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Abstract: An unbiased point estimator T for an unknown parameter 6 can be improved in the

sense of the Mean Squared Error (MSE) by T, =AT for suitable factors A. Here, we want to

discuss this approach in the context of combination of forecasts. We consider the shrinkage
technique for unbiased univariate and multivariate forecast combinations. In the univariate
case our aim is to reduce the MSE. In the multivariate case we want to improve unbiased
forecast combinations in the sense of the Scalar Mean Squared Error (SMSE) or the Matrix

Mean Squared Error (MMSE).
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1. Introduction

The most popular forecasting evaluation criterion is the Mean Squared Error (MSE). Thus, the
combination of forecasts is commonly based on the MSE. In general we assume that the
individual forecasts are unbiased which means that there are no systematical errors. Based on
this, forecast combinations are often restricted to be unbiased, resulting in the restriction that
the weights sum up to 1 (see e.g. Bates and Granger (1969) or Dickinson (1973)). Giving up
the unbiasedness restriction can lead to forecast combinations with smaller MSE. In this case
the optimal combination weights depend on the second moment of the variable to be
forecasted. This makes it difficult to estimate the weights in many applications. Another
approach is to shrink unbiased forecast combinations. This also results in a dependence of the
variable we are forecasting but it is possible to calculate the size of estimation errors still
leading to an improvement. Further, we can see that optimal shrinking of the optimal unbiased
combination is equivalent to the MSE-optimal technique. Using some data from the M-
competition (Makridakis et al. (1982)) we analyse the quality of different unbiased
combination techniques and their optimal shrunken versions.

Furthermore, we want to discuss the multivariate case. Here, the comparison of forecasting
techniques is usually based on the Matrix Mean Squared Error (MMSE) or on its trace, the
Scalar Mean Squared Error (SMSE). We consider two different shrinkage approaches. The
first is based on a shrinkage scalar A and the second on a shrinkage matrix I". We calculate
optimal combinations in the sense of the SMSE and the MMSE. For a better illustration we

perform a simulation study for the multivariate case.

2. The univariate case

We consider the following situation (S1): Let F, 1, ,i=L...,n be unbiased forecasts for Y,
at time T, where LeIN denotes the forecast horizon. Thus, E(ui’ﬂL ) =0, where

U, =Yy, —Fq.,., i=1.,n. Furthermore, we assume that Cov(YﬂL,ui’nL):O,

’

i=1,.,n,and Cov(u,, )= is p.d., where u,,, = (uLTJrL,...,un,ﬂL) .

Assuming that E(Y,, )#0, it is well-known, that the MSE-optimal unbiased forecast

combination of the n individual forecasts is given by

’

copl.ullb’T+L = cOpt,lmb FT+L b

where ¢, . =(1"="1)'2'1 | (1)

opt,unb *



’

and 1 denotes the nx1 vector of 1‘s, F,,, = (FLT+L,...,FH,T+L). Furthermore we have

MSE(Y,,, ,F )=(r="1)".

T+L 2% €py o THL

Now we calculate the MSE-optimal (biased) forecast combination.

Theorem 1: Considering the situation (S1), the MSE-optimal forecast combination is given by

’

Copp > T+L = copt,b FT+L 4 Where copt,b = (E(Yé—L )1,271 1 + 1)71 E(YT2+L )271 1 :

Proof: Let F, ,, =c'F,,, ,where ¢:=(c,,...c,), ¢1=1+d,deR and

Uer =Y Fora = (1 + d)YT+L - c,FT+L —dYq,,

T+L
=cu,, —dY,,, .
Thus,
Blugr. )= By, )-dE(Y,,, )= (- 1E(Y,,, )
and

Var(uc,T+L ) =c'Ze+d*Var(Yy,, )- 22 c,d COV(ui,T+L YL )

i=1
=c'Ze+(c'1-1) Var(Yy,, ) .
Now we can calculate the MSE.

MSE(Yy..,Fory ) = Var(u )+ (E(ugr.,))
=cTet (@1-1P[E(VE)-E(Ve, )+ @1-1)E(Y,, )
=ese+(1-17E(v2, )

Since we want to minimize the MSE, we consider

OMSE(Y,,,,F. 1., ) L

8T+L F el 2.2 +2-¢1 1,]':'(YT2+L )_ 2 1IE(YT2+L ):On
C

x1

e2-(Z+11E(Y2, ) =2-1E(Y2,)
and thus,

o =BV )+ (Y2, 1 @

a 2MSE(YT+L ’ Fc,T+L )

e =Z+11'E(YT2+L) is p.d. follows that ¢, is the minimizing

Since

vector. Consulting Horn and Johnson (1985, p. 19) we get



1
(E - 11'E(YT2+L ))71 =3 _(TIT)-'_ 1z 1) "1’ and by some easy calculations we
T+L

= (E(Yé—L )1,271 1+ 1)71 E(YT2+L )271 1 . (3)

Furthermore, MSE(YT+L,F )= (E(YT2+L )1'2_11 + 1)_1E(Y2 ) If E(Y,,, )=0 the forecast

cop[_b,T+L T+L

combination F, .., is also unbiased.
coplvb’ +

We can see that the optimal weights depend on the second moment of the variable Y,,, . In
practice it could be difficult to estimate this, especially when the second moment of the
variable to be forecasted is not constant.

In the following we discuss the shrinkage technique for an improvement of unbiased forecast

combinations. We analyse again the MSE-optimal combination in this context.

Theorem 2: Consider a forecast combination F, ., =¢'F,, in situation (S1), where ¢'1=1

and further F, ., =AF, ., , Ae IR, where A¢l=A=1+k , ke IR. Then the MSE-

c

. The forecast combinations F where

Ae, T+L

.. . . EY2
minimizing A is given by A, = E(YZ( )T+L )’z
’ T4 )T CZC

E(Y;, )-¢Z
Ae ( T2+L) c, € 1|, have a smaller MSE than F.. -
E(YT+L )+ cxc '

Proof: We get
Wyersr = Yoo —Fer = (1 + k)YT+L - 7"CIFT+L -kY;,,

=Aup, —(A=1)Yy,
The mean and the variance of u, ,, are given by
Blusera )= ~(A=1E(Y;,) and
Var(u,, 1., )= 2¢Te+(A—1) Var(Y,,, ) .
From this we can calculate the MSE of the forecast combination F, ., .
MSE(Yri Fera) = Var(u,ro )+ Eer )

—neset (L—17E(Y2,)



Now the question arises, for which A we get MSE(YT+L,FM,T+L)< MSE(Y”L’FC’“L): c’Ze,

that is A>(¢’Tc+E(Y2, ))-2AE(Y2, )+(E(Y2, )-¢’Sc)< 0. By some easy caculations we
get the values of A, where the left side of the former inequality is 0. Thus, the improvement

region (interval) for A with respect to the forecast combination F,

IR :=(E(Yf“)_c'zc 1] - @)

. 1s given by:

E(YZ, )+c=c’

We are further interested in A which minimizes the MSE. We calculate

c,opt ?

0 MSE(YBT;t, s Foersr ) _ 27\,(C,2 c+ E(Y12+L ))— ZE(YT2+L );0

_ E(vi,)
o = E(Y2, )+ ¢’Se

9> MSE(Yy,, ,Fyrr )
°E)

and since > 0, this is the minimizing A.

