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Abstract

The distribution of cancer mortality in Germany is collected in two

di�erent data sets, one with a high spatial resolution but aggregated data

over time, the other with yearly data on a coarse spatial scale. This is

due to privacy protection laws, as the data become nearly individual when

analyzing rare cancer types or strata of age groups. The aim of this paper

is to present a modeling approach to estimate the missing data from the

given spatial and temporal marginals. Parameters of spatial and temporal

auto-correlation, dispersion, and temporal trend parameters are estimated

simultaneously within the Bayesian model, using MCMC techniques based

on the Metropolis Hastings algorithm.

Keywords: Spatio-temporal marginals, small area estimation, CAR, Bayes

model, Metropolis-Hastings algorithm
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1 Introduction

1.1 Small Area Estimation

The general idea of a small area estimation in its original sense is an intra-

polation of information collected on a larger spatial scale to local areas within

the study region. Additional variables with a high correlation to the variable of

interest can be used to improve the estimation, see Rao and Yu (1994). For the

purpose of this paper, the small area estimation is necessary as the frequency and

distribution of cancer mortality in Germany is published in two di�erent types of

resolution. One data set has a high spatial resolution, but aggregated data over

time, the other one is based on yearly data, but consists of aggregated data over

space. According to Becker et al.(1984), pp.3-4, this mode of data presentation is

required by privacy protection laws and tabulation procedures. When regarding

rare cancer types or further subdivision by age group the time by location cell

frequencies become too small. As knowledge about this data is desirable, however,

the estimation of the missing data will be performed in this analysis. The small

area estimation in this context uses spatial and temporal dependence structures,

based on a Bayesian hierarchical modeling approach. The underlying size of the

population at risk is available with the highest spatial and temporal resolution.

1.2 Speci�c Modi�cations

As described above, the original idea of small area estimation uses covariables

to break up the given marginal data into site-speci�c data for the small area.

This can be performed with a regression approach, by combining a number of

additional variables. However, usually the data are taken from cross sectional

studies or census data. Thus they include no temporal dimension. Furthermore,

even for the spatial aspect, the covariables are considered to include the total

spatial variation. In this context, the idea of a Bayesian small area estimation is
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used to break up given marginals into data for the small area. For this model,

the spatial as well as the temporal dimension are important features, and they

are modeled as complex dependencies within the data.

1.3 Data Sets

The spatio-temporal small area estimation will be illustrated using data on stom-

ach cancer mortality among men in Germany. As described above, the estima-

tion is performed by combining two types of marginal data sets. Data set I has

a coarse spatial structure of the 30 regions ("Regierungsbezirk") of former West

Germany, but displays yearly data from 1976 to 1990. Data set II consists of

stomach cancer mortality �gures with the high spatial resolution of 327 districts

("Landkreis") within the study area, but temporaly aggregated over �ve year

periods from 1976-1980, 1981-1985, and 1986-1990. We will use the following

notation:

D

ti

number of cancer cases at time t in district i (unknown)

N

ti

population size at time t in district i

r

ti

raw mortality rate at time t in district i, r

ti

= (D

ti

=N

ti

) � 100; 000

where i = 1; : : : ; I denotes the districts within the study region, and t =

1; : : : ; T represents time points for the analysis. Using the notation introduced

above, the aim of the small area estimation is to obtain

^

D

ti

, using the given

marginals D

:i

and D

t:

, where a dot indicates summation over the dotted index.

Additionally, the underlying population size N

ti

is known and available for the

analysis. The region of Braunschweig, located in Lower Saxony in the center of

Germany, will be used to illustrate the spatio-temporal small area estimation.

Braunschweig has been chosen, as it is a region with a reasonable number of

districts. Thus, we consider the following table, with the given marginals. The

aim is to �ll up the missing data, modeled as unknown parameters.
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year n distr. i = 1 i = 2 . . . i = I �

t=1 D

1:

t=2 D

2:

.

.

.

.

.

.

t=T D

T:

� D

:1

D

:2

: : : D

:I

D

::

Table 1: Marginal data for the small area estimation.

For the study area of Braunschweig, we have 11 districts (I=11) and consider

�ve years (T=5) from 1986 to 1990.

