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SUMMARY

We derive conditions for decomposition and collapsibility of graphical interaction

models for multivariate time series. These properties enable us to perform stepwise

model selection under certain restrictions. For illustration, we apply the results

to a multivariate time series describing the haemodynamic system as monitored in

intensive care.

Some key words: Multivariate time series; Partial spectral coherency; Graphical

interaction model; Marginalization; Model selection.

1 Introduction

In multivariate data, usually a multitude of relations among the variables can be

found. However, many of them may be spurious or indirect, i.e. induced by others.

Graphical models display the essential relations between the variables in graphical

form. The variables are represented as vertices and those pairwise associations that

persist when removing the e�ects of the other variables are shown as edges. In

most cases the statistical meaning of association is some kind of conditional depen-

dence. Thus, a missing edge indicates conditional independence of the corresponding

�
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variables given all the remaining variables. Dawid (1979) discusses conditional inde-

pendence as a basic tool for statistical inference, and the monographs by Whittaker

(1990), Cox & Wermuth (1996), Lauritzen (1996) and Edwards (2000) give broad

reviews on graphical models.

Brillinger (1996) proposes a suitable modi�cation of graphical models for analysing

the associations among the components of a multivariate time series, further devel-

oped by Dahlhaus (2000). Their approach is based on the partial spectral coherency,

which measures the linear dependence between two components of a multivari-

ate time series after removing the linear e�ects of the remaining components (cf.

Brillinger, 1981, section 8.3). This provides a method to detect associations due to

partial linear, possibly time{lagged, relations between the variables of a multivariate

time series. The graphical representation is thus termed `partial correlation graph'.

For a multivariate Gaussian process, conditional independence of two component

processes and zero partial correlations at all time lags are equivalent, whereas the

former is a stronger property in general. The usefulness of partial correlation graphs

has already been proved in medical applications (Timmer et al., 2000, Gather et al.,

2002).

In this paper, we focus on dependence structures of subprocesses derived from a

high{dimensional time series by marginalising with respect to some of the compo-

nents. The results that we present are useful for several reasons: In some situations

we might wish to discard some of the components because their measurement is

diÆcult, inaccurate, or simply incomplete. It is then helpful to know whether an

omission induces spurious or misleading associations among the remaining, fully ob-

served, components. A similar idea is exploited by Didelez & Pigeot (1999) in order

to cope with missing values in a non{dynamic setting. Another reason for our in-

vestigations is the desire to reduce computational complexity without distorting the

underlying dependence structures. In fact, simpli�cation of complex manipulations

of multivariate distributions is one of the main bene�ts of conditional independence

graphs and exploited e.g. by probabilistic expert systems (Cowell et al., 1999). Fi-

nally, let us mention that properties such as decomposition and collapsibility can

facilitate more sophisticated selection strategies of graphical models for time series.

We advocate that one should take advantage of the graphical independence struc-

ture, as far as possible, to obtain a more re�ned and reliable selection procedure.

This latter aspect will be investigated in more detail when having presented the the-

oretical results. While conditions for decomposability of conditional independence
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graphs for independent observations are well{known (Frydenberg, 1990), they have

not yet been derived for graphical interaction models for dynamic data.

We proceed as follows. In Section 2 we introduce the necessary terminology

and review partial correlation graphs for multivariate time series. In Section 3 we

derive conditions for decomposability and collapsibility of these models that allow

the use of standard methods to perform the estimations under speci�c restrictions.

A model selection procedure that exploits these properties is proposed in Section 4

and illustrated in Section 5 by an application to a multivariate time series describing

the haemodynamic system of a critically ill patient. We close with some conclusions

in Section 6.

2 Graphical Models for Multivariate Time Series

2.1 Graph Notations

A graph G = (V;E) consists of a �nite set of vertices V and a set of edges E �

V � V , that are ordered pairs of vertices. It can be visualised by drawing a circle

for each vertex and connecting each pair a; b of vertices whenever (a; b) 2 E or

(b; a) 2 E by an edge. In this paper we focus exclusively on undirected graphs

where (a; b) 2 E implies (b; a) 2 E. The edges are therefore simply represented

by lines. Directed graphs typically encode di�erent dependence structures, subject

to the kind of graph. In the context of stochastic processes, directed edges have

been used to depict asymmetric dependencies (Eichler, 2000, Didelez, 2000) such as

in
uences from past events on the presence or future. However, in the undirected

graphs considered here, an edge stands for a symmetric association.

In conditional independence graphs, the vertices represent univariate random vari-

ables. The pairwise Markov property for undirected graphical models then states

that two variables a and b are conditionally independent given all remaining vari-

ables if they are not connected by an edge, i.e. if (a; b); (b; a) =2 E. In a partial

correlation graph for a multivariate time series each vertex stands for a component

of that series and a missing edge indicates a zero partial correlation between a and b

at all time lags after removing the linear e�ects of the remaining variables (Dahlhaus,

2000). A more formal de�nition is given in the next section.

If two variables a and b are connected by a path, i.e. if vertices a = a

0

; : : : ; a

l

= b,
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l � 1, exist such that then there is an edge between each pair of successive vertices,

there is some (linear) relation between them (possibly mediated by other variables).

