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Secondary structure classification of amino-acid sequences using state-

space modeling

Marcus Brunnert, Tillmann Krahnke and Wolfgang Urfer
Department of Statistics, University of Dortmund

Abstract

The secondary structure classification of amino acid sequences can be carried out by a
statistical analysis of sequence and structure data using state-space models. Aiming at this
classification, a modified filter algorithm programmed in S is applied to data of three proteins.
The application leads to correct classifications of two proteins even when using relatively
simple estimation methods for the parameters of the state-space models. Furthermore, it has
been shown that the assumed initial distribution strongly influences the classification results

referring to two proteins.

Keywords: Secondary structure classification, discrete state-space models, filtering.

1. Introduction

In molecular biology the analysis of proteins according to their structure and function is
essential to understand any organism. Proteins are built as long linear chains of several
chemical components. Among these are the 20 amino acids. The structure of a protein can be
described by the principal concept of the primary structure (amino acid sequence), the

secondary structure (a-helix or [ -sheet structures) and the tertiary structure (folded

secondary structure). In this context, the classification of proteins into different secondary and
tertiary structures enables the molecular biologist to draw conclusions about the function of

the protein.

Because of the fast expanding availability of sequence and structure data, the empirical
methods required to classify protein structures get more and more important. The two
approaches commonly used for the empirical classification are the hidden Markov models
and discrete state-space-models (Bienkowska et al., 2000, White et al., 1994). These

statistical approaches are also important tools in many other molecular biological problems



like the protein fold recognition problem (Bienkowska et al., 2000) or DNA sequence analysis
(Urfer, 2001).

In the project we describe here, the discrete state space model was applied to a secondary
structure classification. The statistical model is described in Section 2, followed by the
description of the likelihood computation used as a classification criterion in Section 3. The
following Section 4 contains the stochastic modeling of three proteins that belong to the
Ubiquitin-like folded family (Nassar ef al., 1995). Empirical results of an application to these
proteins are presented in Section 5. The software package S-plus (MathSoft, 2000) was used
to implement the modified filter algorithm. Finally, Section 6 discusses this statistical method

and the results of the application.

2. State-space model

Considering the primary sequence of amino acid residues, the correspondence between the
amino acids on the primary sequence and the amino acids on the secondary structure can be
thought of as a Markov chain. As a result of this, the stochastic output of an observable amino
acid y, at the residue position 1=1,2,3,... depends on the unobservable current state x, at this
residue position. The state describes the underlying secondary structure at this residue
position. Additionally, the current state depends on the realized past state x, . Assuming
these stochastic characteristics hold true, a discrete state-space model can be defined as

follows:

v, =Hx, (1)
=Dx,. 2)

t+1

In contrast to a Gaussian state-space model, the output variables y, and the state variables x,,
t=1,2,3,..., of this categorical state-space model are only discrete random variables taking

values in finite sets. Moreover, the output probability matrix H and the state transition matrix
@ are only arrays of conditional probability distributions. Each column of the matrices is

conditioned on a specific state. Let denote a state space by S ={l, 2, ...,n}, where x, € § and an



output set A={1,2,..., m}, where y,€ A. The elements of the (mxn)-output

matrix H are

probability

Hk, j)=P(y,=kx,=j)  k=l..,m, j=l...n (3)
and the elements of the (nXn)-state transition matrix are
@i, j)=Plx,,, =ilx, = j) i,j=1,...,n. (4)
The distribution of one state x, to a residue position ¢ is denoted by
P(x, =1)
P(x,=2)
X, = :
' : ()
P(x,=n)
and the output probability distribution at residue position ¢ is denoted by
P(y,=1)
P(y,=2)
ye=| . (6)
P(y,=m)
The sequence (xt )[:1’2’3’“_ can be interpreted as a Markov chain of order 1. The sequence

(y, )t:l ,,  can be interpreted as a semi-Markov process, where the transition from y, to y,,,

depends only on x, and not on y,. If (x,)_q

is not observable, the stochastic processes

((x, )t:1,2,3,...’(yl )zzl,z,s,...) can be interpreted as a hidden Markov model (Rabiner, 1989 and

Durbin et al., 1998).

