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The Advanced-Maximum-Linkage 
Clustering-Algorithm

Lars Tschiersch; Matthias Zerbst

Department of Statistics, University of Dortmund, Germany 

Abstract: The advanced maximum-linkage-algorithm (AMLA) is a derivative of the 

maximum-linkage-algorithm (MLA) given by Zerbst (2001). AMLA produces clusterings 

which have a good separation between the built classes. To reach the separation, centroids 

were calculated, which are the basis for classification. The separation between the classes is 

considered large, if this is also true for the so far calculated centroids. The selection of 

centroids having a large distance to each other is also guaranteed using the MLA. AMLA is 

improved in this way that the underlying frequency structure of the data can be adapted 

individually to the problem under consideration. Therefore an additional parameter [0, 1] 

is introduced. The parameter gives the degree to which the frequency structure is regarded. 

Introduction

This paper introduces a clustering approach. The approach is called Advanced-Maximum-

Linkage-Algorithm (AMLA). When deriving a clustering elements will be compendious

within homogeneous classes. In general the number of classes will be given. Only in rare 

cases this number is derived by the clustering algorithm itself.

Classical clustering algorithms are based upon the k-means-approach (e. g. Anderberg, 1973), 

as well as Linkage-methods (e. g. Johnson & Wichern, 1992). Even neural networks, for 

instance self-organising maps (Kohonen, 2001), are used. All this approaches have one idea in 

common. All of them pool similar elements into classes. 

A different basic approach, which guides to a clustering as well, is based on decollating 

dissimilar elements. This approach has advantages when beside homogeneity within classes a 

strictly separation of the classes is postulated. Such an approach is the maximum-linkage-

algorithm (MLA) given by Zerbst et al (2000) and Zerbst (2001). MLA produces perspicuous 

decollated classes. Moreover classes for rare elements were inspected, provided that such 

elements built an own class due to the exposed site within the feature space. 
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As Zerbst (2001) illustrates the distinctiveness of MLA consists in considering the frequency 

distribution of the elements to cluster when using a fast clustering algorithm. MLA is 

especially designed for clustering pixels if aerial photographs or satellite images using RGB-

colour format. The consideration of the frequency distribution for the elements to cluster 

when using MLA depends on a bounded feature space with a known maximum for the 

variance. When using other than RGB-data this does not hold always.

This diversification leads to the advanced-maximum-linkage-algorithm (AMLA). AMLA 

considers the frequency distribution for the elements to cluster essentially better than MLA. 

We will come back to this aspect in chapter 3. 

In chapter 1 we will have a short introduction into theory of clustering. Chapter 2 contains the 

mathematical notation of the advanced-maximum-linkage-algorithm and the presentation of 

the advantages of AMLA in comparison to MLA. Chapter 3 gives some examples which 

show the change in clustering when different weight parameters  are used. At the end we 

will give an outlook on the further research. 

1 Clustering in general 

The aim of a clustering is to divide a set of elements in single classes. Thereby elements of 

the same class should be as similar as possible. Elements of different classes should be as 

dissimilar as possible.

The formal description of a clustering is as follows: 

Let  be the feature space of elements to cluster, whereby .RI m

Let O be the set of elements to cluster nixi ,...,1, , with O . The 

cardinality of the set O is given by n.

nxx ,...,1

Let q be the a priori given number of classes. 

The clustering C(O) with elements of O is defined as 

qccOC ,...,)( 1  with qicc
iinii ,...,1,,...,1c .

ci , i = 1,…,q represents a single class of the clustering. 
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The question of how to derive a clustering depends on the users’ requirements and the initial 

situation. One has to bear in mind, that there exists no optimal clustering. Optimality of 

clustering is regarded with respect to various criterions. There exist different algorithms

which constitute clusterings in dependency on different criterions.

The usually used criterion is the intra class variance clustering criterion (ICVC = Intra-Class-

Variance-Criterion). According to this criterion, the optimal clustering is given, where the 

induced intra class variance is minimal. Bock (1998) shows, that the optimal clustering C out 

of all possible clusterings  is given by: 

q

i ck

n

j

j

i

k
OC

i

i

x
n

x
n

OC
1 21)(

11
minarg:)( .