2 Spatio-temporal small area estimation

2.1 Spatial dependence structures

The spatial structure of the observed area is based on an irregular lattice struc-

ture. We imply stochastic dependence of neighboring sites. Two districts are

considered to be neighbors, if they share a common border. We model the spa-

tial dependence as a Markov type departure from independence, where the time

series de�nition of a Markov dependence is transferred to spatial data as described

by Cressie (1993), pp.402-410. This means that the observation in district i is

dependent on its neighboring sites, denoted by f�ig. However, it is indepen-

dent of the remaining sites on the lattice, given the values at the neighboring

sites. Markov processes of this type are said to have a conditional autoregressive

(CAR) structure. As we consider spatio-temporal dependencies, we model the

spatial dependence via the temporal dependence. This approach di�ers consider-

ably from the purely spatial CAR structure and will be explained in section 2.2.

The resulting neighborhood dependencies of the study region of Braunschweig

are indicated through the graph in �gure 1.
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Figure 1: Plot of the neighborhood structures within the study area.

Each of the eleven points displays the corresponding district within the region

of Braunschweig, and two points have been connected, if they are neighbors, i.e. if

they share a common border.

2.2 Spatio-temporal model

As described above, a major aim of our method is to estimate the missing param-

eters of cancer mortality, using the given marginals. Additional to the estimation

of the unknown cell frequencies, we use a hierarchical Bayesian model that simul-

taneously estimates parameters of spatial and temporal autocorrelation, disper-

sion, and temporal trend parameters, as described by Schach (2000). Based on

the idea of conditional independence, given neighboring sites in space and time,

we introduce the following three-stage hierarchical spatio-temporal model.
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The multivariate process of the rates starts at the �rst time point t = 1 with an

overall level �

1

and the site-speci�c variation b

i

, where for reasons of identi�ability

the b

i

's are constrained to sum to zero. The distribution of the vector of the b

i

is

multivariate Normal. It is assigned a non-informative covariance matrix, to keep

it as general as possible. On the �rst stage we begin with the speci�cation of the

prior distributions.

Stage 1: Prior distributions

b.init � MVN(; V )

 � MVN(0; U); U = unity matrix

V � Wishart(U; I)

b restricted

�

t

� N(��

t

; 1000); ��

t

= D

t:

=N

t:

� � N(0; 0:0001)

� � N(0; 0:0001)

The CAR idea will be implemented in this spatio-temporal context in a modi-

�ed form. Instead of assigning a conditional autoregressive dependence structure

to the vector of spatial random e�ects b.init at time t = 1 directly, we are assign-

ing it a non informative multivariate Gaussian prior distribution. We expect that

the spatial dependence or heterogeneity between neighboring sites arises through

the model assumption and the data. Vector  and the precision matrix V are

hyperparameters, necessary for the multivariate normal distribution of the vector

b.init. The resulting vector b is restricted with a sum-to-zero constraint on b.init

to assure identi�ability at time t = 1, see also Besag and Kooperberg (1995).

The overall level �

t

is assigned a non informative Gaussian prior, dependent on

t.
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Given all rates up to t � 1, we assume that the rate in district i at time t

depends only on the rate in district i at time t� 1 and on the mean of the neigh-

boring sites of i at time t� 1. The spatial and temporal dependence is modeled

in a way that the di�erences of the regressor variables of the overall mean at time

t�1 have a linear e�ect on the outcome of the rates at time t. Here the regression

coeÆcient for the temporal dependence is � and for the spatial dependence �,

respectively. Thus, we arrive at the equations for the rates as presented in stage

two of the model. The frequencies of cancer deaths themselves are modeled as

Poisson variables of the rates multiplied by the underlying population size as pa-

rameters. � and � are parameters of temporal and spatial autocorrelation, which

are assigned non informative Gaussian prior distributions. They are estimated

simultaneously, along with parameters of dispersion and temporal trend.

Stage 2: Estimation for the small area

Functional relation:

t = 1 : r

1i

= �

1

+ b

i

t > 1 : r

ti

= �

t

+ � (r

t�1;i

� �

t�1

) + � (�r

t�1;�i

� �

t�1

)

�

ti

= r

ti

N

ti

^

D

ti

j �

ti

� Poi(�

ti

)

On the third stage of the model we use an indirect adjustment of the sum of

the estimated mortality �gures to the observed marginals. As we have to account

for spatial and temporal marginals, the adjustment is two-dimensional.