Summing up, a state-space model for a specific protein structure with an initial state

distribution x, is completely described by five parameters: o/ = (m, n,® H,x, )



3.

Statistical analysis of protein data with a state-space model

State-space models can be used for different statistical analyses aiming at the filtering of an

optimal primary sequence, classification of a protein structure, and estimation of a secondary

structure for a given optimal sequence. The following procedures can be found in the

literature:

(i)

(ii.)

(iii.)

3.1

Equations (1) and (2) enable the filtering of an optimal observation sequence
generated by the underlying model /. An algorithm is derived in White (1988) in
order to filter an optimal primary sequence.

By constructing ¢ state-space models for different protein structures, it is possible to
select the most probable model for a new primary sequence. A recursive algorithm is
derived in White et al. (1994) for the calculation of the likelihood of a specific model
o/, l=1,...,q, generating the new primary sequence. Assuming an appropriate prior
probability for each model, the posterior probability for a model given a primary
sequence can be calculated on the basis of the likelithood. With these posterior
probabilities for all ¢ models the most probable protein structure can be selected.

A third statistical analysis which uses a smoothing algorithm (Stultz et al., 1993) or
the Viterbi algorithm (Durbin et al., 1998, Rabiner, 1989) can determine the most
probable state sequence according to a new primary sequence. This state sequence can

be interpreted as an optimal secondary structure of the new primary sequence.

Filtering algorithm

Filtering algorithms are important statistical methods used in analysing state space models.

The Kalman filter (Kalman, 1960) is applied to continuous data in Schmitz and Urfer (1997).

For the secondary structure classification problem a categorical filter has to be applied.

Aiming at the filtering of an optimal primary sequence, the model parameters have to be

known or they have to be estimated according to data on the protein structure. A re-estimation

method for these parameters using the EM —algorithm (Dempster ef al., 1977) is described in
Sousa et al. (2001).
The following filtering algorithm is adapted from White et al. (1994):



Input : Model o/ = (m, n,®,H, xl) and observed primary sequence Y, = (yl, Vs yd).

Initialization : X =Xx,. (7)
Recursion for 1<¢<d: y, =Hx, (8)
State update v =H[y, =k *x’

1= v,(j) (9)

v
x; :7’
State Propagate x, =0x . (10)

Termination 7=d: The conditional output probability distribution at each residue position
t=1,...,d according to the given sequence K, =(y1,y2,,.,yd).

The notation * denotes the Hadamard (elementwise) product of two matrices. In addition,

Hly, =k]| is the vector of the kth row of the (mxn)-output probability matrix H , while y,

is the vector of conditional distribution of the current observation y, =k, ke 4, at the

sequence position ¢, given all past observations Y, | :(yl,. o y,_l), ie.,

P(y, =17,,)
-_ P(y,=:2|Yt_l) (10
Ply, =ml7.,)
For the current state x,, the vector x. is analogously defined as
Plx,=1,,)
X, = Pl =206) | (12)
Plx, =y, ,)

x, denotes the vector of the conditional distribution of the current state x,, given all past and
present observations ¥, =(y,,...,»,):

Plx, =11,

Plx,=2Jr) | 03



The output of the filter is the filtering of the probability distribution of an optimal sequence.
3.2 Likelihood filtering algorithm

The classification of a protein structure can be connected with the search for the most

probable model for a primary sequence. Given a primary sequence Y, and a model /7, the
computation of the probability that the sequence Y, is generated by the model - enables
the search for the most probable model. For that reason, the computation of the likelihood

L(Yd|@% ) due to several models ~/7,...,o# enables the classification of the primary

sequence to ¢ protein structures. Here, the likelithood L(Y d|@//4 ) is as follows:

LY, o)=Y, | 7)= P T T P IY.2) (14)

d
t=2

Considering the output of the filtering algorithm in Section 3.1, the log-likelihood can be

calculated recursively as follows:

log L(0)=0 and

15
log L(¢)=log L(t —1)+log P(yt|yl_1 ) for t=1,...,d. (13)
In order to select the most probable model from g models, the posterior probability for model

[ can be calculated by assuming prior probabilities p, and the ¢ model likelihoods calculated

from (15):

L(Yd |/’/Z)p,

plly, )=——"=, (16)

q
where CZZL(YAO*‘/Z/)]?Z,
=1
With the posterior probability at hand, it is possible to classify a protein structure optimally

with respect to the structural hypotheses {o/{ },qzl .

3.3  Optimal secondary structure computation by smoothing

Using the results of the filtering, it is possible to compute an optimal probability prediction of

the secondary structure given a primary sequence. From the filtering algorithm, we can



Sfrom x;

calculate P(x, =jy,_1,...,yl>, j=1...,n, t=123,... . If we apply the filtering algorithm to

Virls--s Va ) For each residue position

the reverse sequence y,,...,»,, we can calculate P(x,

t, we can calculate the smoothing distribution for a state j=1,...,n (Stultz et al., 1993):

yz+19"'9yd)

yl—l""’yl)H(yt|xt :j)P(xz :j
1)

where £,.,(/)= X, ®lx,,, = jbx, = j')f, (v, = 7). £i()=P(x, = ). 1=123....

Plx,=j

P(xt:j‘yl,...,yd)zck , (17)

and C is chosen, so that iP(xl =j‘y1,...,yd )=1,

Jj=1
This way of calculating the smoothing distribution is an alternative to the sequence-to-

structure-alignment described in Brunnert et al. (2002).
4. Modeling the secondary structure

The protein domain is built in an hierarchical fashion using the three basic modeling
structures: o -helix, P -strand and an “other” or random structure that is neither an o -helix
nor a [3-strand. These basic structures are put together to larger secondary structure called
plexes. Two basic structure are linked at ”junctions”. These junctions are silent states with no
output. For simplicity, only one plex is used here: the 3 -sheet containing two [ -strands and

one additional state. This additional state contains only one residue and therefore no basic
modeling is needed.
In Figures 1-7, the states are represented by circles and the junctions by squares. The

transition probabilities are written above the arrows.
4.1 Basic modeling structures

The following sections describe the stochastic modeling of the three basic structures: o -Aelix,

B -strand and random structure.



4.1.1 o -helix

The first basic structure described here is the o -helix.

Figure 1. Schematic modeling of the o -helix.
I-p

As we consider a minimal length of an o -helix of three residues, the transition matrices

0 0 O 10
0 01 00 .
o . =11-p 0] @;=[0 0| P, = 00 0 and @ = 00 are given, where
0 p O 00
D, P, P, and P, denote the state-to-state transition matrix, the junction-to-state transition

matrix, the state-to-junction matrix and the junction-to-junction matrix.

4.1.2 P-strand

Considering Figure 2, we get the following transition matrices:

o (7 N o (1) o (00 o (00
ss_p O’Sj_oo’jS_OI’jj_OO'

Figure 2. Schematic modeling of the B -strand.

l-p




4.1.3 ”Other” (random) structure

A stochastic modeling of a random structure is shown in Figure 3.

Figure 3. Schematic modeling of the random structure.

1-p

The transition matrices for a random structure with a minimal length of 1 is given by

00 0
q)sz 00 ’q)sjz(l O)’ cI)js= p ’chszl_p'

4.2 Plexes
The next hierarchical level in the state modeling describes combinations of basic structures.

4.2.1 B -sheet

The plex described here, links two [ -strands at an additional state. Contrary to a junction

state, the additional state is not silent and yields an output.

Figure 4. Schematic modeling of the [ -sheet.