A connectivity component of an undirected graph is a maximal subset of pairwise

connected variables (for an undirected graph connectivity is an equivalence relation

on V ). A graph that includes all edges is called complete. It typically represents the

saturated model allowing for all associations. If we eliminate some vertices retaining

only a subset A and eliminate all edges (a; b) not contained in A � A we get the

subgraph G

A

induced by A. The boundary bd(A) of A � V consists of all vertices

v 2 V n A that are joined by an edge to some vertex a 2 A. The closure of A is

A [ bd(A).

The following notion of a decomposition will be useful for dimension reduction:

Let (A;B; S) be a partition of V . Then, we say that G can be decomposed into

subgraphs G

A[S

and G

B[S

if (i) S separates A and B in G, i.e. if every path between

any a 2 A and b 2 B necessarily contains at least one vertex s 2 S, and (ii) G

S

is

complete. The triple (A;B; S) is then called a decomposition of G. Obviously, for

dimension reduction, a decomposition has to be proper, i.e. A 6= ; and B 6= ;.

2.2 Partial Correlation Graphs

Let us now address in more detail the statistical models induced by graphs as they are

considered in this paper. Let X(t) = f(X

1

(t); : : : ; X

k

(t))

0

; t 2 Zg; be a multivariate

stationary time series of dimension k. Suppose that the autocovariance fuction




ab

(h) = covfX

a

(t+ h); X

b

(t)g; h 2 Z;

is absolutely summable with respect to all time lags h for all pairs a; b 2 V =

f1; : : : ; kg. Then the cross{spectrum between two components fX

a

(t); t 2 Zg and

fX

b

(t); t 2 Zg of the time series is de�ned as the Fourier{transform of their covari-

ance function

f

ab

(�) = f

X

a

X

b

(�) =

1

2�

1

X

h=�1




ab

(h) exp(�i�h); � 2 [0; �]

(see Brillinger, 1981, p. 232). This decomposes the covariance function 


ab

into

periodic functions of frequencies �. The variables X

a

and X

b

are uncorrelated at all

time lags h i� f

ab

(�) equals zero at all frequencies. Similarly, we can de�ne the cross{

spectrum between two multivariate time series fX

A

(t); t 2 Zg and fX

B

(t); t 2 Zg

to be the (component wise) Fourier{transform of their covariance matrix function
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f�

AB

(h); h 2 Zg. For ease of notation we will also use X

A

instead of fX

A

(t); t 2 Zg

in the following.

Let (A;B;C) be a partition of the observed variables. In order to assess the partial

linear relations between the variables in A and the variables in B we eliminate the

linear e�ects of X

C

from X

A

and X

B

. Thus, we have to determine a vector �

?

A;C

and

a �lter fd

?

A;C

(h); h 2 Zg minimising the expectation of the vector product

E

"(

X

A

(t)� �

A;C

�

X

h

d

A;C

(h)X

C

(t� h)

)(

X

A

(t)� �

A;C

�

X

h

d

A;C

(h)X

C

(t� h)

)

0

#

:

If the spectral density matrix f

V V

(�) for the whole process is regular at all frequen-

cies the solution is unique (Brillinger, 1981, Theorem 8.3.1) and we can de�ne the

residual series f"

A�C

(t); t 2 Zg by

"

A�C

(t) = X

A

(t)� �

?

A;C

�

1

X

h=�1

d

?

A;C

(h)X

C

(t� h) :

The partial cross{spectrum between X

A

and X

B

given X

C

can then be de�ned as

the cross{spectrum between f"

A�C

(t); t 2 Zg and f"

B�C

(t); t 2 Zg

f

AB�C

(�) = f

"

A�C

"

B�C

(�) ; � 2 [0; �] :

Brillinger (1981, p. 296) shows that the partial cross{spectrum can be calculated

using

f

AB�C

(�) = f

AB

(�)� f

AC

(�)ff

CC

(�)g

�1

f

CB

(�) ; (1)

where the entries of the matrices f

AC

(�), f

CB

(�) and f

CC

(�) are ordinary cross{

spectra between the corresponding variables.

The partial spectral coherency between component processes X

a

and X

b

is a stan-

dardization of their partial cross{spectrum,

R

ab�V nfa;bg

(�) =

f

ab�V nfa;bg

(�)

ff

aa�V nfa;bg

(�)f

bb�V nfa;bg

(�)g

1=2

; (2)

that measures partial correlation as a function of the frequency, while the (partial)

phase{spectrum between components a; b is de�ned via the Eulerian representation

f

ab

(�) = jf

ab

(�)j expfi�

ab

(�)g :

It can be interpreted as angle between the residual components of frequency �.
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Zero partial correlation at all time lags de�nes an orthogonality relation ?? as

follows:

X

A

?? X

B

j X

C

() covf"

A�C

(t); "

B�C

(t+ h)g = 0 8 h 2 Z (3)

() f

AB�C

(�) = 0 8 � 2 [0; �]

() R

AB�C

(�) = 0 8 � 2 [0; �];

where R

AB�C

(�) denotes the matrix with entries R

ab�C

, a 2 A, b 2 B. For ease of

notation we also write A??BjC instead of X

A

??X

B

jX

C

identifying the components

of subvectors with their indices.

The connection between a graph and the partial correlation structure of a multi-

variate time series is formally established as follows. Let the vertices V = f1; : : : ; kg

of G represent the components of a time series X

V

. Then we say that G is the partial

correlation graph of X

V

if

(a; b); (b; a) =2 E =) a?? b j V n fa; bg; (4)

i.e. f

ab�V nfa;bg

(�) = 0 for all frequencies � 2 [0; �] and vice versa.