This minimum can only be achieved by the comparison of all possible clusterings, which 

takes long computational time, even with fast computers. For this reason algorithms are used 

which give solutions in proximity to this criterion. Such an algorithm is the k-means-approach

(e.g. Hartigan, 1975). Several innovations are based upon this algorithm, such like the 

ISODATA-Program (Tou und Gonzales, 1974) or the PHASE-approach (Myers et al, 1997). 

The mentioned approaches tried to simplify the enormous computational effort. 

To derive a clustering with the k-means approach, we have to detect a set Z of q centroids 

such that 

Z = {z1,…,zq}, with zi , i = 1,…,q

holds.

The values , will classified according to the centroids znixi ,...,1, i ,

i = 1,…,q . After the classification we have a clustering with q classes. To get new centroids 

we have to calculate the mean within each class. This means will be handled as new centroids 

in a new iteration step of the algorithm.  Due to the fact that these values represent the classes, 

we are going to call them class representatives. 

A totally different cluster criterion than the ICVC is the maximum linkage-criterion (MLC). 

The criterion requires from the class representative that the minimal distance between these 

class representatives should be maximal.

First choose q centroids from the set of values to cluster, which fulfil the above condition. A 

classification with respect to calculated centroids leads us to an optimal clustering, with 

regard to this criterion. The centroids are calculated with respect to the criterion such that 
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2
,**,...,1,,...,1**,...,1

**
**1 minargmaxarg},...,1{,..., ji

jiqjirq
q xxqZxx ,

with r equal to the number of different elements of nixi ,...,1, , holds (Zerbst, 2001). 

This condition is just of formal interest. When using the MLA the values out of the set of 

values to cluster can be distinguished. The elements calculated with MLA fulfil 

approximately the condition above. Further consideration according to the MLC and the 

centroids calculated with MLA can be read by Zerbst (2001). Beside the difference between 

MLC and MLA considers MLA the frequency of the underlying elements.

2 Advanced Maximum Linkage 

The idea of advanced maximum linkage is to derive a clustering which is able to separate 

strictly between the classes. Therefore the algorithm first calculates centroids from the set of

the values to cluster. The centroids are used to classify the remaining values. The selection of 

the centroids ensures two assumptions. On the one hand the distance between the centroids 

should be as large as possible. On the other hand the frequency structure should also be taken 

into account. In highly densed areas we would like to pick more centroids then in sparsed 

densed areas.  But the sparse densed area should not be totally neglected. Especially the 

elements of those areas should be collected in separate classes because of their exposed site 

(large distances to other elements) in the feature space. 

2.1 The Advanced Maximum Linkage Algorithm (AMLA) 

The following definitions are necessary for the description of AMLA: 

Let be the feature space, which contains the elements to cluster.mRI

Let , with nxxO ,...,1 nixi ,...,1, , be the set of the values to cluster. This 

means we will cluster n elements.

The set O can be split up in r different values . Let  the corresponding 

absolute frequencies.

rxx ,...,1 rhh ,...,1

Let q be the a priori given number of classes. 
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Let  [0,1] a user specified parameter. This parameter gives the percentage of the 

frequency ( %100 ) of the data which will be considered by the clustering. For  = 0

we will not consider the frequency at all and for  = 1 the frequency is considered 

maximal.

AMLA is an iterative algorithm. Therefore describes s the iteration step. 

With respect to the above definitions we can make further definitions. 

Let the joint, relative empirical frequency ij , i, j {1,…,r} be defined as

22

1

n

hh

h

hh ji

r

k

k

ji

ij , i, j  {1,…,r}, such that 1,01;
min

2

2

,..,1

n

hk
rk

ij

Let i , i  {1,…,r} be the simple empirical frequency: 

n

h

h

h i

r

k

k

i
i

1

,  i  {1,…,r}, so that 1,01;
min

,..,1

n

hk
rk

i

The consideration of the frequency distribution is realized with a weight function f.

This function has two parameters. The first parameter is  [0,1], which gives the 

part of the frequency taken into account for calculation. The second parameter is ,

which is the joint or simple relative empirical frequency, respectively, according to the 

iteration setup. The function is given by: 

)1(,f ,   with  [0,1]  and  . 
1,

1,

s

s

i

ij

To illustrate how the function works, consider to following example.
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Example

,f interval for f 

0 1 [1 , 1] 

½ ½  + ½ [½ , 1] 

¾ ¾  + ¼ [¼ , 1] 

1
1,min

                        Tab. 1: Counter-domain of f( , ) for different ’s

The function f can be used for weighting with relative frequency in dependence on the 

parameter . As gets big the weight of different ij , i, j {1,…,r}  increases. As 

smaller  gets the weight difference will decrease. 