Stage 3: Indirect adjustment

D

t:

� N(

^

D

t:

; 1000)

D

:i

� N(

^

D

:i

; 1000)
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This computational trick avoids to assign given data (i.e. marginals) to a

sum of estimated parameters, which is cumbersome in this type of Bayesian

framework. The parameter estimation is invariant under the change of the order

of the two adjustments.

3 Results

3.1 Parameter estimation for the Bayesian model

Before we begin with the presentation of the estimated parameters of the model

for the study region of Braunschweig for the years from 1986 to 1990, we will take

a look at model diagnostics and convergence, according to Brooks and Gelman

(1998). Due to the complexity of the model, a Metropolis Hastings algorithm

has been used for the generation of the Markov chains, as illustrated by Brooks

(1998) and Chen et al.(2000). We have chosen a burn-in period of 4,000 iteration

steps and 8,000 additional recorded updates keeping each 20th iteration for the

estimation. As proposed by Neal (1998) we have allowed for over-relaxation.

Figure 2 shows the satisfactory acceptance rates of the sampler. We have used

the WinBUGS software for the simulation according to Spiegelhalter et al.(2000).

Figure 2: Metropolis Hastings acceptance rates.

Considering the traces, e.g. for the overall level at time t = 5 we can see low

autocorrelation of the chain in �gure 3.
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Figure 3: Trace for the level in 1990.

Having checked the model diagnostics, we can look at the resulting parameter

estimates of the mortality rates per 100,000 persons at risk. Remembering table

1, it has been the aim to �ll the missing cell frequencies. The given yearly data

had only a coarse spatial structure of single �gures for the whole region. After

the application of the spatio-temporal small area estimation, we obtain a spatial

structure on the basis of the districts for every year, where the aggregated data

over �ve years has been split up into yearly data. To demonstrate the parameter

estimates, the resulting rates per 100,000 inhabitants at risk are displayed in

�gure 4.

Figure 4: Spatial and temporal resolution of the rates for the study area for the

years from 1986-1990.

It is worth mentioning that the parameters of spatial and temporal auto-

correlation, dispersion, and temporal trend are simultaneously estimated within

the model.
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3.2 Proportional Partition

An elementary way of partitioning the D

t:

into f

^

D

ti

; i = 1; : : : ; Ig consists of

splittingD

t:

according to corresponding population sizes fN

ti

; i = 1; : : : ; Ig. This

can be justi�ed by a Binomial model with equal rates in all districts. We can use

this Binomial model to calculate con�dence intervals for the estimated number

of cancer deaths by standard methods, proportional to the size of the underlying

population at risk. Figure 5 shows the results for the proportional partition and

for our more realistic Bayesian approach.
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Figure 5: Cancer death estimates and con�dence intervals of the Bayestian

approach and the Binomial model in 1990.

4 Discussion

The idea of small area estimation has been applied to combine two di�erent

kinds of marginals, in order to obtain data with the highest spatial and tem-
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poral resolution, based on underlying population �gures. The spatio-temporal

small area estimation has been performed with an approach that accounts for

spatial and spatio-temporal dependencies within the data. When comparing the

resulting parameter estimates

^

D

ti

for the small area with those obtained using

a proportional partition, the parameter estimates are nearly identical. However,

the resulting con�dence intervals of the Bayesian model are larger but more real-

istic, as they include explicitly the spatial and temporal dependence structures.

When simply regarding the proportional partition, one will be mislead by the

seeming accuracy. Due to the idea of the algorithm to estimate a comparably

large number of parameters out of a relatively small number of data, the result-

ing parameter estimates are strongly dependent. That is why the chains of the

Metropolis-Hastings algorithm take longer burn-in periods to reach stationarity

of the posterior distribution and a good mixing. Iteration times are prolonged

due to the complexity of the model.

When additional covariables are to be included in the model, the propor-

tional partition is no longer valid. Our model can be extended to several tem-

poral blocks, as well as to clusters of regions, as described by Knorr-Held and

Ra�er (2000) by increasing the number of spatial neighbors. So far, we have

explained the procedure with raw mortality rates without an adjustment for age

group towards an age-speci�c standardization. The model can also be re�ned in

that direction. The method is well applicable to the analysis of multi-directional

trends within di�erent study regions, for the analysis of temporal trends within

small spatial units, and it can easily be extended to age groups and additional co-

variables. Future research has to be undertaken in the direction of goodness of �t

of the model, as proposed by McDonald et al. (1999) . A properly designed sim-

ulation study would be an appropriate measure of variability and reproducability

of the estimation.
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