Partial correlation graphs for multivariate time series de�ned like this generalise

conditional independence graphs for a multivariate normal distribution since for

an independent sample the matrix of cross-spectra is a constant multiple of the

covariance matrix.

Let f"

B�C

(t); t 2 Zg be calculated analogously from X

B

. Note, that both past and

future e�ects of X

C

are eliminated here as we use the resulting partial correlations to

de�ne undirected graphical models. It would be natural to de�ne directed graphical

models for multivariate time series by eliminating past e�ects only (Eichler, 2000).

While the foregoing de�nition of partial correlation graphs refers to a pairwise

property it implies much more vanishing partial correlations than are apparent at

�rst glance. Dahlhaus (2000) proves for partial correlation graphs that, under the

assumption of the spectral matrix being regular at all frequencies, the above pair-

wise Markov property (4) for partial correlation graphs implies the so{called global

Markov property. The latter is generally stronger than the pairwise property and

states that two subprocesses, A and B, have zero partial correlations at all time lags

given the linear e�ects of a subprocess C � V n(A[B) whenever C separates A and

B in G. Put di�erently, the variables in A and B are not associated if the linear

e�ects of a separating subset C are controlled. Note that A;B;C do not need to be
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a partition of V , i.e. zero partial correlations can be retained even when discarding

the components in V n(A [ B [ C), nor is C necessarily unique. The requirement

that the spectral density matrix be regular at all frequencies essentially implies that

there is no linear relationship among the components of the multivariate time series

at any frequency. This would mean that some of the components would carry no

new information making them redundant at a frequency where the spectral matrix

is not regular.

2

6

1

4

3 5 7

8

9

10

Figure 1: True partial correlation graph for a special VAR(1)-process.

In order to illustrate partial correlation graphs for time series we use a VAR(1)-

process X = (X

1

; : : : ; X

10

) with ten variables

X(t) = �X(t� 1) + "(t) ;

where f"(t) : t 2 Zg is a white noise process consisting of N(0; I)-distributed errors

and � = (�

i;j

) with �

i;i

= 0:3; i = 1; : : : ; 10, �

1;2

= �

2;1

= �

2;6

= �

3;2

= �

3;4

= �

6;5

=

�

6;8

= �

7;6

= �

9;7

= �

9;8

= �

10;8

= �

8;10

= 0:3, and the remaining �

k;l

= 0. As proved

by Dahlhaus (2000), in the partial correlation graph for such a VAR(1)-process two

component processes a and b have to be connected by an edge i� �

a;b

6= 0, or �

b;a

6= 0,

or if a and b jointly a�ect a third component, i.e. if there exists a c 2 V nfa; bg such

that �

c;a

6= 0 and �

c;b

6= 0. The resulting partial correlations graph for this multi-

variate process is shown in Figure 1. The edges induced by two components jointly

a�ecting a third one are: (2; 4), (5; 8), and (7; 8). A conditional independencies that

can be read o� the graph is, for instance, 1?? 3 j f2; 4; 5; 6; 7; 8; 9; 10g because there

is no edge between X

1

and X

3

(pairwise Markov property). Further we get from

the global Markov property that conditioning on X

2

suÆces to make X

1

and X

3

independent, i.e. 1?? 3j2, due to the corresponding graph separation.
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3 Decomposition of Partial Correlation Graphs

In the following we derive some properties of partial correlation graphs that aim at

reducing complexity in several ways. In particular, we are interested in the partial

correlation structure of subprocesses X

A

; A � V , or, more formally, in the partial

cross{spectra f

ab�Anfa;bg

(�), a; b 2 A. Note that the pattern of vanishing partial

correlations in such a submodel does not necessarily have to match the subgraph

G

A

of the partial correlation graph G for the whole process. Marginalising with

respect to X

V nA

might induce other associations or independencies than shown in

G

A

. Such phenomena are known as Simpson's Paradox (Simpson, 1951).

Throughout this section we assume that G = (V;E) is the partial correlation

graph of a multivariate stationary time series X

V

and that the spectral density

matrix of X

V

is regular at all frequencies �.

PROPOSITION 1 (decomposition). If (A;B; S) is a decomposition of G then the

subgraph G

A[S

is not smaller than the partial correlation graph of the subprocess

X

A[S

in the sense that all edges missing in G

A[S

are also missing in the partial

correlation graph of this subprocess.

Proof. This result can be proved in the same way as Proposition 12.2.1 in Whit-

taker (1990) using the global Markov property shown by Dahlhaus (2000). �

The condition in Proposition 1 ensures that missing edges in a subgraph can

still be regarded as zero partial correlations within the corresponding subprocess

after marginalising over the remaining components. This applies for instance to the

AR(1)-process introduced in the last section choosing the subgraph G

f1;2;3;4;5;6g

since

(f1; 2; 3; 4g; f7; 8; 9; 10g; f5; 6g) is a decomposition.

The next proposition transfers a result on collapsibility, which is well{known

in the case of conditional independence graphs (cf. Whittaker, 1990, proposition

12.5.1) to partial correlation graphs for multivariate time series. It uses proposition

1 to characterise subsets that can be neglected without inducing additional

dependencies among the remaining components.
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PROPOSITION 2 (collapsibility). If the boundary of each connectivity compo-

nent of B � V is complete then G

V nB

is not smaller than the partial correlation

graph of the subprocess X

V nB

. We say that G is collapsible onto V nB (or over B).