The algorithm works as follows:

Initialization

The user has to specify the parameters q and .

Step 1

Calculate the matrix , which contains the weighted distances of all r different values 

. For weighting use function f. That is rx,...,x 1

2,...,1
,with, jiijijrijij xxf . (2.1)

Choose the maximum of the elements from . The corresponding two values will be chosen 

as the first two centroids. The set of centroids will be marked with Z(s), where the superscript s

stands for the iteration step. The set Z(1) is given by: 

ij
rji

ji jixxZ
,...,1,

**

)1( maxarg**,,  . (2.2)

Step 2

Let R(s) and Q(s) be index sets which depend on the iteration step s. The indices of all marked

values xi* , i* {1*,…,(s+1)*} within the iteration step s be included in Q(s) : 

. The indices of the values x)s(
i

)s( ZxQi j , j {1,…,r}\ {1*,…,(s+1)*}, which are 

not marked as centroids are contained in R(s) : R(s) = {1,…,r}\ Q(s).
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Now, calculate the distances between all elements in R(s) to all elements in Q(s). These 

distances are also weighted by f . The corresponding minimum will be entered in the distance 

vector :)s(
iQ Ri,

2
min, ki

Qk
iiQ

xxf ,  i  R(s) . (2.3)

The maximum of all entries from  is chosen and the corresponding value will be 

added to the sets of centroids: 

)s(
iQ Ri,

iQ
Ri

i

ss

s

ixZZ
)(

maxarg**

)()1( . (2.4)

Step 2 will be repeated until qZ . Therefore the step will be run through (q – 2) times.

Step 3

Classify the different values  according to the calculated centroids .

After that the mean within each class is derived. When deriving the mean the empirical

frequencies of the values are taken into account, by weighting which these frequencies. The 

mean values within each class are called class representatives. These values will be needed for 

further analysis and visualization. 

rx,...,x 1 q,...,*i,x *i 1

Step 4

To judge the quality of a clustering we need some criterions. On the one hand there is the 

intra- and inter class variance. Is the intra class variance small, the class can be considered 

homogeneous. On the other hand is the average minimal distance between the class 

representatives important. The separation between the classes is better when the average 

minimal distance is large. Further information on judging the quality is given by Zerbst 

(2001).
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Type of weighting

Why do we consider the joint relative frequency in the weight function (2.1) and the simple

relative frequency in (2.3)? In principle, the frequency of centroid candidates is considered. 

Due to the fact that we judge two candidates in (2.1) we use the joint relative frequency. With

(2.3) we judge just one candidate. Therefore we consider only the simple relative frequency. 

Furthermore, there will be an additional reason not to use the joint relative frequency in (2.3). 

See the following example. Let two centroids be already calculated. Now we are interested in 

calculating a third one. Two potential candidates are possible. 

Centroid

(frequency inside) 

Candidate for centroid 

(frequency inside) 

Distance

(length outside) 12

3.1 316

K1

25
K2

Z2

15

Z1

5

The above graphic shows that the candidate K2 is no alternative to K1. This is due to the 

enormous gap between the minimum distances which are 1 for K2 and 3 for K1.

Suppose the total frequency is 100. If we consider the joint frequency we get a distance 

matrix such as in Tab. 2. If we consider the simple frequency we get a distance matrix such as 

in Tab. 3. 

joint frequency consideration 

Z1 Z2

K1 0248013
100

5
100
16 .. 07203

100
15

100
16 .

K2 02502
100
25

100
5 . 037501

100
15

100
25 .

Tab. 2: Matrix to calculate iQ with respect to the joint

frequency.

The grey coloured cells shows the results of the Minimum build over rows. After building the 

maximum we choose the candidate K2. But candidate K2 isn’t good enough, because of the 
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above mentioned reasons. Even when we consider the frequency of the values, the maximal

minimal distance is essential for clustering. This is not reached when using the joint 

frequency. Then K2 is chosen, which has a minimal distance of 1. If we choose K1 instead we 

have a minimal distance of 3. Tab. 3 shows that this doesn’t happen when considering only 

the simple frequency, due to not using the frequency at all in the step where the minimum is 

derived.

simple frequency

Z1 Z2

K1 496013
100
16 .. 502

100
25 .

