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Abstract

In the common nonparametric regression model with high dimensional predictor several

tests for the hypothesis of an additive regression are investigated� The corresponding test

statistics are either based on the di�erences between a �t under the assumption of additivity

and a �t in the general model or based on residuals under the assumption of additivity� For all

tests asymptotic normality is established under the null hypothesis of additivity and under
�xed alternatives with di�erent rates of convergence corresponding to both cases� These

results are used for a comparison of the di�erent methods� It is demonstrated that a statistic

based on an empirical L� distance of the Nadaraya Watson and the marginal integration

estimator yields the �asymptotically	 most e
cient procedure� if these are compared with

respect to the asymptotic behaviour under �xed alternatives�

AMS Subject Classi�cation� ��G��� ��G	�
Keywords and Phrases� Additive models� dimension reduction� test of additivity� marginal inte

gration estimate

� Introduction

Consider the common nonparametric regression model

Y � m�X � ��X��	�	

where X � �X�� � � � � Xd
T is a d
dimensional random variable� Y is the real valued response�

� denotes the real valued error �independent of X with mean � and variance 	� and m� � are
unknown �smooth functions� Much e�ort has been devoted to the problem of estimating the
regression function m� While for a one dimensional predictor nonparametric methods as kernel

	



or local polynomial estimators have become increasingly popular� the regression in the case of
a high dimensional predictor cannot be estimated e�ciently because of the so
called curse of
dimensionality�
For this reason many methods of dimensionality reduction have been proposed in the literature
�see e�g� Friedman and Stuetzle �	��	� Li �	��	�� Buja� Hastie and Tibshirani �	��� and Hastie
and Tibshirani �	��� promoted the additive regression model

H� � m�x � C �
dX

���

k��x��	��

where k�� � � � � kd are unknown smooth functions normalized by E�k��X�� � � and x � �x�� � � � � xd
T �

A theoretical motivation for this model is that under the assumption of additivity the regression
can be estimated with the same rate of estimation error as in the univariate case �see Stone �	�����
Buja� Hastie and Tibshirani �	��� proposed the back�tting� where the idea is to project the data
on the space of additive functions� Basically this method estimates the orthogonal projection of
the regression function m�� onto the subspace of additive functions in the Hilbert space induced
by the density of the predictor X� The asymptotic properties of a related back�tting procedure
have been recently analyzed by Opsomer and Ruppert �	��� and Linton� Mammen and Nielsen
�	���� Because of the implicit de�nition of these estimates several authors have proposed a direct
method that is based on marginal integration �see e�g� Tj�stheim and Auestad �	���� Tj�stheim
�	���� Linton and Nielsen �	��� or Chen� H�ardle� Linton and Severance
Lossin �	���� This
method does not require an iterative solution of a system of nonlinear equations and yields an
alternative projection onto the subspace of additive functions which is not necessarily orthogonal�
Because the additive structure is important in terms of interpretability and its ability to deliver
fast rates of convergence in the problem of estimating the regression� the additive model �	��
should be accompanied by an adequate model check� Although early work dates back to Tukey
�	���� the problem of testing additivity has only found recently interest in the literature �see
e�g� Hastie and Tibshirani �	���� Barry �	��� or Eubank� Hart� Simpson and Stefanski �	����
Sperlich� Tj�stheim and Yang �	���� Linton and Gozalo �	�����
As diverse as this literature appears all proposed methods have one thing in common� they all test
what they actually should not� namely that the preassigned additive model is NOT valid� Various
authors argue that� even if the null hypothesis �	�� is accepted with a rather large p
value� there
need not be any empirical evidence for the additive model �see Berger and Delampady �	��� or
Staudte and Sheater �	����� These authors point out that often it is preferable to reformulate the
hypothesis �	�� in a testing problem� which allows the experimenter to show that m is �close� to
additivity at a controlled error rate� In other words� if M� is a measure of additivity �i�e� M� � �
if H� is valid it is proposed to reformulate the hypothesis �	�� into

H� � M
� � � H� � M

� � ��	��

where � is a given su�ciently small constant such that the experimenter agrees to analyze the
data under the assumption of additivity� whenever M� � �� From a mathematical point of view
this approach requires the determination of the distribution of an appropriate estimator for M�

not only under the classical null hypothesis �	�� �M� � � but also at any point of the alternative
�M� � ��

�



In this paper we investigate several tests for the hypothesis of additivity which are based on kernel
methods� For the sake of simplicity we will mainly concentrate on a U
statistic formed from the
residuals from a marginal integration �t �see also Zheng �	���� who used a similar idea for testing
a parametric form of the regression� and we prove asymptotic normality of the corresponding
test statistic under the null hypothesis of additivity and �xed alternatives with di�erent rates
of convergence corresponding to both cases� The results are then extended to several related
concepts of testing model assumptions proposed in the literature �see Gonz�alez Manteiga and Cao
�	���� Dette �	��� and Gozalo and Linton �	����� The main di�erence between our approach
and the work of the lastnamed authors is that we are able to �nd the asymptotic properties of
the tests under any �xed alternative of non
additivity� We will demonstrate at the end of Section
� that these results can be used for the estimation of the type II error of the test for the classical
hypothesis �	�� and for testing the precise hypotheses of the form �	��� As a further application
we identify a most e�cient procedure in the class of tests based on the kernel method by looking
at the asymptotic distribution under any �xed alternative� In Section � we give a motivation of
the test statistic� while the main results are given in Section �� which includes the corresponding
results for several related tests� Finally� some of the proofs� which are rather cumbersome� are
deferred to the appendix�

� Marginal integration revisited

Let f denote the density of the explanatory variable X � �X�� � � � � Xd
T with marginal dis


tributions f� of X� � � � 	� � � � � d� For a d � dimensional vector x � �x�� � � � � xd let x�
be the �d � 	 � dimensional vector obtained by removing the �
th coordinate from x� i�e�
x� � �x�� � � � � x���� x���� � � � � xd� If L

�
add denotes the subspace of additive functions in the Hilbert

space L��f we consider the projection P� from L��f onto L�
add de�ned by

m��x � �P�m�x �
dX

���

m��x�� �d� 	c���	

where

m��x� �

Z
m�x�� x�f��x�dx� �

Z
m�x�� � � � � x���� x�� x���� � � � � xdf��x�dx������

c �

Z
m�tf�tdt�����

Here we used the notation

f��t� �

Z
f�t�� � � � � t���� t�� t���� � � � � tddt�

and write in ���� with some abuse of terminology x � �x�� x� to highlight the particular coordi

nate x�� The representation ���	 can be rewritten as

m��x � C �
dX

���

k��x�

�



where

C � c�
dX

���

f
Z

m�t�� t�f��t�f��t�dt�dt� � cg

and

k��x� � m��x��
Z

m�t�� t�f��t�f��t�dt�dt�

which corresponds to the normalization given in Section 	� Note that P� is not necessarily an
orthogonal projection with respect to the Hilbert space L��f� where f is the joint density of
X� However� one easily veri�es that it is an orthogonal projection in the case of independent
predictors�

Unless it is not mentioned di�erently let Ki�� �i � 	� � denote one � and �d� 	 � dimensional
Lipschitz � continuous kernels of order � and q � d� respectively� with compact support and de�ne
for a bandwidth hi � �� t� � IR� t� � IRd��

Ki�hi�ti �
	

hi
Ki�

ti
hi
 i � 	� ������

For an i�i�d� sample �Xi� Yi
n
i��� Xi � �Xi�� � � � � Xid

T we consider the empirical counterparts of the
components of m� in ���	� i�e�

 m��x� �
	

n�

nX
k��

nX
j��

K��h��Xj� � x�K��h��Xj� �Xk�

 f ����x�� Xk�
� Yj����

 c �
	

n

nX
j��

Yj����

where

 f ����x�� x� �
	

n

nX
i��

K��h��Xi� � x�K��h��Xi� � x�����

is an estimator of the joint density of X� Note that

 m��x� �
	

n

nX
j��

!m����x�� Xj�

where

!m����x�� x� �
�
n

Pn
j��K��h��Xj� � x�K��h��Xj� � x�Yj

 f ����x�� x�
����

is the Nadaraya
Watson estimator at the point �x�� x� �see Nadaraya �	��� or Watson �	�����
The marginal integration estimator of m� � P�m is now de�ned by

 m��x �

dX
���

 m��x�� �d� 	 c�����

�



and the corresponding residuals are denoted by  ej � Yj �  m��Xj �j � 	� � � � � n� As a �rst test
statistic we consider the U
statistic

T��n �
	

n�n� 	

X
i��j

Lg�Xi �Xj ei ej	�Xi	�Xj����	�

where L is a d
dimensional symmetric kernel of order � with compact support� Lg�� � �
gd
Lg�

�
g
� g �

� an additional bandwidth and 	 a given continuous weight function� We note that this type of
statistic was originally introduced by Zheng �	��� in the problem of testing linearity of the
regression and independently discussed by Gozalo and Linton �	��� in the problem of testing
additivity in a more general context� A theoretical justi�cation for the application of this statistic
for testing additivity will be given in Section �� For a heuristic argument at this point we replace
the residuals  ei by "�Xi � m�Xi �m��Xi in T��n and obtain from results of Hall �	��� that
in this case the corresponding statistic

V�n �
	

n�n� 	

X
i��j

Lg�Xi �Xj"�Xi"�Xj	�Xi	�Xj���		

converges with limit

E�V�n� �

Z
Lg�x� y"�x"�yf�xf�y	�x	�ydxdy���	�

�

Z
�m�x�m��x�

�f ��x	��xdx � o�	�

For this reason a test of the classical hypothesis of additivity can be obtained by rejecting �	��
for large values of T��n�

There are several alternative ways of de�ning an appropriate statistic for the problem of testing
additivity� that is

T��n �
	

n

nX
i��

�  m�Xi�  m��Xi�
�	�Xi

T��n �
	

n

nX
i��

 ei�  m�Xi�  m��Xi�	�Xi���	�

T	�n �
	

n

nX
i��

� e�i �  d�i �	�Xi

In ���	�  m is the Nadaraya � Watson estimator with kernel L and  di � Yi �  m�Xi denotes
the corresponding residual� The estimate T��n compares a completely nonparametric �t with the
marginal integration estimate and extends concepts of Gonz�alez Manteiga and Cao �	��� and
H�ardle and Mammen �	��� to the problem of testing additivity� T	�n is essentially a �weighted
di�erence of estimators for the integrated variance function in the additive and nonrestricted
model� This concept was �rstly proposed by Dette �	��� in the context of testing parametric
structures of the regression function �see also Azzalini and Bowman �	��� for a similar statis

tic based on residuals�� Finally� the statistic T��n was introduced by Gozalo and Linton �	���
motivated by Lagrange Multiplier tests of classical statistics�

�



In the following section we investigate the asymptotic behaviour of these statistics under the
hypothesis �	�� and �xed alternatives� We note that the asymptotic results under the null hy

pothesis of additivity have been independently found in a slightly more general context by Gozalo
and Linton �	��� using di�erent techniques in the proofs� It is the main purpose of the present
paper to show that the asymptotic behaviour of the statistics T��n 
 T	�n under �xed alternatives
is rather di�erent and to demonstrate potential applications of such results�

� Main results and a comparison

We still start with a detailed discussion of the asymptotic behaviour of the statistic T��n and its
consequences for the problem of testing additivity� Afterwards the corresponding results for the
statistics T��n� T��n� T	�n will be brie#y stated and a comparison of the di�erent methods will be
performed� In order to state and prove our main results we need a few regularity assumptions�

�A�� The explanatory variable X has a density f supported on Q � ��� 	�d� f is bounded from
below by a positive constant c � � and has continuous partial derivatives of order q � d�

�A�� m � Cq
b �Q� where Cq

b �Q denotes the class of bounded functions �de�ned on Q with con�
tinuous partial derivatives of order q�

�A�� � � Cb�Q where Cb�Q denotes the class of bounded continuous functions �de�ned on Q�

�A	� The distribution of the error has a �nite fourth moment
 i�e� E��
� 
��

�A�� The bandwidths g� h�� h� � � satisfy �as n��

h� � n����� hq� � o�h���
logn

nh�h
d��
�

� o�h��� gd � o�h��� ngd ���

Note that the optimal order for a two times continuously di�erentiable regression function
h� � n���� in �A� requires q � d� 	 in order to ful�ll

hq� � o�h�� and
logn

nh�h
d��
�

� o�h��

simultanuously� Our �rst result speci�es the asymptotic distribution of the statistic T��n under
the null hypothesis of additivity�

Theorem ���� If assumptions �A�� � �A�� and the hypothesis of additivity are satis�ed
 then the
statistic T��n de�ned in ������ is asymptotically normal distributed
 i�e�

ng
d
�T��n

D�� N ��� ������	

where the asymptotic variance is given by

��� � �

Z
L��xdx

Z
�
�x	��xf ��xdx����

�



and L is the d�dimensional kernel used in the de�nition of T��n�

Note that Theorem ��	 has been found independently by Gozalo and Linton �	��� and provides
a test for the hypothesis of additivity by rejecting H� for large values of T��n� i�e�

ng
d
�T��n � u��� ���n����

where u��� denotes the �	�� quantile of the standard normal distribution and  ���n is an appro

priate estimator of the limiting variance ����� A simple estimator could be obtained by similar
arguments as given in Zheng �	���� i�e�

 ����n �
�

n�n� 	

nX
i��

X
i��j

L�
g�Xi �Xj e

�
i  e

�
j	�Xi	�Xj�

Our next result discusses the asymptotic behaviour of the statistic T��n under a �xed alternative
and proves � as a by
product � consistency of the test ����� On the other hand it also provides an
interesting possibility of an alternative formulation of the classical hypothesis of additivity� which
will be described at the end of this section�

Theorem ���� If assumptions �A��  �A�� are satis�ed and the regression is not additive
 i�e�
" � m� P�m 	� �� then p

nfT��n � E�T��n�g D��N ��� ��
�����

where
E�T��n� � E

�
"�	�f �X�

�� �E
�
"	�f �X� � b �X�

� � h�� � o
�
h��
�
�O�g������

b�x �
Pd

��� b��x� with

b� �x� � c� �K�

Z �	
�

�m

x��
�

	

f

f

x�

m

x�

�
�x�� t� f� �t� dt������

c� �K� �
R
t��K��t�dt� and the asymptotic variance is given by

��
� � �E����X�fP��"	

�f�X�g������

� �V
h
�"�	�f�X�� E

�
"	�f�X�f

dX
���

m�X��� X��� �d� 	m�X�g j X�

�i

P�m � m� P �
�m and the mapping P �

� is de�ned by

P �
� g�x �

dX
���

f��x�

f�x

Z
�gf�x�� t�dt� � �d� 	

Z
�gf�tdt�����

Remark ���� Note that the mapping P �
� de�ned in ���� is not a projection on the space of

additive functions� In the case of independent predictors one easily shows P �
� � P�� Moreover� if

additionally the weight function is given by 	 � �p
f
� the asymptotic variance in ���� simpli�es to

�



��
� � �E����X�"

��X�� � �V �"��X��

where " � m�m��

Remark ���� A careful analysis of the proof of Theorem ��� shows �see also Chen� H�ardle� Linton�
Severance�Lossin �	��� that for a su�ciently smooth regression and kernels L and Ki� i � 	� �
of su�ciently high order we have

E�T��n� � E�"��X��	
�f�X�� � o�

	p
n


where the termM� �� E�"��X��	
�f�X�� on the right hand side serves as a measure of additivity�

In this case Theorem ��� provides an interesting advantage to many of the commonly applied
goodness
of
�t tests which will be explained in the following� It is well known that for model
checks the type II error of a test is more important than the type I error� because� in the case of
acceptance of the null hypothesis� the subsequent data analysis is adapted to the assumed model�
From Theorem ��� we obtain as an approximation for the probability of the type II error of the
test ����

P ��rejection� 
 $�
p
n
M�

��

� u���p
ngd

��
��

�

where u��� is the �	 � � quantile of the standard normal distribution� On the other hand� the
result can also be used for testing precise hypotheses �see Berger and Delampady �	���� of the
form

H� � M
� � � H� � M

� � �

where � is a given su�ciently small constant for which the experimenter agrees to analyze the
data in the additive model� An asymptotic level � test is given by rejecting the null
hypothesis
H� � M

� � � if p
n�T��n � � � u� ���

where  ��
� is an appropriate estimator of the asymptotic variance in Theorem ���� This formulation

allows to test that the model is �close� to additivity at a controlled error rate� We �nally note
that Theorem ��� could also be used for the construction of con�dence intervals for the measure
of additivity M��

Theorem ���� Assume that �A��  �A�� are satis�ed and T��n� T��n� T	�n are de�ned in �������

�i� Under the hypothesis of additivity we have

ng
d
�fTj�n � EH�

�Tj�n�g D��N ��� ��j � j � 	� � � � � �

where

B� � EH�
�T��n� �

	

ngd

Z
L��xdx

Z
���x	�xdx� o�

	

ng
d
�

�

B� � EH�
�T��n� �

	

ngd
L��

Z
���x	�xdx� o�

	

ng
d
�

�

B	 � EH�
�T	�n� �

	

ngd
��L���

Z
L��xdx

Z
���x	�xdx � o�

	

ng
d
�



�



and

��� � �

Z
�
�x	�xdx

Z
�L � L��xdx�

��� � �

Z
�
�x	�xdx

Z
L��xdx�

��	 � �

Z
�
�x	�xdx

Z
��L� �L � L��xdx

where f � g denotes the convolution of the functions f and g�

�ii� If the regression is not additive
 i�e� " � m�m� 	� �
 then

p
nfTj�n � EH�

�Tj�n�g D��N ��� ��
j � j � 	� � � � � �

where

EH�
�T��n� � B� � �� � ��� � ����

EH�
�T��n� � B� � �� � ��� � ���

EH�
�T	�n� � B	 � �� � ����

�� � E��"�	�X���

�� � E��"	�X�b�X�� � h�� � o
�
h��
�
�

�� � E��"	�X�bNW �X�� � g� � o
�
g�
�
�

b is de�ned in Theorem ���
 bNW is the bias of the NadarayaWatson estimate
 the asymp�
totic variances are given by

��
j � �E����X�fP��"	�X�g��

� V
h
�"�	�X�� �E

�
"	�X�f

dX
���

m�X��� X��� �d� 	m�X�g j X�

�i

�j � 	� � � � � � and the mapping P� is de�ned in Theorem ����

In the remaining part of this section we will use Theorem ��� and ��� to compare the tests of
additivity induced by the statistics Tj�n �j � �� � � � � �� For the sake of a transparent presentation
we assume for this comparison a su�cient smoothness for the regression and su�ciently large
order for the kernel� such that the asymptotic bias of Tj�n under a �xed alternative is given by

EH�
�Tj�n� � M�

j �Bj � o�
	p
n
 j � �� � � � � �

where B� � �� B�� B�� B	 are de�ned in Theorem ����

M�
� � E�"��X��	

�f�X���

M�
j � E�"��X�	�X�� �j � 	� � � � � ��

�



In this case the probability of rejection is approximately given by

P ��rejection� 
 $
� 	

�j
fpnM�

j �
u����jp

ngd
g
�

�j � �� � � � � ������

where �j� �j �j � �� � � � � � are de�ned in Theorem ��	� ��� and ���� respectively� From this
representation we see that in general� there is no clear recommendation for one of the statistics
Tj�n The appropriate choice of a test depends sensitively on the relation between variance function
�� weight function 	� regression m and alternative "� A fair comparison seems to be possible by
adjusting with respect to the measure of additivity� This can be done by replacing the weight
function 	 in T��n by �p

f
�in practice an estimator of f has to be used� which gives

M�
j � E�"��X�	�X�� �j � �� � � � � �

and �by the de�nition of ��
j in Theorem ��� and ���

��
� � ��

j �j � 	� � � � � �����	�

Looking at the dominating term in ���� we thus obtain that �asymptotically tests based on the
statistics Tj�n �j � 	� � � � � � will be more powerful than the test based on the statistic T��n� We
note� however� that for realistic sample sizes this improvement will only be substantial� if the
variance function is �small� compared to the deviation " of the additive approximation from
the model� For a comparison of the remaining statistics observe that for the corresponding tests
the terms with factor

p
n in ���� are identical and consequently� a most e�cient procedure is

obtained by minimizing the variance ��j of the asymptotic distribution under the null hypothesis
of additivity� This comparison coincides with the concept of considering local alternatives which
converge to the null hypothesis at a rate �ng

d
� �

�

� � The following Lemma shows� that the statistics
T��n and T��n should be prefered to T	�n with respect to this criterion� This result was also
conjectured by Gozalo and Linton �	��� without a proof� A rigorous derivation will be given at
the end of the appendix�

Lemma ��� If K is an arbitrary density we haveZ
�K �K��xdx �

Z
K��xdx �

Z
��K �K �K��xdx���		

or equivalently
��� � ��� � ��� � ��	

We �nally note that the arguments in favour of T��n and T��n are only based on the discussion
of the asymptotic variances� which is correct from an asymptotic point of view� For realistic
sample sizes� however� the bias has to be taken into account� Here we observe exactly the opposite
behaviour� namely that the statistic T��n is preferable because its standardized version has no bias
converging to in�nity�

Remark ��	� Note that Gozalo and Linton �	��� study the asymptotic distribution of the
statistics T��n�T	�n under the null hypothesis of additivity in the context of generalized nonpara

metric regression models including discrete covariates� The results of the present paper can also

	�



be extended to this more general situation at the cost of some additional notation� For the sake
of a simple notation we did not formulate the results in full detail� but indicate the generalization
of Theorem ��	� ��� in the situation of a known link function as considered in Linton and H�ardle
�	���� In the nonparametric regression model

E�Y jX � x� � m�x

we are interested in testing the hypothesis

HG
� � G�m�x � C �

dX
���

k��x�

where G is a given link function� The de�nition of the marginal integration estimator of m is
straight
forward �see e�g� Linton and H�ardle �	����� To be precise let