Note, that the condition of each connectivity component of B � V being complete

corresponds to the notion of a simplicial subset as introduced by Frydenberg (1990).

Proof of Proposition 2. First suppose that B consists of one connectivity

component only. We de�ne A = V n fB [ bd(B)g. Since the boundary of B is

complete and separates A from B we have that (A;B; bd(B)) is a decomposition.

Thus, the result is a simple consequence of proposition 1. If there are several

connectivity components the result follows from repeated application of this

argument by successively discarding the connectivity components of B. �

In our example, we can apply this proposition e.g. to B = f1; 7; 8; 9; 10g so that the

missing edges in G

f2;3;4;5;6g

correspond to zero partial correlations within X

f2;3;4;5;6g

.

We will now show that zero partial correlations have their counterpart in

zero regression coeÆcients in dynamic regression. Here, the separating subset

can be incomplete as we consider relations between the separated sets A and B only.

PROPOSITION 3 (dynamic regression). Let (A;B; S) be a partition of V . A and

B are partially uncorrelated at all time lags, A??BjS, i� all entries of the optimal

linear �lter d

?

A;B[S

(h) being coeÆcients of components in B equal zero at all time

lags h.

Proof. The optimal vector �

?

A;B[S

and the optimal linear �lter d

?

A;B[S

can be calcu-

lated from a multiple regression of X

A

on X

B[S

in the frequency domain considering

each frequency individually (Brillinger, 1981, Theorem 8.3.1):

�

?

A;B[S

= E

"

X

A

(t)�

(

X

h

d

?

A;B[S

(h)

)

EfX

B[S

(t)g

#

(5)

d

?

A;B[S

(h) =

1

2�

Z

2�

0

A(�) exp(ih�)d� (6)

with A(�) = (f

AB

(�); f

AS

(�))

 

f

BB

(�) f

BS

(�)

f

SB

(�) f

SS

(�)

!

�1

: (7)
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It is easily veri�ed that this inverse can be written as

 

N

�1

�N

�1

M

�PN

�1

ff

SS

(�)g

�1

+ PN

�1

M

!

;

where M = f

BS

(�)ff

SS

(�)g

�1

, N = f

BB

(�) � f

BS

(�)ff

SS

(�)g

�1

f

SB

(�) and P =

ff

SS

(�)g

�1

f

SB

(�).

Assume now that all entries of d

?

A;B[S

(h) which correspond to components in B equal

zero at all time lags h. This is equivalent to all functions in the Fourier transform

A(�) of the �lter, that correspond to elements in B, being identical to zero, cf. (6).

From (7) we see that this is equivalent to

0 = ff

AB

(�)� f

AS

(�)ff

SS

(�)g

�1

f

SB

(�)gN

�1

() 0 = f

AB

(�)� f

AS

(�)ff

SS

(�)g

�1

f

SB

(�) :

From formula (1) we see, in turn, that this is equivalent to f

AB�S

(�) being equal to

zero for all frequencies which de�nes the orthogonality A??BjS, cf. (3).

Further, we see immediately from formula (5) that �

?

A;B[S

does not depend on the

variables in B in this case. �

Since the above argumentation is symmetric in A and B, we also �nd that all

entries of the optimal linear �lter d

?

B;A[S

(h) being coeÆcients for components in A

equal zero at all time lags, too.

For the AR(1)-process introduced in section 1, we see from proposition 3 e.g.

that the optimal linear �lter for X

1

given the other variables depends on X

2;6

only.

In principle, proposition 3 can be used to construct optimal �lters for a model

satisfying the restrictions by a partial correlation graph. The next proposition

provides a computationally more eÆcient solution for the estimation of the partial

spectral coherencies in special cases. It is similar to proposition 1. However, it

is stronger than the latter since it shows that not only the zero partial spectral

coherencies but all partial spectral coherencies within the subprocesses X

A

or X

B

are retained if (A;B; S) is a partition of the graph such that A?? BjS.
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PROPOSITION 4. Let (A;B; S) be a partition of V such that A??BjS. Then

a) the partial spectral coherency of a; ~a 2 A w.r.t. X

V

is the same as the partial

spectral coherency of these components w.r.t. X

A[S

, i.e.

R

a~a�V nfa;~ag

(�) = R

a~a�(A[S)nfa;~ag

(�); � 2 [0; �] :

b) the partial cross-spectrum of a 2 A and s 2 S w.r.t. X

V

is the same as the

partial cross-spectrum of these components w.r.t. X

A[S

, i.e.

f

as�V nfa;sg

(�) = f

as�(A[S)nfa;sg

(�); � 2 [0; �] :

Proof. a) Since S separates A and B in G, it is obvious that (S [ A) n fa; ~ag

separates fa; ~ag from B in this graph. Using proposition 3 we see that in the

optimal �lter d

?

a;V nfa;~ag

all coeÆcients of variables in B equal zero. Thus, the non{

zero elements of the optimal �lter for a taking all components into account are the

same as when taking only A [ S into account, and the optimal constants �

?

a;V nfa;~ag

and �

?

a;(A[S)nfa;~ag

are also the same. This implies that the residual series "

a�V nfa;~ag

and "

a�(A[S)nfa;~ag

are identical. The same is true for ~a, of course, and hence a and ~a

have the same partial spectral coherencies in both processes.

b) For s 2 S the residual series "

s�V nfa;sg

and "

s�(A[S)nfa;sg

are usually not identical.