It is obvious that only for A <1 an improvement is possible. Again, we can see that the

improvement region depends on the variable to be forecasted. Looking at (4), the scalar A,

is the midpoint of the corresponding improvement region. The optimal weights in the

shrunken forecast combination are given by

gc,opt = A‘c,optc = (E(YT2+L )+ C,ZC)71 E(Y2 )C *

T+L

Considering ¢ :=c¢ = (1'2_11)_12_11 as in (1), we get

opt,unb

-1
80 o= {E(Y§+L)+%JI'211 E(YZ, )= 1=(B(YZ, Jr="1+1) E(YZ, )= ™1
= ¢ (see (3)).

The weights of the MSE-optimal combination and the weights of the MSE-optimal unbiased

combination differ only by the factor A, .. = (E(YT2+L )I'Z_l 1+ 1)_l E(YTerL )I'Z_l 1.

unb »OP

The MSE of a forecast combination F, ., is given by

MSE(Yy, F, o )= (E(Y2, )+ e=e) 'E(Y2, Jesc



which is a strictly monotone increasing function of ¢Zc¢, and therefore a forecast

combination E, 1 isbetterthan ¥, ., iff F ., isbetter than F, ., .

As mentioned above, in practice E(YT2+L) is unknown and must be estimated. It is important

to know how large the estimation errors could be resulting still in an improvement of the

given unbiased forecast combination. A realised non-negative estimator ]:Z(YT2+L) always leads

n E YZ _ IZ
< 1. Thus, we have to check when A__, > ( T+L) €=c¢

to A ©.oPt E(YT2+L)+ ¢Tc

c.opt , the lower bound of the

improvement region IR . Assuming X is known, for a realised non-negative E(YT2+L) we
c, T+

get:

ic’opt =— E(YT2+L)

B(Y2, )+e=c

(Y1%+L )_ C,Z ¢
(YT2+L )+ ¢Te

E
>

E
B2, BNV, )+eze)> (B2, )-eze)E(Y2, )+ezc)

A

= E(Y7,

Bv2)_eze
)> ; — - (52)

Hence, an underestimation of 50% of E(YT2+L) still leads to an improvement of the forecast

combination F, ., . Furthermore, if E(YT2+L)S ¢’Zc, a positive E(YT2+L) results always in a

better forecast. In general X is also unknown and has to be estimated. This results in

LY — E(YT2+L )

7 ——, where 3 is a p.d. estimator of . For given realised estimators this
E(YT+L )+ cXc

copt T

improves the unbiased forecast combination F, ;,, if

LY — I?’(YT2+L ) > E(Y"?+L )_ C,ZC
“M T E(Y2, )+eSe E(YZ, )+eTe

) E(YTerL )c'ﬁc T

s E(Y2, )> 5b
(Vi )> = === (5b)

If E(YTerL ) > ¢’Zc¢ the right side of (5b) is a strictly monotone increasing function of ¢’Ee¢ . In

this case a larger estimation error of ¢’X¢ leads to the necessity of a larger ]:Z(YT2+L). In the

case where E(YT2+L)S ¢’Zc the right side of (5b) is non-positive. Thus, a positive E(YT2+L)
leads always to an improvement. Again we wish to remark that the reduction of

MSE(YT+L JFor ), given by the inequalities (5a) and (5b), holds for realised estimators of the

unknown parameters.



It is also possible to shrink at first the individual forecasts, whichis F, 1., =AF, , A € IR,

i=1,.,n. Starting from a forecast combination F, |, :=20i7yiFi’T+L =2b‘F where

it i,T+L »
i=1 i=1

b, :=c,A,, i=1,...,n and minimizing the MSE obviously leads to the weights given in (3).
In the next section we analyse several unbiased forecast combinations and their shrunken
versions presented above with data from the M-competition (Makridakis et al. (1982)). There

we have to deal with the problem of an unknown covariance matrix ¥ which makes it more

difficult to get an estimator E(YT2+L) leading to a combination with smaller MSE.

3. Application for the univariate case

We use the monthly data of the M-competition as decribed in Klapper and Wenzel (1998).
The time series are of length 18. The calculation of the first combination weights is based on
the first ten data points. Thus, 8 data points are left for the comparison of the methods. In each
step we calculate new weights on the basis of the 10 most recent data points. We consider
only four individual forecasts, that are different smoothing techniques (AEP, Bays, Holt,
Quadr). For a detailed decription of these methods see Makridakis et al. (1982). We assume
that the individual forecasts are unbiased. We compare the RMSE of the different forecasting

methods with the RMSE of the simple average of the individual forecasts. We have to remark

that we eliminated five time series because of singular . Hence, 612 time series are left for

. . . 2 N . r 7 .
our analysis. We consider in each step X := (G”)ij—l . Oy ::Eui u;,,i=L..,n, and u;

denotes the vector of the most recent 10 forecast errors of the i-th individual forecast. For the
estimation of E(YT2+L) we use the mean of the squared most recent 10 data points of the

variable to be forecasted. We analyse the following unbiased combination techniques:

Method 1 (M1):  MSE-optimal unbiased forecast combination (see (1)).
Method 2 (M2):  Method 1 with the further restriction, that the weights are non-negative.
Method 3 (SA):  The simple average of the individual forecasts.

Methods No. 4, 5 and 6 (denoted by S-M1, S-M2 and S-SA) are the optimal shrunken
versions of methods No. 1, 2 and 3. Thus, method No. 4 is the MSE-optimal given by the
weights in (3). Together with the individual forecasts and their shrunken versions (S-AEP, S-



Bays, S-Holt, S-Quadr) we focus on 14 different techniques. The results of the study are given
in the following table.

Table 1: Results for the study of the 612 time series

# better than SA | # better than best | # best method | mean of relative median of

individual RMSEs relative RMSEs
AEP 282 - 21 1.209 1.038
Bays 310 - 47 1.164 0.996
Holt 319 - 43 1.116 0.978
Quadr. 142 - 25 1.920 1.355
S-AEP 312 168 25 1.149 0.965
S-Bays 349 215 29 1.041 0.944
S-Holt 364 227 45 1.025 0.920
S-Quadr 191 127 24 1.639 1.223
MI1 444 286 124 0.746 0.665
M2 481 139 34 0.762 0.777
SA - 89 29 1.000 1.000
S-M1 446 285 105 0.745 0.666
S-M2 483 249 36 0.748 0.738
S-SA 330 148 25 0.936 0.991

The relative RMSE is given by the RMSE of a special method divided by the RMSE of the simple average

combination.

At first we can say that all combination techniques are doing well. They often outperform all
individual forecasts. Looking at the number of times the certain methods are best, we can see
that method M1 and its shrunken version (S-M1) are the forecasts of highest quality. This is
also underlined by the mean and median of the relative RMSEs. Method SA is outperformed
by shrinking. Furthermore, the simple average combination is in this study the combination
method of lowest quality. Each other combination method outperforms the simple average in
over 50% of the given 612 time series.

Finally, the method S-M1 outperforms the method M1 in 299 cases, the method S-M2 is in
304 cases better than M2 and S-SA is in 330 cases of higher quality than SA. Looking at the
individual forecasts , S-AEP is in 324, S-Bays in 354, S-Holt in 322 and S-Quadr in 341 cases

better than the corresponding individual forecast.



4. The multivariate case
Here, we consider multivariate forecasts for a vector of variables which is described in the

following.