!m��x� �
	

n

nX
i��

G� !m����x�� Xi�

denote the estimator of Z
G�m�x�� x�f��t�dt�

where !m��� is de�ned in ����� Furthermore let

 c �
	

d

dX
���

	

n

mX
i��

G
�
!m����Xi�� Xi�

�

denote an estimator of
R
G�m�xf�xdx� De�ning

bm��x �
dX

���

!m��x�� �d� 	 c

the marginal integration estimator of the regression function m is obtained as

bm�x � F �bm��x���	�

where F � G�� is the inverse of the link function� The statistic T��n is now exactly de�ned as in
���	� �with residuals obtained from ���	�� and under the hypothesis HG

� and certain regularity
assumptions for the link function �see e�g� Linton and H�ardle �	��� or Gozalo and Linton �	����
Theorem ��	 remains valid� On the other hand� under a �xed alternative

p
n�T��n � E�T��n� is

asymptotically normal where the asymptotic variance is given by

��
� � �E����X�P

G
� �"	��X��

� �V
h
�"	��X�f�X�� E

�
�"	�f�X�f

dX
���

G�m�X��� X��� �d� 	G�m�X�gjX�

�i

		



where ���x � V �Y jX � x� denotes the conditional variance of the response� " � m � Fm��
m� � P� � G � m� P� is the projection de�ned in ���	� PG

� � I � PG
� and the mapping PG

� is
de�ned by

�PG
� g�x � G��m�x

n dX
���

f��x�

f�x

Z
�gf�x�� t�F

��m��x�� t�dt�

��d� 	

Z
�gf�tF ��m��tdt

o
�

The proof of this result follows essentially the steps given in the appendix� observing that for a
smooth link function the residuals are given by

Yi � bm�Xi � Yi �m�Xi �m�Xi� F �m��Xi� fF �  m��Xi� F �m��Xig

 Yi �m�Xi � "�Xi� F ��m��Xif  m��Xi�m��Xig�

Therefore in the analysis of the statistic T��n the terms V��n� V
n� V�n �see the proof in the appendix�
are treated exactly in the same way as for G�x � x� For the remaining terms one uses a careful
analysis of the proof in the appendix and a further Taylor expansion of  m��Xi �m��Xi which
yields the additional terms G��m�X� in the asymptotic variance�

A Proofs

For the sake of a transparent notation we consider the case d � �� In addition we use 	�x  	
as weight function� the general case is treated exactly in the same way� Because all results are
essentially proved similary� we restrict ourselves to a proof of the asymptotic behaviour of the
statistic T��n �that is Theorem ��	 and ����

A�� Proof of Theorem ���

Observing that under the hypothesis of additivity m� � P�m � m we obtain from �	�	 the
decomposition  ej � ��Xj�j � ��Xj� ��x �  m��x�m��x and

T��n � V�n � �V�n � V	n�A�	

where

V�n �
	

n�n� 	

X
i��j

Lg�Xi �Xj��Xi��Xj�i�j�A��

V�n �
	

n�n� 	

X
i��j

Lg�Xi �Xj��Xi�i��Xj�A��

V	n �
	

n�n� 	

X
i��j

Lg�Xi �Xj��Xi��Xj��A��

The �rst term can be treated as in Zheng �	��� using the results of Hall �	��� and we obtain

ngV�n �N ��� ����A��

	�



where the variance ��� is de�ned in ����� The estimation of the remaining terms is more delicate�
With the notation � �x � �� �x� � �� �x�� �� where

�r �xr � bmr �xr�mr �xr � r � 	� � � �� �
	

n

nX
k��

Yk � c�A��

we derive the decomposition
V�n � V

���
�n � V

���
�n � V

���
�n

where

V �r�
�n �

	

n �n� 	

nX
i��

X
j ��i

Lg �Xi �Xj� �Xi �i � �r �Xjr � r � 	� �

and

V
���
�n �

	

n �n� 	

nX
i��

X
j ��i

Lg �Xi �Xj � �Xi �i � ���

At �rst we will show that

V �r�
�n � OP �

	

nh�
 � r � 	� ��

Obviously it su�ces to treat the case r � 	 � Recalling the de�nition ���� we rewrite bm� �x� as

bm� �x� �
	

n�

nX
k��

nX
l��

w
���
kl �x� � Yl

where

w
���
kl �x� �

K��h� �Xl� � x�K��h� �Xl� �Xk�bf ��� �x�� Xk�
�A��

and bf ��� is de�ned in ����� Observing that

m� �x� �
	

n

nX
k��

m �x�� Xk� �O
�r log logn

n

�
P � a�s�

�by the law of the iterated logarithm we get �note that �
n

Pn
l��w

���
kl �x� � 	

�� �x� �
	

n�

nX
k��

nX
l��

w
���
kl �x� � � �Xl �l

�
	

n�

nX
k��

nX
l��

w���
kl �x� � �m �Xl�� Xl��m �x�� Xk� �O

�r log logn

n

�
�A��

and
V

���
�n � �V

�����
�n � V

�����
�n �	 � oP �	

	�



where

V �����
�n �

	

n	 �n� 	

nX
i�k�l��

X
j ��i

Lg �Xi �Xj � �Xi �iw
���
kl �Xj� � � �Xl �l

V
�����
�n �

	

n	 �n� 	

nX
i�k�l��

X
j ��i

Lg �Xi �Xj � �Xi �iw
���
kl �Xj� � �m �Xl�� Xl��m �Xj�� Xk� �

Computing the expectation of the �rst term we obtain

E�V
�����
�n  �

	

n	 �n� 	

nX
i��

X
j ��i

nX
k��

E�Lg �Xi �Xj �
� �Xiw

���
ki �Xj��

Now� by de�nition �A��

E�w
���
ki �Xj� j Xi� Xj � K��h� �Xi� �Xj�E

�K��h� �Xi� �Xk�bf ��� �Xj�� Xk�
j Xi� Xj

�

� K��h� �Xi� �Xj�E
�K��h� �Xi� �Xk�

f �Xj�� Xk�
j Xi� Xj

�
�	 � o �	

where the last equality is obtained by the strong uniform consistency of the kernel density estimatebf ��� �see e�g� Silverman �	����� For k 	� i� j Taylorexpansion gives