However, the di�erence is a linear transform of X

V nfa;sg

as

"

s�(A[S)nfa;sg

(t)� "

s�V nfa;sg

(t) = �

?

s;V nfa;sg

+

1

X

u=�1

d

?

s;V nfa;sg

(u)X

V nfa;sg

(t� u)

� �

?

s;(A[S)nfa;sg

�

1

X

u=�1

d

?

s;(A[S)nfa;sg

(u)X

(A[S)nfa;sg

(t� u) :

Since "

a�V nfa;sg

?? X

V nfa;sg

, cf. proposition 3a), we have

covf"

a�(A[S)nfa;sg

(t); "

s�(A[S)nfa;sg

(t + h)g

= covf"

a�V nfa;sg

(t); "

s�V nfa;sg

(t+ h)g

+covf"

a�V nfa;sg

(t); "

s�(A[S)nfa;sg

(t+ h)� "

s�V nfa;sg

(t+ h)g

= covf"

a�V nfa;sg

(t); "

s�V nfa;sg

(t+ h)g+ 0

for all time lags h 2 Z. The partial cross-spectrum between a and s is simply the

Fourier transform of these covariances which proves the result. �
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Given the partial correlation graph G of X

V

and a partition (A;B; S) such that

A??BjS, the above result allows to estimate the partial spectral coherency between

variables a 2 A and ~a 2 A discarding the variables in B using the subprocess A[S,

only, without any loss of information. Amongst other things, we may then also test

zero partial spectral coherencies within X

A

w.r.t. the whole time series X

V

using only

subprocesses in A[S. We may then argue that the latter tests will usually be more

powerful as we do not adjust for irrelevant variables. This is particularly interesting

when the subgraph induced by A [ S is complete since then simple computational

formula exist, cf. (1). For a given partial correlation graph, we can estimate the

partial spectral coherency between variables a and b using the unrestricted process

X

cl(a;b)

, since bd(a; b) separates fa; bg from V n cl(a; b). In our running example, it

is suÆcient to observe X

f2;3;4g

for estimating the partial spectral coherency among

X

3

and X

4

.

In most practical applications, however, we do not know the partial correlation

graph beforehand so that the above ideas cannot directly be applied. In the fol-

lowing section we therefore suggest a stepwise procedure, where we �rst estimate a

preliminary graph the separation properties of which are then exploited to �nd more

reliable estimates based on subprocesses. Note that the empirical partial spectral

coherencies will rarely have exact zero entries when the underlying partial correla-

tion is zero. Therefore, the estimates based on the whole process and those utilising

the subprocess X

A[S

will typically di�er even though the theoretical ones do not.

4 Selection of Partial Correlation Graphs

4.1 Motivation

In applications, when investigating research hypotheses by empirical analysis of mul-

tivariate time series data, one can �rst estimate the cross{spectra from the data and

then use the empirical versions of equations (1) and (2) to estimate the partial

spectral coherencies. Thereafter, a decision has to be made whether the underlying

theoretical partial spectral coherency may be zero | obviously, sampling variability

will cause estimates to be distinct from zero. The program Spectrum developed by

Dahlhaus & Eichler (2000) estimates the cross{spectrum using a nonparametric ker-

nel estimator. In addition, it constructs an approximate bound for the 95%{quantile

of the maximal squared estimated partial spectral coherency in the saturated model
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(corresponding to the complete graph) assuming that the considered true partial

spectral coherency is zero. Thus partial uncorrelatedness of each pair of variables

can be tested simultaneously at the same approximate local signi�cance level by

comparing the estimated partial spectral coherency with this bound. Such a pro-

cedure results in an one{step selection of a partial correlation graph: Edges (a; b)

have to be included whenever the partial spectral coherency between X

a

and X

b

is

signi�cantly di�erent from zero.

In many applications it is known that associations may have di�erent strengths

and it seems straightforward to include this information into the graph. The strength

of an association can heuristically be regarded as an expected relative change in one

of the variables when the other one changes by a certain relative amount adjusting

for all remaining ones. A classi�cation of the strength may be based on the area

under the partial spectral coherency R

ab�V nfa;bg

as measured by the partial mutual

information

�

1

2�

Z

logf1� jR

ab�V nfa;bg

(�)j

2

gd�;

between the time series X

a

and X

b

(Brillinger, 1996, Granger & Hatanaka, 1964), or

by variants of this. In a clinical context, Gather et al. (2002) use gradually distinct

edges to classify the strength of the associations estimated in the saturated model.

Note, however, that all properties of the dependence structure that can be read o�

the graph rely on the missing edges, only, i.e. on zero partial correlations, regardless

of the strength of the non{vanishing associations.

Although reporting the strength of the associations provides information on am-

biguous edges it is still a heuristic approach. When calculating the partial spectral

coherencies between two variables w.r.t. X

V

we eliminate the linear in
uences of all

other variables and not only the linear e�ects of those variables that are really rele-

vant. It seems plausible to suspect that this may hide some associations by reducing

the power to reject zero partial correlations. Such a mistake might be prevented by

conditioning on smaller sets whenever possible.