K2 4803
100
16 . 2501

100
25 .

Tab. 3: Matrix to calculate iQ with simple frequency.

When building the maximum now, the “right“ candidate K1 will be chosen. We calculate the 

minimum independently of the frequency. After this calculation the frequency we‘ll be taken 

into account as well. The idea behind this strategy is that the absolute maximum wouldn’t be 

reached by this procedure, but this is acceptable if a greater set of values (larger frequency) is 

represented. The frequency of the centroids calculated so far will not be considered.

2.2 Differences between AMLA und MLA 

The substantial difference between AMLA and MLA is based in whether considering the 

frequency or not. When using AMLA, the frequency is taken into account in dependence of 

the parameter when we going to calculate the weighted differences via (2.1) and (2.3). The

parameter allows to fit the weights individually to the underlying problem. Where as when 

using MLA the desired set of centroids consists of two different sub sets. One sub set is 

derived without considering any frequency. The other sub set is derived with the distances 

from (2.1) or (2.3) weighted with the absolute frequencies of the data values. The cardinality 

of both sub sets depends on the total variance of the dataset (Zerbst, 2001). The number of 

weighted centroids, in the case of 24-bit-RGB-colorvalues, is given by 

2
1

275.48768
sin,

q
qgW  with 

n

i k

n

j

jkik x
n

x
n 1

3

1

2

1

11
.
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The amount of unweighted centroids is given by q,gqq,g WUW .

The selection of centroids with respect to the weighting is given by 

2
,)( jiijijijh xxh  ,   i, j = 1,...,r ,

with hij = hi + hj ,  i, j = 1,…,r , instead of (2.1). Analogous we get for (2.3)

RiPPh ki
Qk

ihiQ ,min
2

.

When we choose unweighted centroids (2.1) changes to 

 = ( ij ),
2jiij xx  ,   i, j = 1,...,r  , 

and (2.3) to 

Ri,xxmin ki
Qk

iQ 2
.

The advantages of AMLA against MLA can be summarized as follows: 

1. When using AMLA, the centroids are calculated with one formula.

2. The derived cardinalities gW( ,q) and gUW( ,q) by MLA correspond to the parameter

of AMLA. Hence, the adjustability of the weights is only given when using AMLA. 

3. Both centroid calculating methods of MLA can be found in AMLA as well. A choice 

of centroids without weighting corresponds to the case where  = 0. A choice of 

centroids with weighting corresponds to the case where = 1. Hence, in MLA two 

sets of centroids are calculated with extreme weighting. But better results can be 

achieved by using AMLA for calculating centroids with no extreme parameter for 

(see chapter 3).
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3 Example on the capacity of AMLA

To demonstrate how AMLA works and showing the competitiveness we are going to cluster 

the pixel of an image. Exemplary we choose an image from a farming study in West Africa. 

The study was supported by the Collaborative Research Centre „Adapt farming in West

Africa“ (SFB 308) of the German research foundation (DFG). The image was made with a 

captive balloon (dragon) close to the township of Chikal (3°26‘E, 14°14‘N) in the western 

part of the Sahelstate Niger (Gérard et al, 1997). The following image contains 393216 Pixel 

and 8730 different colours.

Fig. 1: Aerial photograph close to the township of  Chikal (3°26‘E, 14°14‘N), 

western Niger. 

We are going to cluster the different colours values of such images. In each class the mean is 

calculated. These mean values will be marked as class representatives, which will be used 

further for represent such an image. Thus, images similar to thematic maps arise. Those 

images give valuable information to ecological experts. 

In this example we are going to reduce the number of classes with AMLA from 7830 to 25.

11



Fig. 2: Image based on class representatives derived from Fig. 1 with 25 classes.

To judge the quality of a clustering we need some criteria and the visualization of the class 

representatives in the feature space. The main criterion to judge the quality of clustering is the 

intra class variance (Bock, 1998). With this criterion we can assess how homogenous the 

classes are. If the intra class variance is small, we consider the clustering as good with respect 

to this criterion. But we also need to take into account the selectivity between the classes. This 

criterion is based on the distances between all centroids to the next nearest centroid. This 

leads us to the average minimal distance criterion (Zerbst, 2001). To see how the new 

parameter  works we made some clusterings. The number of classes is set to 25. The 

parameter  will be vary. 