E
�K��h� �Xi� �Xk�

f �Xj�� Xk�
j Xi� Xj

�
�

f� �Xi�

f �Xj�� Xi�
�O �hq� �

and the boundedness of the density and the kernels K� and K� yields

E�V
�����
�n  � O�

	

nh�
 �O�

	

n�h�h�


where the O
terms correspond to the cases k 	� i� j and k � i �or k � j respectively�

Next we compute the variance of V
�����
�n by discussing the individual terms in the sum

�V
�����
�n � �

	

n� �n� 	�

nX
i�i���

X
j ��i�j� ��i�

nX
k�k���

nX
l�l���

Lg �Xi �Xj � �Xi �iw
���
kl �Xj�� �Xl �l

�Lg �Xi� �Xj�� �Xi� �i�w
���
k�l� �Xj��� �Xl� �l�

The terms in the above sum have expectation zero exept for the case where

i� � i and l� � l

i� � l and i � l�

i � l and i� � l�

i� � i � l� � l�

	�



Consider the �rst case� i� � i and l� � l� Conditioning on Xi� Xl and taking the expectation of
the corresponding terms yields

	

n� �n� 	�

nX
i�l��

X
j ��i�j� ��i�

nX
k�k���

E
h
E�Lg �Xi �Xjw

���
kl �Xj� j Xi� Xl

��� �Xi �
� �Xl

i
�	 � o�	

which is of order O
�

�
n�h�

�

�
by the same reasoning as above� The other cases are treated in the

same way showing that V �V
�����
�n  � O� �

n�h�
�

� It follows by Chebyshev%s inequality

V
�����
�n � OP �

	

nh�
��A��

For the second term in the decomposition of V
���
�n we obviously have

E�V
�����
�n  � ��

In order to �nd the corresponding variance we note that

�
V

�����
�n

��
�

	

n� �n� 	�

nX
i�i���

X
j ��i�j� ��i�

nX
k�k���

nX
l�l���

Lg �Xi �Xj � �Xi �iLg �Xi� �Xj�� �Xi� �i�

�w���
kl �Xj� �m �Xl�� Xl��m �Xj�� Xk�w

���
k�l� �Xj�� �m �Xl��� Xl���m �Xj��� Xk���A�	�

If i� � i� and all other indices are pairwise di�erent we have for the expectation of the corresponding
terms in the sum �A�	�

	

n
E
h
�� �XiE

�
Lg �Xi �XjE�w

���
kl �Xj� �m �Xl�� Xl��m �Xj�� Xk� j Xi� Xj j Xi

��i
�A�		

Using the strong uniform consistency of bf again and the assumption log n
nh�h�

� o �h�� we get by a
lengthy argument

E�w
���
kl �Xj� �m �Xl�� Xl��m �Xj�� Xk� j Xi� Xj

� E
�K��h� �Xl� �Xj�K��h� �Xl� �Xk�

f �Xj�� Xk�
�m �Xl�� Xl��m �Xj�� Xk� j Xj

�
�	 � o �	

where the latter is asymptotically equal ton
E
�K��h� �Xl� �Xj� f� �Xl�

f �Xj�� Xl�
�m �Xl�� Xl��m �Xj�� Xl� j Xj

�
�O �hq�

o
�	 � o �	

� O
�
h��
�
�O �hq�

the O
terms being independent of Xj� So the term �A�		 is of order

O
�h
� � h�q�

n

�
� O�

	

n�h�


	�



where the last equality is a consequence of assumption �A�� The terms in the sum �A�	� with
i� � i and l� � l �all other indices pairwise di�erent have expectation

	

n�
E
h
�� �XiE �Lg �Xi �Xj

� E
�
w

���
kl �Xj� �m �Xl�� Xl��m �Xj�� Xk� j Xi� Xj� Xl

�
j Xi� Xl

��i
�

	

n�
E
h
�� �XiE

�
Lg �Xi �Xj

�K��h� �Xl� �Xj� �
f� �Xl�

f �Xj�� Xl�
�m �Xl�� Xl��m �Xj�� Xl� � o �	

�
j Xi� Xl

��i
� O�

	

n�h��


�again by boundedness�� By a similar argument for the remaining terms in the sum �A�	� we
obtain the result

V
�����
�n � OP �

	

nh�
�A�	�

Combining �A�� and �A�	� we get

V
���
�n � OP �

	

nh�


Clearly� the same holds for V
���
�n � Finally� it is not hard to show that V

���
�n � OP

�
�
n

�
and a

combination of these results gives

V�n � OP �
	

nh�

�
It follows from assumption �A� that

V�n � oP �
	

ng
�A�	�

Since calculations for the statistic

V	n �
	

n �n� 	

nX
i��

X
j ��i

Lg �Xi �Xj � �Xi � �Xj �

are similar to those we already did� we only state the estimates for its expectation and variance�
that is