More re�ned selection strategies often proceed stepwise such as backward or for-

ward procedures. Application of this kind of strategies to time series data requires

the estimation in models where some of the partial spectral coherencies are restricted

to zero. However, to the best of our knowledge, there is no general estimation the-

ory for such a task available yet. We run into problems even if we do not use a

non{parametric approach but assume a parametric model like a Gaussian vector
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Figure 2: AR(1)-process: Squared estimated partial spectral coherencies (below the di-

agonal) and partial phase spectra (above the diagonal). Some strong partial correlations

are evident from the partial spectral coherencies, cf. e.g. (1,2), while other partial spectral

coherencies are close to zero, e.g (1,3).

autoregressive model (Dahlhaus & Eichler, 2001).

Instead, we suggest to utilise the properties of partial correlation graphs de-

rived in the previous section and estimate the partial spectral coherencies non{

parametrically taking at least those restrictions into account that come along with

a separation of the graph. Starting by estimating the partial spectral coherencies

in the saturated model we then eliminate associations for which the area below

the curve representing the squared partial spectral coherency which is above the

approximate joint 95% con�dence bound is very small. The separation properties

of the graph found in this �rst step may in turn be exploited in a second step

to double{check missing and dubious interactions by restricting the computations

to appropriate submodels exploiting propositions 2 and 4. This double check can

repeatedly be applied if the graph changes in the second step.

For illustration we simulate 1000 observations from the VAR(1)-process intro-

duced in section 2. Applying the program Spectrum to the simulated time series

reveals strong partial correlations among e.g. (1; 2) and (3; 4), cf. Figure 2. How-
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ever, the partial spectral coherencies between e.g. (2; 4) and (1; 6) exceed the critical

bound only slightly at a few frequencies, just like the partial spectral coherency for

(4; 5). In contrast, the partial spectral coherency for (7; 8) does not even cross

the con�dence bound even though there is an edge in the model. Therefore, the

one{step selection would probably either neglect or include all of (2; 4); (1; 6); (4; 5)

and certainly neglect (7; 8). Figure 3 depicts the preliminary model for the partial

correlation graph. Ambiguous edges are represented by dashed lines.

2

6

1

4

3 5 7

8

9

10

Figure 3: Partial correlation graph for data simulated from a special VAR(1)-process,

one-step selection.

Partitions (A;B; S) of G with A ?? BjS and jAj > 1 allow to double{check the

importance of ambiguous and missing edges within A using the subprocess X

A[S

,

only, cf. proposition 4a). In principle we could consider all these separations and

include an edge if it is signi�cant for any of them. However, in case of many variables

there may be many separations and using all of them is computationally expensive.

Therefore, we suggest using only the separation (fa; bg; V ncl(a; b); bd(a; b)) to verify

the absence or presence of an edge (a; b) as cl(a; b) is the minimal set for which the

partial spectral coherency among (a; b) is the same as for the whole process if we

assume that the given partial correlation graph is true. For the missing edge (7; 8)

e.g. we have cl(7; 8) = f2; 5; 6; 7; 8; 9; 10g. Again, Spectrum can be used to estimate

the partial spectral coherencies within the saturated model for A[S. Although this

does not use the information provided by the absence of some of the edges within

A, it does use the information on the absence of associations between A and B.
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Therefore we consider the results obtained in this way to be in better agreement

with the current model than the estimates calculated in the �rst step. In the simu-

lated example, however, the estimated partial spectral coherency of (7; 8) does not

change much con�rming the absence of (7; 8). For the edges (2; 4) and (4; 5) we

have cl(2; 4) = f1; 2; 3; 4; 5; 6; 8g and cl(4; 5) = f2; 3; 4; 5; 6; 7; 8; 10g. Alternatively,

we could also check the presence of (4; 5) within the subgraph cl(2; 4) exploiting

proposition 4b). Applying Spectrum to this subgraph results in an decrease of the

estimated partial spectral coherency between (4; 5). Similarly, the estimated par-

tial spectral coherency between (5; 7) decreases when we consider the submodel for

f4; 5; 6; 7; 8; 9; 10g. Therefore, we could decide that these edges have to be omit-

ted, hence modifying the result of the one{step model selection in the second step.

In this particular example, exploiting the information on collapsible subsets in the

selection process thus leads to a result which is closer to the original graph.

4.2 Selection Strategy

Before describing the selection procedure in more detail let us mention some general

principles that should guide the model selection. Firstly, we propose to adhere to the

principle of coherent model selection (cf. Edwards, 2000, p. 165), which implies in

our situation that once a zero partial correlation can clearly be rejected this should

not be doubted in further steps. However, it might still be considered worthwhile

to investigate whether some of the edges which in previous steps have been found

to be ambiguous can be deleted despite the coherence principle. Secondly, it is

important to realise that if, in a stepwise selection, the edges of the current graph

G

0

are a superset of those in the true graph G any separation found in the former

will still hold in the latter. Hence we start with the complete graph and focus on

deleting edges in further steps. Thirdly, and related to the foregoing aspects, expert

knowledge on existing and absent associations should be included whenever possible

to improve the selection results and to concentrate on the unsettled problems.

In more detail, the model selection we propose proceeds as follows.

1. In the �rst step, we measure the area below the squared absolute partial

spectral coherencies which is above the 95% con�dence bound in the complete

model for all pairs of variables and utilise these values to classify all possible

edges according to the following categories:
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(I) Edges that clearly have to be included.