1 1

1 - B-strand - add. state - B-strand - 2

Connecting the two basic structures P -strand by an additional state (cf. Figure 4) with one

output yields the following transition matrices:
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0 0 0 10
@ 1 0 O0|®.=[0 0] @ 001@ 00
o A TElo 0 0) o o)
0 1 0 00

4.3  Modeling the domain

Now, the basic structures and plexes have to be put together to models for protein domains
according to the application in Section 5. This will be done in an example in Section 5. The
corresponding estimated transition probabilities are presented here for each state transition

according to the observed secondary structures from the PDB (Protein Data Bank).

Figure 5. Modeling the observed Raf protein domain.

4/7 1 3/7
other Ll B-sheet > other L pl B-sheet L pl other >
2/3 1/3
> a-Helix | other > a-Helix | B-sheet | other >
> B-sheet —p! other » a-Helix ! other ! B-sheet >
> other

Considering the transition probabilities of the domain in Figure 5, one obtains the transition

0 0 3
7
matrix @ Raf = % 0 g , with only three states (« -helix, [ -sheet and other).
2 0
3
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Figure 6. Modeling the observed Ubiquitin protein.

4/5 4/7 2/7 173

172 2/3

1/7 12

1/5

Figure 7. Modeling the observed RalGDS protein domain.

172 1 12

Note, that the state “turn” is additionally observed in the Ubiquitin protein domain.

| 0055
00 — 4
: 0020
According to the Figures 6 and 7, we yield &)Ra,= 00 5 and d)Ubiquitin =l 4 7 5 |
110 253
iz,
2 57
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5. Application

In an application, a modified filter algorithm is applied to the primary and secondary structure
data of domains of the Ubiquitin-like folded proteins RalGDS, Raf and Ubiquitin. The state
update in the filter algorithm is modified according to the admissible states in the modeled
secondary structure (see Figures 1-4). For example, an inadmissible state transition in the
o — helix structure (see Figure 1) is the transition from state 1 to state 3. Formally the state

update (9) of Section 3.1

v.=Hly =k "x;
1= v,(j)

j=1

+ v[
x =t
/
1s modified as follows:

v,=H[y,=k]" *x;
v,=x,"e;,
1=3v,())

j=1

x; =% , Where

e; is the nx1—unit vector and j is the state number according to the highest probability in

x, . This modified filter algorithm has been implemented in S-plus.

In order to estimate the transition matrices of the three models, the structure information
described in Section 4 has been used. For the estimation of the probabilities p in the
transition matrices, a geometric distribution for the length of the basic modeling structures has

been assumed. Moreover, the uniform distribution for the initial states has been used.

Three methods for the estimation of the output probability matrices according to each of the
three models have been applied. These are:
1. Computation of relative frequencies of the occurrence of amino acids given a state.
2. Consideration of pseudocounts using Laplace’s rule (Durbin ef al., 1998).

3. Consideration of pseudocounts using the following estimator (Durbin et al., 1998):
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Cr) +20pk ;
ch J

¢, ;1s the number of occurences of amino acid k given state j. The output

, where

H(k. j)=

probability p, . referring to amino acid k given state j is estimated by using the

relative frequency of the occurrence of amino acid k& given state j according to

the data of all three domains (see Appendix).

The resulting state space models for the three protein domains can be described as follows:

Raf' /7/; (20 9 ¢Rf9HRaf7‘£l,Raf)’
RalGDS ’7//; (20 9 (I)Raj s HRal sV, Ral) and
Ubiquitin: oA (20, 10, (i)Ub[quizin s H Ubiquitin ® 5‘1, Ubiquitin )