SSW AvgMinDist

0 – 0.9 68.4 548.91

0.95 73.6 643.96

0.99 73.6 643.96

0.999 65.5 592.10

0.9999 37.1 511.63

0.999925 35.0 495.52

0.99995 31.1 509.40

0.999975 26.6 488.23

0.99998 24.6 504.70

0.999985 23.8 538.05

0.99999 24.8 548.18

0.999999 24.0 1313.54

0.9999999 24.0 1313.54

 0.99999999 23.0 1223.00

Parameters of the clustering with

AMLA by 25 classes and several

different .

Tab. 4:
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As seen from Tab. 4 there are no essential differences, when the parameter varies between 0

and 0.9. That means that the frequency wouldn’t be used at all in this image clustering. Even 

for between 0.95 and 0.99 the results are substantial the same. At least in the area between 

0.9999 and 1 there will be observable different results.

The intra class variance varies between 23.0 and 73.6. In comparison with the total variance 

of 797.6 comes this criterion to the conclusion to judge all clusterings as “good“. Even if the 

difference is not large we can see the following: As becomes large, the intra class variance 

becomes small. The average minimal distance (AvMiDi) varies between 495.52 and 1313.54. 

This criterion tends to larger values if the frequency is considered, but the values seem not 

strongly be linked to as the intra class variance. For different we get greater differences by 

the AvMiDi than by the intra class variance. Further interpretation can be read by Zerbst 

(2001). We can’t make any conclusions from the determined table values. If necessary we can 

detect a trend, how different values of influence the clustering. For this reason we‘ll  have a 

look on the visualization of the class representatives in the feature space. 

Fig. 3.a: Centroids of the Clustering of Fig. 1

                 with  (0.0 ; 0.9) 

Fig. 3.b: Centroids of the Clustering of Fig. 1

                 with  (0.95 ; 0.99)

Fig. 3.a: Centroids of the Clustering of Fig. 1 

                 with  = 0.999 

Fig. 3.a: Centroids of the Clustering of Fig. 1

                 with  = 0.9999 
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Fig. 3.c: Centroids of the Clustering of Fig. 1 

                 with  = 0.999925 

Fig. 3.d: Centroids of the Clustering of Fig. 1

                 with  = 0.99995 

Fig. 3.e: Centroids of the Clustering of Fig. 1 

                 with  = 0.999975 

Fig. 3.f: Centroids of the Clustering of Fig. 1 

                with  = 0.99998 

Fig. 3.g: Centroids of the Clustering of Fig. 1 

                 with  = 0.999985 

Fig. 3.h: Centroids of the Clustering of Fig. 1 

                 with  = 0.99999 
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Fig. 3.i: Centroids of the Clustering of Fig. 1 

                with  (0.999999 ; 0.9999999) 

Fig. 3.j: Centroids of the Clustering of Fig. 1 

                with  0.99999999 

The consequence of different values for  can be seen in Fig. 3.a – Fig. 3.j. Fig. 3.a to Fig. 3.e 

shows how the centroids are “pressed“ towards the line between the points (0,0,0) and 

(255,255,255). On reason is that most of the frequent data values lie on this line. Values 

different from this line are much more rare. Fig. 3.f to Fig. 3.j show the “pressed“ effect going 

on. Additionally the segment line where all centroids lie shrinks from (45,25,40) -

(175,155,115) to (100,100,50) - (175,150,100). All centroids chosen from a clustering with 

= 1 show large frequency values.

4 Summary and outlook 

The described advanced maximum linkage algorithm and the postulated examples show to 

following results. 

1. AMLA is superior to MLA. Results produced with MLA can be reproduced with AMLA 

easily.

2. AMLA doesn’t consider frequency only theoretical but practical as well. The example

shows intuitively how different considerations of the frequency of data influence the 

clustering. That implies that the frequency has a big influence on clustering. 

At the end there are a couple of questions about the how the frequency should be taken into 

account. Why are the results of AMLA the same for  between 0 and 0.95? Why are there 

substantial differences for values of  between 0.9999 and 0.99999999? Does this effect 

depend on the example?

This question has to be clarified in further work. 
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