(A) Ambiguous edges that possibly have to be included.

(O) Edges that may be omitted.

2. Since false omission of an edge is worse than wrong inclusion of an edge because

it creates separations that might not be reliable, we next examine the edges

in (O) in a second (forward) step using separation properties of the graph

where only edges belonging to category (O) are omitted. Every edge (a; b)

contained in (O) with V n cl(a; b) 6= ; is reclassi�ed based on the estimated

partial spectral coherency calculated in the saturated model for X

cl(a;b)

. If

cl(a; b) = V we can possibly apply proposition 4b) to a separation (A;B; S)

with a 2 A and b 2 S. We suggest using only separations where jA [ Sj is

minimal. This procedure is repeated until the results no longer change.

3. Thereafter, in a third (backward) step, we examine all edges belonging to the

updated (A) proceeding as explained above. If the graph can be reduced we

may possibly �nd more separations. In particular, if an edge (a; b) is reclassi�ed

as (O) we get the possibility to reclassify the edges (a; c) and (b; c), c 2 V , that

are not contained in (I) using a reduced set cl(a; c) and cl(b; c) respectively.

We repeat steps two and three in this case.

The stepwise search stops when the classi�cations are stable. Note however, that

it might happen that this is not the case. We suggest to construct the �nal partial

correlation graph based on the classi�cation obtained in the last step using distinct

edges for the edges in category (I) and (A) and omitting the edges in category (O).

The sensitivity of the resulting graph to the classi�cations obtained in the �rst

step can be examined by performing the same stepwise search strategy starting

with a preliminary graph containing only the edges in (I). This usually increases the

number of separations and allows further model checks. However, the results from

this analysis have to be treated with caution as the starting graph is likely to have

too few edges. In general, neither separation nor collapsibility found in a too sparse

graph hold in the true graph.
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5 Application to Physiological Time Series

The previous results are now illustrated with a multivariate time series describing

the haemodynamic system of a critically ill patient measured in intensive care. The

data investigated here was collected by a Unix{based clinical information system

(CIS) at the surgical intensive care unit of the Community Hospital Dortmund.

We consider time series of the heart rate (HR), arterial mean pressure (APM),

pulmonary arterial mean pressure (PAPM), central venous pressure (CV P ), pul-

soxymetry (SpO2) and blood temperature (Temp). All variables are automatically

recorded at 1{minute time intervals by bedside medical devices. These measure-

ments provide crucial information on the clinical status of the patient. Over all,

2440 observations measured at subsequent points in time are available for the anal-

ysis.
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Figure 4: Squared estimated partial spectral coherencies (below the diagonal) within the

haemodynamic system of one patient. Strong partial correlations are found between HR

and APM , APM and PAPM , as well as between PAPM and CV P .

We expect `empirical associations' found by statistical analysis to re
ect `phys-

iological associations'. The latter mean, in the clinical context, that a change in
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one physiological variable a�ects another physiological variable. Note that the term

physiological association does not distinguish between causal, linear or non{linear

or in some sense directed relations. Therefore we do not aim at �nding directed

associations but apply graphical interaction models based on (symmetric) partial

correlations. On the one hand, this can be used to investigate whether well{known

physiological associations among the variables are detected and thus helps evaluat-

ing the selection strategy. On the other hand, it gives an impression of how current

medical knowledge is supported by the data.

Figure 4 shows the squared pairwise partial spectral coherencies between all vari-

ables estimated in the saturated model, i.e. for every pair the linear e�ects of all

remaining components have been removed. For HR and PAPM , HR and CV P ,

HR and SpO2, HR and Temp, APM and CV P , APM and SpO2, as well as for

SpO2 and Temp the estimate exceeds the approximate 5% con�dence bound only

at a few frequencies by a slight amount. Therefore we classify the corresponding

edges to belong to category (O). For APM and Temp, PAPM and SpO2, PAPM

and Temp, CV P and SpO2, as well as for CV P and Temp the estimate exceeds

the bound in a few regions by a rather large amount. Thus, we classify these edges

into category (A). For HR and APM , APM and PAPM , and PAPM and CV P

the estimate is signi�cantly distinct from zero over the whole range. Therefore, we

classify these edges into category (I), cf. Figure 5.

PAPMTemp

APM

CVPHR

SpO2

partial correlation

high

low

Figure 5: Partial correlation graph for the haemodynamic system, one-step selection.

To re�ne or validate this model we perform a stepwise search as outlined in the

previous section. In the second step, we check the absence of the missing edges
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using suitable separations (A;B; S) of the partial correlation graph shown in Figure

5, which can be viewed as a summary of all partial spectral coherencies calculated

in the �rst step. We use these partitions to estimate the partial spectral coherencies

among the components in A [ S applying the program Spectrum to estimate the

partial spectral coherencies for the complete subgraph corresponding to X

A[S

.

The absence of (Temp; SpO2) can be checked using cl(Temp; SpO2) =

fAPM;PAPM;CV P; Temp; SpO2g. We �nd only minor changes of the esti-

mated partial spectral coherency between Temp and SpO2 as compared to Fig-

ure 4. Similarly, the absence of (HR; Temp) and (HR; SpO2) can be validated

by estimation of the partial spectral coherencies from the corresponding closures.

Proposition 4a) cannot be used to check (HR;PAPM) since cl(HR;PAPM) =

V . Instead, we consider the decomposition (A;B; S) with A = fHRg, B =

fCV P; Temp; SpO2g and S = fAPM;PAPMg applying proposition 4b). We do

not �nd this edge to be signi�cant as the estimated partial spectral coherency re-

mains small. Repeated application of proposition 2 to check (APM;CV P ) using

A = fAPM;CV P; PAPM; Tempg, however, results in an increase of the estimated

partial spectral coherency, cf. Figure 6. Therefore this edge becomes ambiguous.

This reclassi�cation is con�rmed by the fact that we already noticed an increase

of the estimated partial spectral coherency among APM and CV P before when

considering cl(Temp; SpO2). Further checking using proposition 4b) validates the

absence of (HR;CV P ) and (APM;SpO2).

In the third step we check the edges which have been found to

be ambiguous before. We can check (PAPM; Temp), (CV P; Temp),

(CV P; SpO2), (PAPM;SpO2), (APM; Temp) and (APM;CV P ) using the sub-

process fAPM;PAPM;CV P; Temp; SpO2g and �nd the estimates of the partial

spectral coherencies of Temp to increase slightly in comparison to the estimates ob-

tained from the saturated model for all variables, while the estimate for PAPM and

SpO2 remains about the same. Hence, we do not reclassify these edges. Note that we

apply proposition 4b) for checking (APM; Temp) and (APM;CV P ) here. Checking

(APM; Temp) using cl(APM; Temp) = fAPM; Temp;HR;CV P; PAPMg we also

�nd this edge to be ambiguous. We do not get new separations in the third step so

that the stepwise search �nishes here.

Overall we have found evidence that, in addition to the results of the �rst step,

the edge (APM;CV P ) should be included in the partial correlation graph of the

haemodynamic system due to a weak association. This agrees with medical knowl-
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Figure 6: Estimated partial spectral coherencies (below the diagonal) within APM ,

PAPM , CV P and Temp. Here, the partial spectral coherency among APM and CV P

is weakly signi�cant.

edge since both APM and CV P measure blood pressure and their association is

not expected to be mediated by the other variables in the analysis.

In order to examine the sensitivity of the previous results on the classi�cation

found in the �rst step we run the procedure again but start with the graph containing

only the edges in (I) from the �rst step. We do not report the details of the analysis

as the results essentially support those above. However, this analysis that starts with

a sparser graph does indeed provide some evidence for edges in (A) being spurious.

Discarding CV P and PAPM does not increase the partial spectral coherencies

among fHR; Temp; SpO2g. This can be regarded as indicator for some of the

weak partial associations between either Temp and fPAPM;CV Pg or SpO2 and

fPAPM;CV Pg being spurious since Temp and SpO2 should be expected to show

an association when these mediating variables are omitted. At least the absence

of the latter pair of associations is additionally supported by medical knowledge:

There is no obvious reason why pulsoximetry SpO2 should be associated with any

of the other variables. Omitting the edges (SpO2; PAPM) and (SpO2; CV P ) does

not a�ect any of the earlier results. We may therefore delete them from the �nal

graph justifying this with the medical background knowledge.

Figure 7 depicts the �nal partial correlation graph derived from our stepwise

search strategy. The graph reveals the associations among the di�erent measures

of blood pressures with the association among CV P and PAPM and PAPM and
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APM being stronger than among APM and CV P . This agrees with the fact that

CV P and PAPM as well as PAPM and APM are measured very close by each

other, while the distance in the blood circuit between the measurement of APM

and CV P is rather large. Moreover, we see a strong association among the heart

rate and APM , while HR is not associated directly with PAPM and CV P . This

might be due to the current clinical state of the patient (cf. Gather et al., 2002).

The weak associations between the blood temperature and all blood pressures agree

with existing medical knowledge.

PAPMTemp

APM

CVPHR

SpO2

partial correlation
high

low

Figure 7: Partial correlation graph for the haemodynamic system derived from application

of a stepwise search strategy.

6 Conclusion

We have derived conditions for decomposition and collapsibility of partial correlation

graphs for multivariate time series. The results enable us to restrict the estimation of

the partial spectral coherencies to subprocesses so that problems arising frommissing

data or zero restrictions for some of the partial spectral coherencies can be dealt with.

These theoretical �ndings correspond to those well{known and important results for

conditional independence graphs. Our results thus underpin the usefulness of the

generalization of graphical models to dynamic data proposed by Dahlhaus (2000).

There are still some open problems regarding the general applicability of partial

correlation graphs to multivariate time series. For model selection strategies based

on stepwise elimination or deviance comparison, as commonly used in case of in-

dependent data, we lack appropriate methods in the time series context or would
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require further restrictive assumptions (Dahlhaus & Eichler, 2001). The results pro-

vided here, however, solve the problem of non{parametric estimation of the partial

spectral coherencies under speci�c restrictions on the dependence structure.

As to the medical application considered in section 5, a clinical study (Gather et

al., 2002) provides evidence that distinct clinical states like pulmonary hypertension,

congestive heart failure or septic shock come along with distinct partial correlation

structures. Therefore, we expect to gain new insights into the causes of clinical

complications and the e�ects of medical interventions by application of graphical

interaction models. Reliable strategies for model selection and model checking as

presented here are very valuable in this regard.
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