
�

R
�

�
�Za�t��

�dt� �
R
�

�
Za�t�dt�

�

V �c�
�

where

Za�t� 


��
�

�B��t� � ah��t� if a ��

h��t� if a 
�

V �c� 


��
�

�c� �� if c ��

� if c 
�

TN 


��
�

� if a ��

p�NN
�� if a 
�

UN 


��
�

� if c ��
N

qNrN
if c 
�

Proof� See Giraitis et al� ����a��

In case that the random term in ����� exhibits long�range dependence and

a deterministic trend is present the V�S�statistic tends to in�nity with the

same rate as in the short�memory case with trend� This rate is faster than

in the case of long�range dependence without deterministic trend� For the

following considerations denote with Bd�t� the fractional Brownian motion

with parameter d� In the case of long�range dependence Giraitis et al� ����b�

obtain the following behaviour for the V�S�statistic�

�
qN
N

��d
VN
�s�N�q

d
�

Z
�

�

�B�

d�t��
�dt� �

Z
�

�

B�

d�t�dt�
�� �����

��



This means that under the alternative of long�memory VN��s
�
N�q

P
�� with the

rate �N�qN �
�d�

Considering now the situation where also trends are present that is consider�

ing model ����� with Yt exhibiting long�range dependence the following result

holds�

Theorem ��� Suppose that again the series �Xn�n�IN is given by model �����

but now the Yn exhibit long�range dependence� The trend f �N��n� is assumed

to ful�ll assumptions �T�� and �T	�� Let in addition rN � �
 qN � �


qN�N � 	 and there exists the limit q���d
N rNN

��
� c� � 
	���� Then

�TNUN�
�� VN

�s�N�q

d
�

R �
� �Za�t��

�dt� �
R �
� Za�t�dt�

�

V �c��
�

where

Za�t� �

��
�

cdB
�
d�t� � ah��t� if a ��

h��t� if a ��

V �c�� �

��
�

�c� � c�d if c� ��

� if c� ��

TN �

��
�

N�d if a ��

p�NN
�� if a ��

UN �

��
�

q��d
N if c� ��
N

qNrN
if c� ��

and cd is a positive number�

Proof� See Giraitis et al� �			a��

Note that TN � UN � Za and V are di�erent than in Theorem ��� and here depend

on the memory parameter d�

	



These results generalize also the �ndings of Diebold�Inoue ������� They show

the behaviour of the variance of a process generated as in �	��� under var


ious models of structural breaks that is of shifts in the mean� The work of

Diebold�Inoue ������ in a way initialized the discussion about confusing long

range dependence and trends� But their �ndings are special cases of the more

general work of Giraitis et al� �����a�� Thus we decided to discuss only the

results of Giraitis et al� �����a� here in detail�

��� Modeling long�memory and trends

To model long
memory and deterministic trends Beran et al� ����� �schon

erschienen ����� introduced so called SEMIFAR
models� SEMIFAR
models

extend ARFIMA
models by allowing for a non
constant deterministic mean

function� In detail a SEMIFAR model is a Gaussian process Yi ful�lling the

following equation�

��B���� B��f��� B�mYi � g�ti�g � �i� �	���

where B denotes again the Backshift operator� m � f�� �g� � � ����	� ��	��

g�t� is a smooth function on ��� ��� ti �
i

n
� ��x� is a polynomial with roots

outside the unit circle de�ning the autoregressive part of the model and the

�i � N��� ��

�
� are iid random variables� This model includes long
memory�

short
memory� deterministic trends and no trends that is a constant mean� We

have short
memory if m � � and � � ����	� ��� Long
memory can be modeled

by m � � and � � ��� ��	� and for m � � we have di�erence stationary

processes that is the �rst di�erences Yi � Yi�� exhibit short
 or long
memory

respectively for � � ����	� �� and � � ��� ��	�� To each of these processes a

deterministic trend can be added� For a constant mean function we obtain a

standard ARFIMA�p� d� ��
model� Note� that SEMIFAR
models consists only

of an autoregressive part for modeling the short
term behaviour of the series

because of simplicity�

To �t a SEMIFAR
model to a series the order p of the autoregressive model�

the memory parameter d � m� � and the trend function have to be estimated

��



simultaneously� Thus before considering properties of SEMIFAR�models in de�

tail we focus on the problem of estimating the trend function� Nonparametric

trend estimation has been considered by many authors in several situations�

For an overview in the case of short�memory or independent errors see for ex�

ample Fan�Gijbels �����	� In the case of long�memory errors see for example

Cs
org
o�Mielniczuk �����	 or Beran�Feng �����	� For our purpose we describe

only the results of Beran et al� ��� ��	� Here robust kernel estimators are

considered but the results include also standard kernel smoothers� Because ro�

bustness is not the purpose of this paper we give the results for the non�robust

case� To de�ne a local polynomial estimator let K be a positive symmetric

kernel with support ���� �� and
R
�

��
K�u	du � �� In addition let t � �� �� and

b � �� �	 be a positive bandwidth� and denote by p � IN the degree of the local

polynomial� Then a local polynomial estimator of the trend function f �N��t	

is de�ned by �f �N��t	 � zT �t	 ���t	� where z�t	 � ��� t� t�� � � � � tp	 � IR
p��� and

���t	 � IR
p�� solves the system of p� � equations

�

Nb

NX
i��

K�
ti � t

b
	�Yi � zT ���t		zj�t	 � � j � � �� � � � � p� ����	

Notice that ti � i�N � In case of p � � that is local constant estimation� ����	

is the standard Nadaraya�Watson type kernel estimator� For the consideration

of the asymptotic bias and variance of local polynomials we use for simplicity

only the rectangular kernel K�u	 � �
�
�f���u��g� We have the following result�

Theorem ��� Let �� be the solution of ������ De�ne the following �p � �	 �
�p� �	 matrices� MN � �mij	i�j�������p�� with mij � Cov� ��i���t	� ��j���t			 P �

�pij	i�j�������p�� with pij �  for i� j odd and pij �

p
��j�����l���

�j�l���
for i� j even	

�ij�d	 �
q
��i� �	��l � �	 �����d�

���d�����d�	
	 Q � �qij	i�j�������p�� with

qij � �ij�d	
Z �

��

Z �

��
xi��yi��jx� yj�d��dxdy�

DN � �dij�N		i�j�������p�� with dij �  for i �� j and djj � ��Nb�j

��j���
� Then as

N ��	 b� 	 Nb��	

��Nb	��dDNMNDN � ��cfP
��QP���

��



Proof� See Beran et al� �������

For the bias we obtain�

Theorem ��� Denote with J�K� 	
R
�

��
x�p���K�

���p��x�dx� where K�

���p��x� is

the so�called equivalent kernel �see Beran�Feng �������	 Let � � � � �
�
be a

small positive number	 Then

E
 �f �N��t�� f �N��t�� 	 bp��f
�N��p����t�J�K�

k
� o�bp���

uniformly in � � t � ���	

Proof� See Beran et al� �������

Using these results we have for the asymptotic integrated mean squared error

�IMSE�

Z �

�
Ef
 �f �N��t��f �N��t���gdt � b��p��� 
f

�N��p����t���J��K�


�p� ����
��Nb��d��

Z �

�
v�t�dt������

Here v�t� denotes the limit of the variance of the local polynomial estimator�

For an explicit formula see Beran�Feng ������� The bandwidth that minimizes

the asymptotic IMSE is thus given by

bopt 	 CoptN
��d������p����d��

where

Copt 	

�
��� �d�
�p� ����

R �
� v�t�dt

��p� ��J�f �N��p����I��K�

�����p����d�

�

Here J�f �N��p���� 	
R �
� 
f

�N��p����t���dt�

Note that the formula of the asymptotic IMSE is given on the interval 
�� ���

since a local polynomial estimator adapts automatically at the boundary� For

further details concerning kernel estimators in the long�memory setup see also

Beran et al� �������

��



The memory parameter as well as the parameters of the autoregressive part in

SEMIFAR�models are estimated by Maximum Likelihood estimation� In the

case of a constant mean function Maximum Likelihood estimation of the pa�

rameters is considered in Beran ������� The same methodology can be used

also in the case of non�constant trend functions� Starting with model ���	� de�

note with �� 
 ������� d
�� ���� � � � � �

�
p�

T 
 ������� �
��T the true unknown parameter

vector� The process Yi in ���	� admits the in�nite autoregressive representation

�X

j��

aj��
���cj��

��Yi�j � g�ti�j� 
 �i� �����

Let now �bn�n�IN be a sequence of positive bandwidths with bn � � and Nbn �
� and denote withKb�y�N� �
 �

Nb

PN
i��K� t�ti

b
�Yi� where y�N� 
 �Y�� � � � � YN�

and K is a kernel� De�ne

�g�ti� �� 
 Kbn � y�N�

and

�g�ti� �� 
 Kbn �Dy�N�

with Dy�N� 
 �Y� � Y�� Y� � Y�� � � � � YN � YN���� For a chosen value of � 


���� � ��
T denote by

ei��� 

i�m��X

j��

aj����cj���Yi�j � �g�ti�j� m�

the residuals and by ri��� 
 ei����
p
�� the standardized residuals�

Note that ��i��
��� are independent zero mean normal with variance ������ an

approximate Maximum Likelihood estimator of �� is obtained by maximizing

the approximate log�likelihood

l�Y�� � � � � YN � �� 
 �
N

�
log �	 � N

�
log��� �

�

�
N��

NX

i�m��

r�i

��



with respect to �� Denote with f�x� the spectral density of the process ������

The speci�c form of the spectral density is not of interest here� It is only needed

for the asymptotic properties of the estimator� We have in detail

Theorem ��� Let �� be the Maximum Likelihood estimator of � and de�ne

��
�
	
 ������� �

�
�
�T 
 ������� �

�� ���� � � � � �
�
p���

T � This means that ��� 
 d 
 m� � ��

is replaced by ����� 
 ��� Then for N ��

��� �� converges in probability to the true value ���

��� N������ � ��� converges in distribution to a normal random vector with

mean zero and covariance matrix

� 
 D��

where

Dij 
 �����
�Z �

��

�

��i
log f�x�

�

��j
log f�x�dx

�
j����

�

�

Proof� see Beran et al� �������

To obtain an appropriate �t also the degree of the autoregressive polynomial

has to be estimated� Thus the behaviour of model choice criteria such as the

AIC has to be considered� Here the following holds	

Theorem ���� Under the assumptions of the above theorem let p� denote the

true order of � in �	�
� and de�ne

�p 	
 argmin�AIC��p�� p 
 �� �� � � � � L��

where L is a �xed integer� AIC��p� 
 N log ���� �p� � 	p and ���� �p� is the Max�

imum Likelihood estimate of the innovation variance ����� using a SEMIFAR

model with autoregressive order p� Moreover �� is the Maximum Likelihood es�

timator as de�ned above with p set equal to �p� Suppose furthermore that 	 is

at least of the order O�c log logN� for some c 
 �� Then the results of the

above theorem hold�

�



Proof� See Beran et al� �������

This theorem says that consistency and asymptotic normality of the Maximum

Likelihood estimator still hold when the autoregressive order is estimated� An

algorithm for �tting SEMIFAR models to a time series can be found in Beran

et al� �������
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