5.1 Results

According to the estimation methods (1-3) of the A matrices, the following three figures
summarise the results of this application. Each figure demonstrates the course of differences
of negative log likelihoods calculated from the filtering of the observed amino acid sequence,
starting with the first observed residue. The minuend of the difference is always the negative
log likelihood that is calculated from the filtering of the sequence due to its reference model.
Therefore a positive difference indicates a less probable structure than the reference structure.
If we consider the positive values in the three figures belonging to the false structure models,
all three sequences except for the third estimation method referring to the Ubiquitin sequence
(Figure 10) are classified correctly with its modeled secondary structure model. After
filtering the whole sequence, the estimation methods (1-3) according to the emission
probabilities do not influence the resulting lowest logarithmic likelihood execept for the
Ubiquitin sequence. It is remarkable that no sequence is classed with its modeled secondary
structure very early except for the Raf sequence referring to the first estimation method
(Figure 8). It might be possible that the assumed uniform distribution in some cases yields
disadvantaged initial states for some models. For that reason, the influence of the initial

distribution x, has been analysed for all sequences. A graphical analysis analogous to the

Figures 8-10 for all three models with a fixed initial state for all three models has been

carried out (Figures not shown). In this graphical analysis the classification of the Ral
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sequence and the Ubiquitin sequence has been influenced by the choice of the initial state.

The Raf sequence classification was not influenced by the choice of an initial state.
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6. Discussion and outlook

In this paper a modified filter algorithm was applied to sequence and structure protein data in
order to classify the three amino acids sequences according to their secondary structures. This
filter algorithm has been implemented in S-Plus. The application demonstrated that the choice
of the initial distribution influenced the classification results. Further applications of this filter
algorithm should consider this kind of influence in order to avoid false classifications. In this
context, the iterative application of this filter algorithm is of interest and will be investigated
in further analyses.

The estimation of the H and the @ matrices was done by a simple computation of relative
frequencies. These estimation methods can be improved by the application of the EM-
algorithm. Nevertheless, the results for the Raf and the RalGDS sequence demonstrated that
the state-space modeling i1s appropriate for the secondary structure classification even for a
small number of observations and simple estimation methods. An application to whole protein
sequence or structure families aim at a further validation of this classification method. For
that purpose, the computation of posterior probabilities (see Section 3.2) extends the
classification tools of the filtering approach. Besides this, the consideration of the Kullback-
Leibler distance enables the assessment of the discrimination of the different models.
Moreover, the smoothing algorithm is an alternative to sequence-to-structure alignments and
will be compared with the sequence-to-structure alignment described in Brunnert et al.
(2002). In Bienkowska (2000) the state-space modeling has been applied successfully to 188

protein structures.
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Appendix

Table A1. Estimates of the conditional output probabilities.

Amino acid

(three-letter- o — Helix B —sheet Turn Other
code, name)

Ala, Alanine 0.0755 0.0182 0.0435 0.0707
Arg, Arginine 0.0566 0.0364 0.0435 0.0856
Asn, Asparagine 0.0566 0.0273 0.0435 0.0367
Asp, Aspartic acid | 0.1132 0.0182 0.1089 0.0733
Cys, Cysteine 0.0189 0.0455 0.0217 0.0123
GlIn, Glutamine 0.0189 0.0727 0.0435 0.0247
Glu, Glutamic acid | 0.0566 0.0636 0.0869 0.0489
Gly, Glycine 0.0377 0.0364 0.0869 0.0732
His, Histidine 0.0189 0.0455 0.0217 0.0123
Ile, Isoleucine 0.0566 0.100 0.0217 0.0489
Leu, Leucine 0.0566 0.1364 0.0653 0.1099
Lys, Lysine 0.1132 0.0909 0.0653 0.0733
Met, Methionine 0.0566 0.0182 0.0217 0.0123
Phe, Phenylalanine | 0.0189 0.0455 0.0217 0.0367
Pro, Proline 0.0377 0.0273 0.0869 0.0610
Ser, Serine 0.0377 0.0727 0.0869 0.0489
Thr, Threonine 0.0377 0.0727 0.0653 0.0610
Trp, Tryptophan 0.0189 0.0090 0.0217 0.0123
Tyr, Tyrosine 0.0377 0.0090 0.0217 0.0247
Val, Valine 0.0755 0.0545 0.0217 0.0733
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