E �V	n � O�h
� � h�q� �
	

nh�
� ��A�	�

V �V	n � O�
h
� � h�q�
nh�

�
	

n�h��
�A�	�

From �A�	� and �A�	� and assumption �A� we obtain

V	n � oP �
	

ng
�A�	�

and the assertion of Theorem ��	 follows from �A�	� �A��� �A�	� and �A�	�� �

	�



A�� Proof of Theorem ���

If the regression is not additive we obtain a di�erent decomposition of the residuals� that is

 ej � Yj �  m��Xj � ��Xj�j �"�Xj� ��Xj

where � �  m� �m��" � m� P�m � m�m�� Therefore the corresponding decomposition of T��n
in �A�	 involves three additional terms� that is

T��n � V�n � �V�n � V	n � �V
n � �V�n � V�n�A�	�

where V�n� V�n� V	n are de�ned in �A��� �A��� �A��� respectively� and the remaining terms are
given by

V
n �
	

n�n� 	

X
i��j

Lg�Xi �Xj"�Xj��Xi�i�A�	�

V�n �
	

n�n� 	

X
i��j

Lg�Xi �Xj"�Xj��Xi�A�	�

V�n �
	

n�n� 	

X
i��j

Lg�Xi �Xj"�Xi"�Xj��A���

From the proof of Theorem ��	 and assumption �A� �in the case d � � we have

V�n � OP �
	

ng
 � oP �

	p
n


V�n � oP �
	

ng
 � oP �

	p
n
�A��	

V	n � oP �
	

ng
 � oP �

	p
n


and it remains to discuss the asymptotic behaviour of the terms V
n� V�n� V�n� For the latter random
variable we apply Lemma ��	 in Zheng �	��� to the kernel H�x� y � Lg�x � y"�x"�y� A
straightforward calculation and assumption �A� �in the case d � � give

E�H��X�� X�� � O�
	

g�
 � o�n

which implies

V�n � E�H�X�� X�� �
�

n

nX
i��

fE�H�Xi� XjjXi� E�H�Xi� Xj�g� oP �
	p
n
�A���

Note that by Taylorexpansion the �rst term in this expansion is given by

E�H�X�� X�� � E��"�f�X�� �O�g���A���

In order to treat V
n we introduce the notation

Zi �
	

n�n� 	

nX
j��
j ��i

Lg�Xi �Xj"�Xj

	�



and obtain by straightforward algebra

E��Zi � E�ZijXi�
�� � o�

	

n�


�uniformly with respect to i� This shows

V
n �
nX
i��

��Xi�iE�ZijXi� �
nX
i��

��Xi�i�Zi � E�ZijXi�

�
nX
i��

��Xi�iE�ZijXi� � oP �
	p
n


�
	

n

nX
i��

��Xi�"f�Xi�i � oP �
	p
n
�A���

where the third estimate follows from a standard calculation of the conditional expectation
E�ZijXi��
The estimation of the remaining term V�n is more delicate� As we did in the proof of Theorem ��	
in the analysis of the term V�n we �rst decompose V�n into

V�n � V
���
�n � V

���
�n � V

���
�n

where

V
���
�n �

	

n �n� 	

nX
i��

X
j ��i

Lg �Xi �Xj" �Xj ���

V
�r�
�n �

	

n �n� 	

nX
i��

X
j ��i

Lg �Xi �Xj" �Xj �r �Xir � r � 	� �

and the functions ��� ��� �� are de�ned in �A��� With this notation we obtain for V
���
�n

V
���
�n � V

�����
�n � V

�����
�n � V

���	�
�n

where

V
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nX
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X
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Lg �Xi �Xj" �Xjw
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X
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Lg �Xi �Xj" �Xjw
���
kl �Xi� �m �Xl�� Xl��m �Xi�� Xk�
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X
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Lg �Xi �Xj" �Xj
� 	
n

nX
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m�Xi�� Xk��m��Xi�
�

and w
���
kl is de�ned in �A��� The term V

�����
�n can be rewritten as

V
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�n �

	

n

nX
l��
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where

Wl �
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nX
i��

X
j ��i

nX
k��

Lg �Xi �Xj" �Xjw
���
kl �Xi� �

Now a Taylorexpansion and �A�� give for i� j� k 	� l

E �Wl j Xl � E�Lg �Xi �Xj" �Xjw
���
kl �Xi� j Xl �	 � oP �	

� E
�
Lg �Xi �Xj" �Xj

K��h� �Xl� �Xi�K��h� �Xl� �Xk�

f �Xi�� Xk�
j Xl
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�
f� �Xl�

f �Xl�� Xl�

Z
�"f � �Xl�� t� dt� � �	 � oP �	�A���

Moreover� a tedious calculation shows

E
�
�Wl � E �Wl j Xl
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which implies
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For the term V
�����
�n we have

V
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�n �
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i�k�l��

X
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H �Xi� Xj� Xk� Xl

with the notation

H �Xi� Xj� Xk� Xl � Lg �Xi �Xj" �Xj

�K��h� �Xl� �Xi�K��h� �Xl� �Xk�bf ��� �Xi�� Xk�
�m �Xl�� Xl��m �Xi�� Xk�

Computing the expectation of V
�����
�n we obtain for pairwise di�erent i� j� k� l

E�V
�����
�n  � E �H �Xi� Xj� Xk� Xl� � �	 � o�	

� E
h
�"f �XiE�
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where b��x� is de�ned in ����� For the squared statistic we have
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and observe that only terms with fi� j� k� lg � fi�� j �� k�� l�g 	� � contribute to the variance� All
terms with more than one index in common give a contribution of order o �	�n � The terms with
exactly one index in common are all treated similary and we exemplarily discuss the case k� � k�
For this case we obtain