’

Situation (S2): Let F ., = (FiflT)+L,...,Fi(’];)JrL) , 1=1..,n, be unbiased forecasts for

’

Y., =(Y" ...Y%) at time T, kelN, k>2. We have E(u,,., )=0, where

’
— (y® ®) 0y ) [ _
U, = (ui,T+L,...,ui,T+L) and upp,, =Yy, -Fi,., i=L.,n, j=L..k. Further, we

assume that Cov(uf’j%JrL,Yéfﬁ): 0,i=1..n, jm=1,.k and Cov(u,,, )=Q is p.d, where

’ ’
U, = (ul,T+L O B ) Finally, there exists a vector u;,,, , without loss of generality

’

W =W, 1y, S0 that COV[((ul,T+L —U, ),r "’(unfl,T+L —U, ),) ] is p.d.

We consider forecast combinations of the form F,, = E‘CiFi,T+L , where C, € IR®*. The
i=1

MMSE-optimal unbiased forecast combination, where X‘Ci =1, , is given by the weights

i=1

(see Wenzel, 1998)  C_, o =[C opimp s> Conoptams ] = WV I -WVTL] 6)
where
Q=(Q,) . ,~nkxnk

V= (VI'S )r,s=1 n-1 (n - l)k X (n - l)k )

.....

V., =Q +Q -Q -Q rs=1..,n-1,

I, =[1,,..,I,]~(0-1kxk,
W= (w,,..w, )~ (n-1kxk,

’

W, = (wjl,,...,wj’nl,) ~ (n—l)kxl, j=1...,k,

w,=(Q, -Q,)e ~kxLi=l.,n-1, j=1..k,

n

and e; denotes the j-th unit vector.

As in the univariate case we now want to calculate the MMSE-optimal weights resulting in

’

4 4
general in a biased forecast combination. Therefore, we define F,,, = (FLT+L S U J ,



’

Y. :=(Y ,YT+LJ~(n-k)><1 and further T, :=l[Ik,...,Ik]'~n-k><k so that
n

Theorem 3: Considering the situation (S2), the MMSE-optimal forecast combination of the n

individual forecasts F, ., ,....F, 1, is given by Fe . ri = CoupFrar where

’ , - - , -1
Copt,b = Ik* E(YT+LYT+L )(Q+E(YT+LYT+L )) .

Proof: We get

Uery =Yoo —Ferg

where C =[C,,...,C,] and
E(uC,T+L ) = _(C - Tk* )E(?N—L) )

Covlugy, )=CQC + (c i JCOV(?M ) (c i )

which gives us

’

MMSE(YT+L > FC,T+L ) =CQC’+ (C - Tk* )E(?D—L?P—L )(C - Tk* )
= C(Q +E(YT+LYT+L JJC’_ Ik* E(YT+LYT+L )C’_CE(YT+LYT+L )Ik* + Ik* E(YT+LYT+L )Ik* .
At first we minimize the SMSE and calculate

d tr(MMSE(Y,,, ,F - AN
( ( R ))ZZC(Q+E(YT+LYT+L ))_211( E(YT+LYT+L )zokx(wk)

aC

~

’ , - - , —1
= Copt,b = Ik* E(YT+LYT+L )(Q +E(YT+LYT+L ))
and

9 tr(MMSE(Y,,, ,Fc 1., ))
20°C

= 2(9 + E(?T+L§T+L D is p.d.
A forecast combination with an arbritary weight matrix C_, ,, which can be expressed by

;a0\
Coop = K(Q + E(YHLYHL D , K e IR®™) cannot outperform Fcupt)b,ﬂL, since

10



MMSE(YT+L Ko o1 )_ MMSE(YT+L ) Fcop[_b,T+L )

’

’ _ ~ AN , ~ ~ ’ «
= (K,_E(YT+LYT+L )ik ) (Q +E(YT+LYT+L J) (K _E(YT+LYT+L )ik ) )

which is obviously n.n.d. and thus MMSE(YT+L Ko o1 ) > MMSE(YT+L Ko, 1L )

So far we analysed only the MMSE-optimal unbiased (in the class where zci =1, ) and the

i=1
MMSE-optimal biased combination. In the following we present the shrinkage approach for

the multivariate case.

Theorem 4: Consider in (S2) an unbiased forecast combination F r,, = E‘CiFi’TJrL , where
i=1

n
ZCi =1I, . A forecast combination F,..,, =AF.;, , Ae IR, improves F_ ., in the sense
i=1

tr{C(E(SN(T+LS~(T+L J— Q )c}
of the SMSE for Ae 1.

tr{c (E(?T+L§T+L )+ Q )C}
t(CE(s?s? )c)
with minimal SMSE is given by A, =

C,opt — - - , :
tr{C(Q + E(YMYT+L DC}

Proof: We have
Wera = Yoo ~Fiery =CVry ~ACFy,
=ACYy, —~ACF, —(A-1)CY;, =ACuy, —(A-1)CY,,,
where C =[C,,...,C,].
Hence,
E(Wer,)=(1-2)CEY,.. )
and
Cov{uyer, )=22CQC + (A -1 CCov(Y,,, JC’
resulting in

MMSE(Y,,, , Fcr )=2cQC’ +(A-1) CE(?T+L?T+L' )C’ .

11



As in the univariate case we first have a look at the improvement region in the sense of the

SMSE. We compare SMSE(YHL,FXC,HL) with SMSE(YHL,FC,T+L ): For which A‘s does

kztr( (Q + E(YT+LYT+L )) c’)— 21 tr(CE(?ms?M )c’)+ tr(CE(?m?m )c’)< tr(CQC)

hold?

The left side is a quadratic function in A. Similar to the univariate case we can conclude
tr{C(E(YT+LYT+L J— Q )C’}

IRFC.T+L - ’ ? 1
tr{C (E(YT+LYT+L )+ Q )C'}

Since rg(C) =k (see Appendix), we derive

(7

0 tI‘(MMSE( T+L 5 FXC,T+L ))
oA

=22tr(CQC)+2 (A - 1)tr(CE(?T+L?T+L' )c’); 0

tr(CE( oL Y1aL ) )
S )\’C,opt =
{C(Q-i_E YT+LYT+L ) ,}

2
Since a tr(MMSE(YT+L b FAC,T+L )) — 2‘[1‘(C (Q + E(Y YT+L J)C/)

is the

C Jopt

827\, T+L

minimizing scalar.

As in the univariate case, A, is the midpoint of the improvement region. The SMSE of a

forecast combination A, Fe .y is:
tr(CE(SN{T+L8~{T+L )C’)tr(CQC')

tr(c(E(YT+LYT+L' )+ Q )c)

In general we use an n.n.d estimator for E(YTJrLYTJrL ) Looking at the given interval in (7),

SMSE (YT+L sAcopFeriL ) =

we can see again that an improvement is only possible for A < 1. Furthermore, we stay in the

improvement region if

12



, uf CE(¥,., V.., )c' ,
tr(CE(YT+LYT+L JC')> 5 - tr(C;ZC ) (Q known), or

A

o | CE( ¥y, Yoy JC' trlcac
tr{ CE| Y., Y C’ |> - Q  unknown),
( ( T+L TT+L ) ) 2tI'(CQC,) > ( )

where Q denotes a p.d. estimator of Q and ]:Z(SNZNLSN(NL J is an n.n.d estimator, both realised.

We can see, that any unbiased forecast combination can be outperformed in the sense of the
SMSE by shrinking, especially the MMSE-optimal given in (6). Comparing the MMSEs of a
given multivariate forecast and its shrunken version can result in a situation, where none of

the MMSEs dominates the other. The difference of the two MMSEs can be indefinit.

. . k .
Instead of a shrinkage scalar A we now use a matrix 'e IR®*. We consider Frern =TFeqp, -

Theorem 5: Consider in situation (S2) an unbiased forecast combination F. ., , where

F,

C,T+L >

ZCi =1, . The MMSE-optimal shrunken combination is given by F. 1, =T,
i=1 e

C,opt

’ — — ’ -1
where T, = CE(SN{T+LS~(T+L Jc’(c(gz +E(YT+LYT+L DCJ . @®)

Proof: The combined forecast error is

Ui = Yo ~Frery =TCYy, ~TCF, —(TC-C)Yy,
=I'Cu,, -(FC-C)Y,,, .

where C =[C,,...,C, 1],

and

E(“ IC,T+L ) = _(FC - C)E(§T+L ) >
Cov{ure .y )= TCQCT +(FC—C)Cov(¥,,, Jrc-c) .
Calculating the corresponding MMSE results in

MMSE(Y,,, ,Fcp, )= TCQCT + FCE(?T+L?T+L )c’r'— CE(SN{T+LS~(T+L JCT’

—FCE(SN(T+LS~(T+L JC’+CE(§~(T+LSN(T+L )C’ .

13



Here we want to minimize MMSE (YT+L , Frc’ﬂL) with respect to I'.

8 tI'(MMSE(YT+L H FFC,T+L ))
or

- ZFC(Q + E(?T+L?T+L DC - 2CE(§T+L§T+L )c’éom

& F(C(Q + E(§T+L§T+L' Dc’]: CE(?T+L§T+L' )c’
Since rg(C) =k (see Appendix), we get:
Mo = (%, Joe(e(% % )
and

8 2 tI'(MMSE(YT+L > FFC,T+L ))
0°T

= 2C(Q + E(SN{T+LS~{T+L DC

, -1
is p.d. For an arbitrary shrinkage matrix I'c, = K(C (Q + E(SN{T+LS~(T+L DC’) , Ke R¥Y,

we get

MMSE(YT+L Fr e ) - MMSE(YT+L ) Frctomc,wL )

’ ’ ~ ~ ’ -1 ~ . ’
= (K - CE(Y(T+L?T+L )C) (C(Q + E(YT+LYT+L DC] (K - CE(YT+LYT+L )C) ,

which is n.n.d and thus MMSE(Y,,, .F; 1. )2 MMSE(Y,,, . F 1)

We cannot see directly from the form of the weights of the MMSE-optimal unbiased and of
the MMSE-optimal (biased) combination how they are related. But looking also at the results
=T, C

opt,unb ,Opt opt ,lll’lb .

of the study in section 5 shows us that C In the simulation study we

opt,b
only analyse forecast combinations where the weight matrices sum up to I, . This is not a

necessary condition for an unbiased forecast combination. We can also demand

~

CE(YT+L): Tk* E(\N{“L). In that case the weights depend on E(Y,,, ). Estimating this results

in general in weights which gives us a biased forecast combination. Then the unbiasedness

assumption in Thereoms 5 and 6 is not valid. Thus we do not consider these techniques.
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5. Simulation study for the multivariate case

We analyse the combination of three unbiased one-step individual forecasts for a two-

dimensional variable. We use E(Yt ) = (5,5) , t=1...,30, for the generation of the time series

of the variable to be forecasted. For COV(Yt ) =A,,i1=12, t=1.,30 we consider:

19 9 6 0
A= , A, = .
9 30 0 1

For the generation of the series of the forecast errors we use 20 different 6x6 covariance
matrices which are given in the Appendix. The time series of the Y-variable and of the
forecast errors are of length 30. We have two different covariance matrices of Y and 20
different error covariance matrices. This results in 40 different cases. For each case we
generate 100 times series for Y and for the individual forecast errors.

The first combination weights of the different methods are calculated on the basis of the first
ten data points. Thus, 20 data points are left for our analysis. In each step the different
unknown parameters are re-estimated on the basis of the most recent 10 data points. We

analyse the following 15 techniques:

T1: MMSE-optimal unbiased combination given by equation (6)

T2: MMSE-optimal (biased) combination given in Theorem 3

T3: shrinking T1 with the corresponding optimal shrinkage scalar A

T4: simple average (SA) of the individual forecast

T5: shrinking SA with the corresponding optimal shrinkage scalar A

T6: shrinking SA with the corresponding optimal shrinkage matrix I'

T7: individual forecast No. 1

T8: individual forecast No. 2

T9: individual forecast No. 3

T10: shrinking individual forecast No. 1 with the corresponding optimal shrinkage scalar A
T11: shrinking individual forecast No. 2 with the corresponding optimal shrinkage scalar A
T12: shrinking individual forecast No. 3 with the corresponding optimal shrinkage scalar A
T13: shrinking individual forecast No. 1 with the corresponding optimal shrinkage matrix I"
T14: shrinking individual forecast No. 2 with the corresponding optimal shrinkage matrix I"

T15: shrinking individual forecast No. 3 with the corresponding optimal shrinkage matrix I'.

15



Again, we want to remark that shrinking T1 with the corresponding optimal shrinkage matrix

I" is identical to T2. In the following tables we present the average of the MSEs (first value in

the tables) of the 100 time series in each case for both components. We also count in each

case for how many time series a certain combination technique performs better than the

simple average of the individual forecasts (second value in the tables).

Table 2: Results for component No.

1, Cov(Y,)=A,

T1 | T2 | T3 | T4 | TS | T6 | T7 | T8 | T9 | T10 | T11 |T12|T13 | T14 | T15
Q, | 707 [ 627 | 671 [10.07 | 8.53 | 7.99 [ 1420 | 2741 [43.30 | 11.79 | 1828 | 2381 | 11.31 | 1434 17.22
82 | 89 | 85 - 88 | 82 | 16 3 0 35 8 1 44 | 22 | 11
Q, | 272 [ 265 | 2.61 [ 345 | 322337 [1272[ 1861 | 6.96 | 10.23 [ 13.80 | 639 | 635 | 13.56 | 6.60
72 | 72 | 70 - 66 | 52 0 0 3 0 0 5 10 | o 2
Q, | 149 [ 1437|145 [ 171 [ 1.67 [ 164 [ 505 [ 7.19 | 6.04 | 478 | 638 | 548 | 490 | 630 | 5.53
66 | 70 | 65 - 60 | 57 1 0 0 1 0 0 2 0 0
Q, | 390 352376 [ 7.64 [ 681 | 599 [13.02[1330 | 1526 10.78 [ 10.95 [ 12.65 | 10.18 | 10.91 | 1137
93 | 96 | 93 - 80 | 84 | 2 1 2 18 | 15 | 10 | 22 | 16 | 16
Q. | 210 [ 199 | 2.05 [ 242 | 245 [ 248 [1193] 676 [ 1044 [ 10.10 | 6.10 | 9.08 | 8.53 | 6.28 | 6.20
58 | 64 | 60 - 48 | 47 0 0 0 0 0 0 1 0 4
Q, | 205200 | 1.98 [3.08 | 3.37 [ 3.18 | 6.96 | 1444 | 8.12 [ 641 [ 1190 723 | 6.62 | 11.74 | 5.60
85 | 88 | 89 - 33 | 43 4 0 2 3 0 3 3 0 7
Q. | 175 [ 168 | 171 [ 232 | 225 [ 224 | 3.96 | 685 [ 1581 372 | 633 [ 1201 | 3.24 | 531 [ 11.23
79 | 79 | 79 - 62 | 63 8 3 0 12 3 0 | 24 5 0
Q, | 249 [ 2437|242 [ 531 | 4.82 [ 491 | 18993743 [ 17.66 | 1447 [ 2133 13.66 | 14.04 | 11.32 ] 11.95
99 | 99 | 99 - 77 | 68 1 0 0 2 0 0 2 1 2
Q, | 327 [ 319 [ 308 [ 379 | 3.59 | 3.80 | 5.10 | 13.55 | 3.93 | 4.80 | 10.94 | 3.69 | 482 | 1078 | 3.87
70 | 70 | 71 - 71 | 57 | 25 0 | 43 | 29 | o0 s8 | 30 | o | 48
Q| 129 [ 102 [ 128 [ 149 | 1.82 [ 138 | 9.73 | 9.88 | 2.95 | 846 | 822 | 2.81 | 7.84 | 7.07 | L.77
66 | 86 | 69 - 26 | 58 0 0 2 0 0 3 0 0 35
Q, | 212[ 210 [ 2.08 [ 370 [ 341 | 351 | 888 | 1283 24.85 | 7.75 [ 10.84 | 1626 | 8.08 [ 10.79 | 15.85
93 | 93 | 93 - 75 | 60 | 2 0 0 6 1 0 6 0 0
Q,, | 084080 [ 0.82 [ 256 | 246 | 241 | 427 | 2516 3.05 | 3.97 [ 17.06 | 2.95 | 3.43 [ 13.60 | 2.85
100 | 100 | 100 | - 62 | 64 | 11 0 | 35 | 14| 0o | 4 | 3 | o | 4
Q| 253236 | 246 | 3.89 [ 3.58 | 3.72 [ 16.55 | 1422 693 1293 [ 11.17 | 6.16 | 13.38 [ 10.89 | 5.69
90 | 92 | 91 - 65 | 62 0 0 6 0 1 16 0 0 | 22
Q,, | 508 [ 445 [ 492390 [ 389 | 370 [16.98 | 878 [17.20 [ 13.66 [ 7.77 | 1327 14.30 | 6.08 | 9.41
21 | 33 | 27 - 46 | 59 | 0 0 0 0 1 0 0 6 1
Q| 136 [ 123 [ 133 [ 195 [ 1.95 | 1.76 [ 16.13 | 4.19 [12.90 [ 1266 [ 3.96 | 1043 | 10.64 | 3.42 [ 7.19
82 | 89 | 82 - 46 | 70 | 0 2 0 0 5 0 0 10 | 0
Q. | 057 [ 057 [0.57[530 [ 486 | 5.13 [ 18.54 | 3.00 | 493 | 1432 2.8 | 4.66 | 13.69 | 2.89 | 4.63
100 | 100 | 100 | - 75 | 57 0 | 94 | 59 | o | 95 | 71 0 | 96 | 65
Q,, | 149 [ 144 | 146 | 3.88 | 3.65 | 3.87 [24.24 | 6.98 | 9.59 1691 626 | 8.27 [ 13.29 | 6.40 | 675
99 | 99 | 99 - 67 | 49 | 0 8 2 0 12 5 0 11 7
Q| 049 [ 049 [0.52 [ 258 | 2.66 | 2.61 | 5.08 | 2890 | 18.10 | 4.72 [ 18.13 | 13.64 | 4.69 | 1724 13.93
100 | 100 | 100 | - 42 | s1 8 0 0 11 0 0 14 | 0 0
Q,, | 485 [ 456 [ 462 | 571 [ 519 [ 555 [17.91[13.79 | 6.00 | 13.90 [ 1148 | 5.50 | 10.19 [ 12.07 | 5.74
61 | 68 | 68 - 73 | 63 0 0 | 45 0 1 51 7 0 | 49
Q,, | 277 [ 240 [ 2.68 [ 1.97 [ 1.95 | 1.88 [ 7.21 | 1167 477 | 6.53 [ 071 | 4.41 | 640 [ 10.04 | 4.43
16 | 27 | 16 - 45 | 65 0 0 2 0 0 6 0 0 4

Looking at the results for component No. 1 we see that method No. 2 is best. Shrinking the

unbiased forecast combinations leads to an improvement. Using a shrinkage matrix I' is in

most cases better than the usage of a shrinkage scalar A. Only for the simple average
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combination the approach with the shrinkage scalar performs for 9 of the given covariance

matrices better. The simple average is also outperformed by the other combinations.

Combining leads in general to an improvement of the individual forecasts.

Table 3: Results for component No.

2, Cov(Y,)=A,

T1 | T2 | T3 | T4 | TS | T6 | T7 | T8 | T9 | T10|T11|T12|T13 | T14 | T15
Q, | 097 [ 095 | 0.98 [ 4127 | 4.14 [ 400 | 3.08 | 824 [17.00 5.69 [ 11921831 | 3.11 | 7.23 | 11.68
100 | 100 | 99 - 50 | 56 | 76 1 0 | 25 1 0 77 | 4 0
Q, | 501 | 478 [ 478 [ 350 [ 339 [ 355 [1528 | 8.84 [ 8.97 [ 12.68 | 9.70 | 8.00 | 7.97 | 842 | 848
10 | 14 | 13 - 64 | 44 | 0 0 4 0 1 10 1 1 7
Q, | 335|306 327 [ 315 [ 3.03 | 3.04 | 1884 | 835 [ 7.97 [ 1580 | 7.74 | 7.34 | 14.06 | 7.73 | 7.62
45 | 51 | 47 - 65 | 55 0 1 2 0 1 3 0 1 5
Q, | 259 [ 241 | 252279 | 3.00 | 242 [1027 [ 1227 | 2437 [ 1022 10.89 | 1829 | 8.62 | 1048 | 16.32
58 | 66 | 61 - 39 | 74 1 0 0 1 0 0 2 0 0
Q, | 213 [ 202207 [ 639 | 592 622 [13.1620.56 | 7.60 | 11.28 | 16.73 | 7.85 | 9.8 | 15.84 | 4.88
100 | 100 | 100 | - 73 | 53 1 0 | 33 4 0 | 31 9 0 73
Q, | 360 [ 349 | 3.48 [ 11.61 [ 10.05| 10.29 [2525 | 12.76 | 26.21 | 20.38 | 11.96 | 2022 | 17.52 | 11.67 | 13.92
100 | 99 | 100 | - 88 | 72 0 | 43 0 5 | 46 0 13 | 48 | 31
Q. | 206 [ 197 | 2.01 [ 476 | 4.44 | 447 | 791 [10.66 | 2.91 | 725 | 9.06 | 6.04 | 6.12 | 8.06 | 2.99
9 | 97 | 97 - 70 | 63 4 0 | 100 | 7 2 35 | 25 6 | 100
Q, | 310 [ 299 1299 [ 1375 | 3.70 | 358 | 1622 23.11 [ 11.75 | 14122035 | 11.76 | 13.44 | 876 | 9.30
7| 77| 77 - 54 | 56 | 0 0 0 0 0 0 0 1 3
Q, | 362349 | 3.48 [ 441 | 4.08 [ 435 | 9.08 [ 10.52 [ 12.62] 7.92 | 9.54 [10.95 | 8.01 | 9.43 | 1088
71 | 75 | 76 - 72 | 49 | 0 3 0 0 3 2 2 4 4
Q,, | 906 | 7.02 [ 8.55 [10.51] 9.19 [ 7.98 | 8.54 | 2745 20.65 | 847 [20.57 | 1821 7.35 | 1550 | 10.87
63 | 89 | 66 - 85 | 88 | 63 0 0 71 0 0 80 | 16 | 47
Q, | 381362 [ 366 | 431 [ 4.02 | 4.16 [ 19.94 | 15.11[ 9.04 | 1587 12.50 | 11.18 | 15.36 | 12.40 | 839
65 | 70 | 68 - 68 | 59 | 0 0 5 0 0 2 1 0 5
Q,, | 1:64 [ 158 | 1.63 [ 2.64 | 252 | 2.53 [ 7.36 | 851 | 494 | 6.70 [ 11.73 | 4.58 | 5.86 | 7.24 | 4.53
85 | 88 | 87 - 67 | 62 | 2 0 6 0 0 11 4 0 11
Q| 076 [ 075 [ 0.76 | 4.67 | 4.44 | 461 [10.16 | 1626 [ 698 | 1047 [ 13.49 | 6.81 | 956 | 1333 ] 641
100 | 100 | 100 | - 72 | 58 | 2 0 13 4 0 19 5 0 | 23
Q,, | 036 [ 032038 1049 898 | 842 [44.05 | 8.74 | 4.87 |28.06 | 8.18 | 7.59 [26.63 | 6.19 | 3.43
100 | 100 | 100 | - 78 | 75 0 | 74 | 99 | o | 74 | 78 1 95 | 99
Q| 1:58 | 144 | 1.56 | 4.63 | 4.33 | 4.04 [25.83 | 1927 5.05 | 19.06 | 16.30 | 6.42 | 14.86 [ 11.60 | 3.13
99 | 99 | 99 - 79 | 74 | o0 0 | 45 0 0 | 26 0 0 80
Q. | 1:80 [ 178 [ 1.78 [ 1.87 [ 1.98 | 1.91 [ 9.32 | 2.83 [ 561 [1055[ 281 | 529 [ 878 | 2.81 | 529
59 | 59 | 59 - 39 | 45 0 15 0 0 15 0 0 15 1
Q,, | 215206 [ 211 [ 376 [ 3.61 | 3.88 [ 207 | 6.67 [12.10| 8.75 [ 652 | 1067 1.94 | 6.76 | 8.60
93 | 93 | 93 - 57 | 45 | 92 1 0 7 2 0 | 95 0 2
Q| 813723 [ 7.68 [ 890 [ 7.83 | 8.16 | 9.63 | 2621 [23.78 | 8.29 [19.71 [ 17.92] 7.98 | 18.44 [ 18.38
61 | 70 | 65 - 83 | 68 | 39 0 0 53 2 3 61 0 2
Q,, | 249 [ 234 [ 2427|531 [ 496 [ 5.16 [ 14.00 | 15.64 | 24.11 [ 1285 13.01 [ 19.79 | 8.94 | 13.44 | 1655
94 | 96 | 96 - 63 | 56 | 4 0 0 2 1 0 16 1 0
Q,, | 217 [ 188 [ 213 [ 435 | 417 [ 4.10 [ 1587 994 | 1083 | 1321 [ 9.91 [ 950 | 1247 | 9.47 | 9.12
93 | 97 | 93 - 63 | 62 0 0 0 0 0 2 0 1 5

Again, method No. 2 is best. Combining the forecasts in most cases leads to an improvement.

Using a shrinkage matrix I" is in general better than using a scalar A. Only for the simple

average combination we have similar results as above.

To summarize the results we present the following table. The first value in the first row gives

us the number of the 20 cases, where the average MSE of the first component of the special
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shrinked combination is smaller than that of the corresponding unbiased forecast combination.
The first numbers of the second row are the same for the second component. The first
numbers of the third row presents how often the sum of the two averages of the MSEs is
smaller than that of the corresponding unbiased combination. We also count how often the

special methods are best (second numbers).

Table 4: Summary of the results, Cov(Y, )= A,

T2 | T3 [ 15 [ T6 | Tio | T13 | T11 | T14 | T12 | Ti5
component | 20 19 15 16 19 | 20 | 20 | 20 [ 20 | 20
No. 1 13 5 0 2 0 0 0 0 0 0
component | 2() 17 17 17 16 17 13 19 19 19
No.2 15 3 2 0 0 0 0 0 0 0
sumofav. | 20 | 20 | 20 19 19 | 20 | 20 | 20 [ 20 | 20
MSEs 16 3 0 i 0 0 0 0 0 0

Again, shrinking the unbiased forecasts leads to an improvement. For some covariance
matrices the unbiased forecast combinations are for a special component better than their
shrinkage versions. But looking at the sum of averaged MSEs, in almost all cases the
shrinkage techniques are better.

As above, we want to describe now the result for Cov(Y,)=A, .

Table 5: Results for component No. 1, Cov(Y, )= A,

T1 | T2 | T3 | T4 | TS | T6 | T7 | T8 | T9 |T10|TI11 | T12|T13 | Tl4 | TI15
Q, 7.06 | 545 | 6.61 | 9.67 | 7.71 | 532 | 13.94 | 26.86 | 43.01 | 10.03 | 15.74 | 19.41 | 8.05 | 891 | 10.98
80 91 80 - 92 99 13 2 0 46 9 2 65 54 38
Q, 2.50 | 2.48 | 237 | 3.59 | 332 | 3.40 | 12.72 |20.11 | 7.05 | 9.83 | 12.73 | 6.00 | 3.48 | 11.30 | 6.22
80 82 88 - 71 63 1 0 6 3 1 10 48 0 9
Q, 1.55 | 1.37 | 1.49 | 1.74 | 1.75 | 1.30 | 493 | 7.01 | 590 | 443 | 6.08 | 529 | 448 | 5.07 | 4.92
60 75 67 - 52 89 2 0 0 3 0 0 5 0 0
Q. 4.19 | 2.68 | 3.88 | 7.78 | 6.47 | 3.45 | 13.17 | 13.01 | 1491 | 998 | 9.82 | 10.69 | 7.78 | 9.14 | 9.15
88 99 92 - 87 98 0 1 4 22 23 19 51 33 31
Q, 1.97 | 1.69 | 1.90 | 248 | 2.55 | 249 | 1224 | 7.15 | 10.66 | 9.51 | 6.25 | 830 | 6.44 | 6.49 | 2.73
72 82 73 - 42 48 0 0 0 0 2 1 0 2 44
Q 1.96 | 191 | 1.86 | 3.23 | 3.48 | 3.20 | 6.89 | 14.42| 823 | 599 | 1026 | 6.82 | 6.08 | 9.78 | 4.55
91 92 93 - 34 44 0 0 0 5 0 2 6 0 22
Q, 1.84 | 1.66 | 1.79 | 2.26 | 2.24 | 2.10 | 3.94 | 6.88 | 1591 | 3.55 | 6.01 | 11.12 | 2.34 | 424 | 7.73
74 80 75 - 49 59 5 1 0 10 2 0 44 9 1
Q 244 | 236 | 234 | 545 | 480 | 3.84 | 18.44 |36.79 | 16.67 | 11.97 | 17.95 | 11.73 | 10.94 | 5.46 | 8.16
97 97 97 - 77 92 1 0 0 8 0 1 7 52 16
Q, 348 | 3.28 | 3.28 | 3.78 | 3.51 | 3.59 | 5.15 | 13.10| 3.94 | 457 | 10.14 | 3.68 | 444 | 898 | 3.91
61 65 68 - 65 59 21 0 43 29 0 56 30 1 44
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Table 5 continiued

Qo 1.32 | 0.61 | 1.31 | 1.44 | 2.06 | 1.07 | 9.43 | 949 | 299 | 7.64 | 7.69 | 2.77 | 5.85 | 5.82 | 0.84
63 98 63 - 11 89 0 0 0 0 0 1 0 0 91
Q. 2.07 | 1.99 | 1.96 | 3.76 | 338 | 3.22 | 9.40 | 13.73 | 24.69 | 7.36 | 10.11 | 14.64 | 7.69 | 9.59 | 12.10
89 90 93 - 73 71 3 0 0 6 3 0 8 2 0
Q, 0.85 ] 0.73 | 0.84 | 238 | 229 | 1.79 | 3.91 | 2528 | 3.11 | 3.62 | 1524 | 292 | 2.24 | 857 | 2.32
100 | 100 | 100 - 62 91 12 0 28 18 0 33 56 0 56
Qi 2.55 | 222 | 247 | 3.60 | 334 | 3.24 | 1523 | 13.46| 7.37 | 10.86| 9.82 | 6.20 | 10.33 | 8.99 | 4.43
82 91 84 - 64 74 0 0 2 1 1 7 1 1 32
Q. 4.86 | 2.87 | 461 | 392 | 399 | 3.25 | 17.63 | 8.77 | 16.61 | 11.70 | 7.27 | 11.60 | 12.33 | 3.59 | 4.32
32 83 34 - 40 76 0 0 0 1 5 0 0 59 41
Qs 1.36 | 1.00 | 1.34 | 1.98 | 1.96 | 1.28 | 15.85| 4.03 | 12.77 | 11.09 | 3.71 | 935 | 8.44 | 2.83 | 3.14
80 93 81 - 48 93 0 2 0 0 5 0 0 18 15
Qi 0.56 | 0.54 | 0.55 | 5.58 | 482 | 4.64 | 19.81 | 3.05 | 4.81 |12.78 | 2.78 | 425 | 1034 | 2.54 | 3.78
100 | 100 | 100 - 82 74 0 93 69 0 96 80 4 95 94
Q, 1.56 | 1.43 | 1.51 | 4.00 | 3.64 | 3.75 | 2436 | 6.81 | 9.57 | 1484 | 591 | 7.71 | 6.42 | 5.73 | 4.69
100 | 100 | 100 - 71 65 0 11 4 0 16 5 14 19 37
Qi 0.52 | 0.51 | 0.56 | 247 | 2.64 | 246 | 536 | 2933|1820 | 470 | 16.00 | 12.32 | 4.28 | 13.88 | 12.35
100 | 100 | 100 - 34 49 4 0 0 6 0 0 10 0 0
Qo 517 | 471 | 479 | 5.63 | 473 | 472 | 17.50 | 1424 | 6.05 | 11.57 | 10.08 | 5.16 | 6.38 | 10.17 | 5.28
60 69 73 - 79 77 0 0 47 2 6 62 34 4 58
Qo 288 | 1.71 | 2.74 | 2.06 | 1.98 | 1.58 | 7.52 | 11.99 | 5.08 | 6.26 | 9.17 | 4.44 | 5.66 | 890 | 4.00
16 73 20 - 59 88 0 0 2 0 0 2 0 0 5

The results for matrix A, are similar to the results for matrix A,. For component No. 1
method No. 2 is best. Shrinking the unbiased forecast combinations improves the forecast
quality in the sense of the MSE. Using a shrinkage matrix I" is for all techniques better than

using a scalar A. The simple average is the combination method with lowest quality.

Table 6: Results for component No. 2, Cov(Y, )= A,

TL | T2 | T3 | T4 | TS | T6 | T7 | T8 | T9 | T10|TI11 | T12|T13 |Tl4 | TI15
Q, 094 | 092 | 093 | 3.87 | 3.44 | 298 | 2.99 | 8.06 | 16.02 | 428 | 8.13 | 11.48 | 2.84 | 533 | 7.61
100 | 100 | 100 - 67 85 73 0 0 42 2 0 77 20 1
Q, 527 | 453 | 490 | 3.57 | 320 | 3.21 | 1523 | 9.48 | 9.43 | 10.04 | 8.05 | 7.43 | 3.79 | 7.68 | 6.70
7 22 16 - 75 73 0 1 3 0 1 4 41 2 6
Q, 343 | 251 | 3.25 | 338 | 298 | 2.11 | 19.84 | 8.81 | 8.15 | 15.07 | 6.90 | 6.57 | 6.83 | 520 | 5.13
47 80 52 - 87 99 0 0 1 0 3 7 2 18 16
Q. 257 | 1.81 | 241 | 294 | 2.79 | 1.59 | 10.30 | 11.95|24.67 | 7.38 | 8.81 | 14.85| 6.01 | 7.92 | 8.72
63 92 68 - 58 99 0 0 0 0 1 0 4 0 1
Q, 221 | 1.80 | 2.12 | 6.35 | 527 | 4.22 | 12.65|20.89 | 791 | 891 | 1489 | 6.53 | 5.78 | 819 | 1.98
99 99 100 - 94 96 2 0 28 17 0 42 65 24 100
Q 3.65 | 328 | 3.47 | 11.17 | 829 | 6.23 | 2445 |12.76 | 2530 | 17.56 | 8.88 | 17.31 | 8.76 | 8.43 | 6.17
99 99 99 - 96 96 1 33 0 7 68 2 74 80 94
Q, 198 | 1.65 | 1.89 | 471 | 413 | 3.12 | 7.87 | 10.87 | 2.83 | 6.68 | 834 | 477 | 3.29 | 451 | 2.78
97 99 97 - 86 94 6 0 100 10 4 56 81 56 100
Q 332 | 3.05 | 3.19 | 3.69 | 3.31 | 2.78 | 16.89 | 22.76 | 12.35 | 11.42 | 12.87 | 9.21 | 9.84 | 4.33 | 6.56
58 69 61 - 69 85 0 0 0 1 0 0 1 35 8
Q, 352 | 3.14 | 331 | 437 | 383 | 3.57 | 9.04 | 11.31 | 13.15| 7.41 | 837 | 10.75| 5.28 | 7.26 | 6.57
74 81 78 - 85 82 0 0 0 1 8 1 31 15 9
Qo 8.65 | 3.66 | 7.81 | 10.89 | 8.28 | 3.77 | 8.87 | 28.24 (2090 | 6.99 | 1822|1748 | 492 | 6.89 | 3.65
71 100 78 - 99 100 69 0 0 83 2 1 96 86 99
Q, 3.67 | 3.04 | 3.45 | 440 | 3.77 | 3.30 |20.77 | 1488 | 9.22 | 13.86 | 9.73 | 814 | 9.50 | 8.52 | 7.30
80 85 83 - 86 85 0 0 5 1 1 2 6 4 12
Q, 1.66 | 1.33 | 1.61 | 239 | 2,19 | 1.70 | 6.95 | 7.98 | 486 | 5.78 | 7.90 | 430 | 2.83 | 532 | 2.90
84 95 87 - 76 92 0 0 3 1 0 7 39 0 33
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Table 6 continiued

Qi 0.73 | 0.72 | 0.72 | 4.60 | 4.05 | 3.71 | 9.86 | 1587 | 7.03 | 7.73 | 1091 | 5.86 | 7.74 | 8.69 | 4.11
100 | 100 | 100 - 83 83 6 0 11 7 0 26 10 3 59
Q. 035 | 0.21 | 036 | 1097 | 816 | 5.09 |46.50 | 9.08 | 4.89 |22.77 | 6.97 | 5.67 | 1431 | 3.44 | 2.18
100 | 100 | 100 - 100 99 0 76 96 0 96 94 25 100 | 100
Qs 1.54 | 1.12 | 1.49 | 4.61 | 4.06 | 2.36 | 25.50 | 18.67 | 4.84 | 15.10 | 15.13 | 5.03 | 8.15 | 538 | 1.43
98 99 98 - 86 100 0 0 40 0 0 40 12 36 99
Qi 1.82 | 1.72 | 1.77 | 2.07 | 2.01 | 2.02 | 9.06 | 2.98 | 6.34 | 7.77 | 2.70 | 535 | 6.96 | 2.40 | 4.02
65 66 65 - 50 53 0 18 0 0 35 0 0 40 5
Q, 227 | 1.97 | 2.19 | 390 | 3.45 | 347 | 2.00 | 7.05 | 12.31 | 590 | 5.83 | 885 | 1.65 | 5.48 | 4.89
90 98 93 - 77 71 97 0 0 15 6 0 100 9 28
Qi 814 | 5.18 | 7.49 | 819 | 6.49 | 520 |10.19 | 24.81 | 21.76 | 8.03 | 13.11 | 12.59 | 531 | 11.27 | 11.26
52 86 59 - 96 97 32 0 0 52 10 11 80 12 20
Qi 2.67 | 243 | 249 | 526 | 440 | 4.23 | 13.62 | 1489|2470 | 9.40 | 10.01 | 1835 | 5.28 | 9.23 | 7.57
97 97 97 - 86 85 3 0 0 12 4 0 45 6 20
Qo 220 | 1.34 | 2.10 | 4.16 | 3.69 | 2.46 | 14.86 | 9.88 | 10.77 | 11.06 | 7.47 | 8.68 | 6.49 | 7.01 | 5.59
94 98 94 - 80 95 0 0 2 0 7 3 8 12 27

Method No. 2 again is best for the second component. Shrinking leads to a smaller MSE. The
forecast combinations improve the individual forecasts. For all combination methods the
approach with a shrinkage matrix I performs better than the approach with a constant A.
Furthermore, only the simple average is in some cases of lower quality than some of the

individual forecasts. We now want to summarize the results in the following table.

Table 7: Summary of the results, Cov(Y, )= A,

T2 | 13 | 15 | 16 [ T10 | T13 [ T11 | T14 | T12 | Ti5
component | 2() 19 14 19 20 20 20 20 20 20
No. 1 13 5 0 2 0 0 0 0 0 0
component | 2() 19 20 20 18 19 17 20 20 20
No.2 14 0 1 3 0 1 0 0 0 1
sumofav. | 20 20 20 20 20 20 20 20 20 20
MSEs 19 0 0 i 0 0 0 0 0 0

We can conclude as for matrix A,. Shrinking leads to an improvement. Method No. 2 is

obviously the best.

6. Concluding remarks

Giving up the requirement of unbiased forecast combination improves the quality of the
combined forecast in the sense of the MSE (uinivariate), the SMSE or the MMSE
(multivariate). Especially the shrinkage approach gives information, how unbiased forecast

combinations can be improved. Although the optimal shrinkage scalar (matrix) depends on
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unknown variables, the second moment of the variable to be forecasted (univariate case) and
the error covariance matrix, it is possible to calculate shrinkage scalars lying in the
improvement region. An example shows us that the shrinkage versions of different unbiased
forecast combinations are of high quality. A more detailed analysis of the performance of the
estimators of the unknown parameters is necessary. In this case it could be possible to decide
when shrinking is useful and which estimators we should rely on.

In practice subjective weighting schemes are often used for the combination of forecasts.
Analysts often decide to weight the forecasts in a special relation, depending on some a-priori
knowledge. Then they conclude in common that the weights should sum up to one. Shrinking
these forecasts combination saves the relation between the weights. The restriction that the
weights sum up to one is no more valid. Then, choosing adequate estimators for the unknown

parameters can lead to an improvement.

7. Appendix

Al) We show that a kxn -k matrix C:=[C,,...,C, ], where ZCi =1, , has full row rank:

i=1

k=rg(l,)= rg[ici J: rg(CI,,....1,1) < 1g(C).

A2) The 20 error covariance matrices in the simulation study:

14 4 2 -3 4 4 13 -11 -6 2 0 7
4 3 5 -3 -1 -1 -1 16 9 2 3 -3
2 5 27 -2 -5 1 -6 9 19 6 2 -6
Q= , Q, = ,
-3 -3 -2 8 -3 8 2 2 6 9 -1 0
4 -1 -5 -3 42 -8 0 3 2 -1 7 4
4 -1 1 8 -8 16 7 -3 -6 0 4 9
5 1 -3 -3 -1 2 13 0 10 4 3 -11
1 19 -7 6 -2 -5 0 10 -1 -5 |
-3 -7 7 0 3 1 10 -1 13 4 1 -13
Q= , Q= ’
-3 6 0 9 -3 -4 4 -5 4 12 -8 2
-1 =2 3 -3 6 1 3 1 1 -8 15 -1
2 -5 1 -4 1 8 -11 -7 =13 2 -1 24

21



. — 0 — O A AN
_1_ |
© v <t © ~ >~
P | N
N O < N~ AN -
| [ |
— O — A o0 I~ <t © O — —
N~ T on O
R IR
(SR TN o\ BN o ST o\ e | — — N \© ~
I - . _ [
<t on 0o <t < —

— n n o — < — — 0 A T o — —
v~ N~ O ®
B R
NN — N = o QN — N~ o — o
[ | 41_ [ P

I, I © — © © <
N=3 .mo 1__
G c
- Il
v o— o oo =
_ N S o — \n A o c
[ |
5347”8505262 S oo — O o
| | | | — | —
— p—
7_.1327~/_.13Q_JH250260 o
— — e
DTN o\ NN SN SO T s 0 N N >~ N own — — /h_v
I I [ I
3 —
MmN A =~ oo e &Y
I — L
— N N — oo
NN NV AN NN NN — N O
— [ [ n - o — o
. I, I,
v o~ [=)}
G G G

1%531_566046
|
— v — N — .
_2__ | — © O <= >
— — _1
I © —~ & — o
— — N 00 — en
_ _ <t v oo < © S — A n
— |
— o n A n on SO AN O oA
42__ 14956 [
|
<+ <+ 0o —
—
2_“7m Zaﬂ o © — < ©
[ 14_14 <+t o oo
|
<+t 0 — — —
_ X T Ot <+ © ©
_ p—
I
AN __
« .__. ol
— o
5 ©
a g a
N~~~ S © o . _
D ~ e e - <t 224
|
o — N A < ©
T R R A
|
— — <+ ©n & <
| — 0 — N O — 273%7
| — [ |
<+ 0 0 <+ &N ~
| — __300433 AN V< N
[ B [
TR T IODI Lo oo~ n v O W~ o
P = 7 I o I
Ot T — O AN O >~ o0 oo — © VAN A~
Lo - | _ - Lo
I, I, I,
= e o
G G G

22



25 =2 4 8 -1 9 5 0o -7 3 3 -3
-2 2 - 0 2 0 10 7 -1 -8 -3
4 -2 7 3 -6 5 -7 7 28 4 -10 O
Q= , Qg = >
8 0 3 7 -1 7 -1 4 25 12 13
-1 2 -6 -1 10 -5 -8 —-10 12 18 8
9 0 5 7 -5 13 -3 -3 0 13 g8 22
18 -7 8 7 1 0 7 0 -2 -3 3 2
-7 14 -8 -8 6 -3 0 15 =2 4 -3 3
8 -8 14 7 =2 10 -2 =2 12 4 -4 -3
Q= , 2y =
7 -8 7 15 2 8 -3 4 4 10 =5 -6
1 6 -2 2 6 2 3 -3 -4 -5 5 0
0 -3 10 8 2 24 2 3 -3 -6 0 11
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