E �H �Xi� Xj� Xk� XlH �Xi� � Xj�� Xk� Xl�� � E
�
E �H �Xi� Xj� Xk� Xl j Xk

��
where the conditional expectation can be estimated as follows
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f�Xi�� Xk�
�m�Xk�� Xk��m�Xi�� Xk�jXk
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Here the �rst equality follows by conditioning on Xi� Xk� Xl� the second by conditioning on Xk� Xi

and the third by a direct integration� This implies
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Finally�
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where b� is de�ned in ����� The term V
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�n is treated exactly in the same way showing that
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and b��x� is given by in ����� For the remaining term V
���
�n we have
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A combination of the above results �A��� � �A��� and �A��� � �A��� gives

p
n �T��n � E �T��n � An �Bn � Cn � oP �	

where E�T��n is de�ned in �����
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and the mapping P �

� is given by ����� The asymptotic normality now follows by a standard
application of Ljapuno�%s theorem� The asymptotic variance is obtained by a routine calculation�
We get
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and Cov �An � Cn� Bn � � which yields the asymptotic variance in ���� for 	 � 	 and completes
the proof of Theorem ���� �
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A�� Proof of Lemma ���

From Jensen%s inequality and Fubini%s theorem we haveZ
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which proves the left hand side of ���		� The remaining part is obtained by using the �rst part
and the triangle inequality� that isnZ

��K �K �K��xdx
o �

� � �
nZ

K��xdx
o �

� �
nZ

�K �K��xdx
o �

�

�
nZ

K��xdx
o �

�

�

Acknowledgements� The authors are grateful to I� Gottschlich who typed parts of this paper
with considerable technical expertise and to S� Sperlich for very helpful discussions about the
method of marginal integration� We also thank O� Linton for sending us the unpublished work
of Linton and Gozalo �	��� and L� Mattner for his help with the proof of Lemma ���� The
�nancial support of the Deutsche Forschungsgemeinschaft �SFB ���� Reduction fo complexity in
multivariate data structures is gratefully acknowledged�

References

A� Azzalani� A� Bowman �	���� On the use of nonparametric regression for checking linear
relationships� J� Roy� Stat� Soc� Ser� B� ��� ��� 
 ����

D� Barry �	���� Testing for additivity of a regression function� Ann� Statist� �	� ���
����

J�O� Berger� M� Delampady �	���� Testing precise hypotheses� Stat� Sci� �� �	�
����

A� Buja� T� Hastie� R� Tibshirani �	���� Linear smoothers and additive models� Ann� Statist�
	�� ���
����

R� Chen� W� H�ardle� O� Linton� E� Severance
Lossin �	���� Estimation and variable selection in
additive nonparametric regression models� In Statistical Theory and Computational Aspects of
Smoothing �W� H�ardle and M� Schimek� eds�� Physika� Heidelberg�

H� Dette �	���� A consistent test for the functional form of a regression based on a di�erence of
variance estimators� Ann� Statist� to appear�

R�L� Eubank� J�D� Hart� D�G� Simpson� L�A� Stefanski �	���� Testing for additivity in nonpara

metric regression� Ann� Statist� �� ��� 	���
	����

J�H� Friedman� W� Stuetzle �	��	� Projection pursuit regression� J� Amer� Statist� Assoc� ���
�	�
����

W� Gonz�alez Manteiga� R� Cao �	���� Testing hypothesis of general linear model using nonpara

metric regression estimation� Test �� 	�	
	���

��



W� H�ardle� E� Mammen �	���� Comparing nonparametric versus parametric regression �ts� Ann�
Statist� �	� 	���
	����

P� Hall �	���� Central limit theorem for integrated square error of multivariate density estimators�
J� Mult� Anal� 	�� 	
	��

T�J� Hastie� R�J� Tibshirani �	���� Generalized Additive Models� Chapman and Hall� London�

K�
C� Li �	��	� Sliced inverse regression for dimension reduction� J� Amer� Statist� Assoc� ���
�	�
����

O�B� Linton� J�P� Nielsen �	���� A kernel method of estimating structured nonparametric regres

sion based on marginal integration� Biometrika ��� ��
	�	�

O�B� Linton� W� H�ardle �	���� Estimation of additive regression models with known links�
Biometrika ��� ���
����

O�B� Linton� E� Mammen� J� Nielsen �	���� The existence and asymptotic properties of a back

�tting projection algorithm under weak conditions� Ann� Statist�� to appear�

O�B� Linton� P�L� Gozalo �	���� Testing additivity in generalized nonparametric regression mod

els� Preprint�

E�A� Nadaraya �	���� On estimating regression� Theory Probab� Appl�� 	�� 	��
	���

J�D� Opsomer� D� Ruppert �	���� Fitting a bivariate additive model by local polynomial regres

sion� Ann� Statist� ��� 	��
�		�

B�W� Silverman �	���� Weak and strong uniform consistency of the kernel estimate of a density
and its derivatives� Ann� Statist� �� 	��
	���

S� Sperlich� D� Tj�stheim� L� Yang �	���� Nonparametric estimation and testing in additive
models� Preprint�

C�J� Stone �	���� Additive regression and other nonparametric models� Ann� Statist� 	��
���
����

D� Tj�stheim� B�H� Auestadt �	���� Nonparametric identi�cation of nonlinear time series� pro

jections� J� Amer� Statist� Assoc� ��� 	���
	����

D� Tj�stheim �	���� Nonparametric speci�cation procedures for time series� Scand� J� of Statis

tics �	� ��
	���

J� Tukey �	���� One degree of freedom test for non
additivity� Biometrics �� ���
����

G�S� Watson �	���� Smooth regression analysis� Sankhya� Ser� A� ��� ���
����

J�X� Zheng �	���� A consistent test of a functional form via nonparametric estimation techniques�
J� of Economentrics� ��� ���
����

��


