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Abstract

We propose a computer intensive method for linear dimension re�
duction which minimizes the classi�cation error directly� Simulated
annealing �Bohachevsky et al� ���	
 as a modern optimization tech�
nique is used to solve this problem e�ectively� This approach easily
allows to incorporate user requests by means of penalty terms� Simu�
lations demonstrate the superiority of optimal classi�cation to classical
discriminant analysis �McLachlan ����
� Special emphasis is put on the
case when discriminant analysis collapses�

KEY WORDS� classi�cation� discriminant analysis� error rate� simulated an�
nealing� user requests

� Introduction

Classi�cation deals with the allocation of objects with feature vectors x to
g predetermined groups G � f�� �� � � � � gg� say	 The goal is to minimize
the misclassi�cation rate over all possible future allocations given the group
densities pi
x� 
i � �� �� � � � � g�	 The minimal error is the so�called Bayes

error 
McLachlan ���	 Often we want to reduce the dimension of the
classi�cation problem to one or two dimensions in order to support human
imagination without signi�cantly increasing the misclassi�cation rate	 This
article deals with linear combinations of the original variables to achieve this
goal� Linear Dimension Reduction 
LDR�	
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In the literature� this problem is nearly always tackled by procedures using
distance or scatter measures which are only surrogates to circumvent the
classi�cation error� Among these are the famous linear discriminant analysis
�LDA� and quadratic discriminant analysis �QDA� �McLachlan ������

In this paper we focus on computer intensive strategies which minimize the
misclassi�cation error directly� We call these procedures 	Minimal Error
�Rate� Classi�ers �MEC�	 in order to make the di
erence to the classical
approach clear� Figure � illustrates that both the classical and the com�
puterintensive procedures are special cases of Linear Dimension Reduction
procedures�

Linear  Dimension  Reduction (LDR)

(LDA, QDA)
Classical Procedure Compint. Procedure

(MEC)

Figure �� Di
erent classi�cation paradigms�

In the literature� direct error minimization up to now was only tackled by
means of projection pursuit algorithms �Posse ����� Polzehl ����� In section
� we will discuss the links between these algorithms and our MECs�

We will proceed as follows� In section � we will discuss the simulated anneal�
ing algorithm used to compute the MECs introduced in section �� In addition�
section � will show how to incorporate user requests �e�g� preference for some
variables� in the optimization algorithm� Section � will illustrate the fore�
going ideas in a simulation study� We will draw our conclusions in section
�

� Simulated Annealing

We discuss now the optimization algorithm used in the next section� The
algorithm optimizes the entries in the projection matrix A to minimize the
error rate� The optimization problem is therefore

Minimize f � R
d
�
�d
� R

� ���

vectorized projection matrix a �� error rate�



�

where d� and d denote the ��xed� dimensions of the lower dimensional space
and the original feature space� respectively�

We solve this optimization problem by using a simulated annealing algorithm
which does not need derivatives� a great advantage compared to gradient
methods� It can also be used if the function values are discrete� On the other
hand one needs more function evaluations than common gradient algorithms�

In physics it is well�known that freezing and crystallizing of liquids overcomes
local energy minima� This strategy serves as the prototype for a computer
program� Simulated Annealing �Bohachevsky et al� 	
���� To model the
natural procedure� we need a con�guration space �a discrete or continuous
domain�� a mechanism which describes how to get from one con�guration to
another and a cooling schedule describing how to decrease the temperature T
�T� � T� � � � � � Tn � � � � �� In a concrete optimization� the temperature
T is not a physical quantity but an abstract parameter which controls the
optimization�

In our problem the con�guration space is Rd
�
�d� the space of vectorized

projection matrices� In our algorithm� the cooling schedule is a simple linear
scheme� and at each parameter value T a markov chain based on a stochastic
version of the well�known NelderMead search algorithm �Press et al� 	

��
serves as the transition mechanism between succeeding con�gurations�

At each parameter value T � beginning at any con�guration a� � we start a
markov chain� This chain generates random realizations �after some burn�in
period� from a density proportional to ��a� � exp��f�a��T �� A trial point
ap is chosen according to some symmetric probability transition function
q�a�� ap�� The e�ciency of the optimization algorithm depends on this tran�
sition function and the cooling schedule� The transition function �explores�
the con�guration space� Information about this space enhances the search�
The cooling schedule �encodes� the size of the neighbourhood that can be
visited from a point of the markov chain�

The trial point is accepted with probability ��ap����a�� � exp���f�ap� �
f�a����T �� In this way� in our problem projections leading to a decrease
of misclassi�cation are accepted in any case� but also projections increasing
the error rate are accepted with some probability� This is the reason� why
simulated annealing is able to overcome local optima and thus avoids the
selection of multiple starting points�

After a number of steps in the markov chain� the parameter Tn will be de�
creased by the simple linear scheme Tn�� � �Tn �� � � � 	�� and a new
chain will be created �the starting point of the new chain is the end point of
the last one� see Figure ���

We use an implementation of the simulated annealing algorithm based on
a routine in Numerical Recipes in C �Press et al� 	

��� The basis of
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Figure �� Flow chart of the simulated annealing algorithm�

this routine is a stochastic version of the search algorithm of Nelder and

Mead �Press et al� ������ This algorithm encloses the optimum by shrinking
simplices� The shrinking is proportional to the parameter Tn� Therefore	
as Tn approaches zero	 the allowed movements will be more and more local	
and the algorithm converges to the next optimum� Because of the bigger
parameter values in the beginning of the procedure there is a good chance
that this optimum is a global one�

For the not yet speci
ed parameters of the simulated annealing procedure we
have chosen the following values�

� initial value T� � ���

� � � �� or ��

� number of iterations in the markov chain at each temperature� �� �

In our application of simulated annealing	 the function to be optimized �min�
imized� is the misclassi
cation rate� The next section shows how this error
rate is calculated� Note that the initial projection matrix was obtained by
means of a classical discriminant procedure �LDA or QDA� by projecting on
the 
rst discriminant coordinates�

� Minimal Error �Rate� Classi�ers �MEC�

��� Two versions of MEC

Basically	 there are two possibilities to calculate the error rate during each
optimization step� 
rst estimate the densities in the original space and then
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�nd the optimal projection �MEC ��� or �rst project and then estimate the
density in projected space and iterate until the errror rate is optimal �MEC
���

�� MEC ��

First project the data� estimate the densities in the projected space and
calculate the error rate by a modelfree� computerintensive technique
�leave one out or bootstrap�� In the following� we concentrate on the
bootstrap technique�

We draw B arti�cial samples Di �� � i � B� from the given data set
and project all the data into a lower dimensional space by a projection
matrix� Then we determine the classi�cation rule in the projected space
by means of each training sample Di and apply the rule to the test
samples original data set nDi�

The classi�cation rule can be either a parametric rule or a nonpara	
metric one� We use the classi�cation rule based on the estimated group
densities pi�x� �� � i � g� in the training sample and allocate an ob	
servation with feature vector x in the test sample to group i if

�ipi�x� � �jpj�x� �j �
 i�� ���

where �i denotes the group i apriori probability� This rule is optimal
�minimal error rate� when the parametric form of the densities is known�

The mean of the B error rates is the function value to be minimized�
Besides� the B values allow us to judge the spread of the error rates�
e�g� we can calculate a nonparametric �� con�dence interval�

Note that this algorithm works in the projected lower dimensional space
which might motivate normality of densities and results in reliable den	
sity estimates�

�� MEC ��

Estimate the densities in the original space �rst and project the esti	
mated densities into a lower dimensional space� Then� the error rate
could be estimated by means of the bootstrap technique described in
MEC �� In MEC �� however� we decided to implement a totally para	
metric search technique in that� assuming d� is small enough and the
projected group densities are not too complicated� we instead calculate
the error rate by exact integration using the group densities�

That is� for each group i � G� we determine the regions where at
least one of the other group densities is greater� We integrate pi�x�
over these regions and get the misclassi�cation error conditional on
this group i� The total error is calculated as an average over all groups
weighted by their apriori probability� Thus� in ��� error rate 


Pg
i�� �iR

Bi

pA�i�x� dx� where �i is the apriori probability of group i� Bi 
 fx j
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�j � pA�i�x� � pA�j�x�g� pA�i is the i�th projected group density� and
A is the matrix applied to project into lower dimensional space�

Another possibility to determine the error rate is Monte Carlo Simula�
tion which generates random realizations from the group densities and
allocates them according to the classi	cation rule �
��

Obviously� MEC 
 has the drawback that densities have to be speci	ed
in orginal space� After the optimal projection space is determined� we
project the data set into the lower dimensional space and calculate the
error rate by a modelfree� computerintensive technique �leave one out
or bootstrap��

Both possibilities have their merits and drawbacks as will be discussed in
section �� Figure � contrasts the two methods�

Polzehl �Polzehl ���� addressed the problem of constructing an optimal
classi	cation rule by projection pursuit based density estimation� In his al�
gorithm� density estimation is adaptively guided by the error rate� In this
respect� his algorithm is more general than MEC 
� But it is not clear
whether the lower dimensional space determined in this way is really the one
producing the lowest error rate because the error rate of the �whole� density
is not minimized� but the error rate of one dimensional slices� The author
uses a combination of stochastic search and the already mentioned Nelder
and Mead algorithm� We think that simulated annealing is a more powerful
minimization tool� especially to avoid getting trapped in a local minimum�

Another contribution in this 	eld is Posse�s paper �Posse ��
�� This paper
is very close in spirit to our approach in MEC 
 because the error rate of
the group densities is directly minimized� However� his reasoning is limited
to two groups and the optimization algorithm uses di�erent random starting
points to overcome local minima instead of the powerful simulated annealing
procedure� In section � it is shown that especially in the case of more than
two groups there are severe di�erences between the classical and computer�
intensive approach�

Both authors do not discuss an algorithm like MEC �

The next subsection shows how users can incorporate di�erent weights �pref�
erences� associated with the features�

��� User requests

We will discuss a combination of two kinds of user requests� one concerning
preferences for features and one concerning a tolerated error rate� Then
the function to be minimized is not the error rate any more� but the linear
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m=m+1; optimization
algorithm chooses new 
projection matrix A(m)

m=m+1; optimization
algorithm chooses new
projection matrix A(m)

apply the first  3  boxes of MEC 1 to
the  final  projection  matrix

Real  data  set

Draw  B  bootstrap  samples Estimate  group  densities  p(i)

the projection matrix A(m)

Calculate the error rate by
integration  or  Monte  Carlo
Simulation

MEC 1 MEC 2

Project  data  set  into
d’  dimensional  space  by

Project  densities  p(i)  into
d’  dimensional  space  by
the projection matrix A(m)

Calculate the mean error rate
error(boot) and a measure 
for spread

error rate difference < tol

yesno

End

error rate difference < tol

no

yes

Determine the initial

projection matrix A(1)

Figure �� Comparison of MEC � and MEC ��

combination

S� � S� �� ��P� � ��P�� ���

where � � ��� �� and P�� P� are two penalty terms� The 	rst penalty term is

P� �

d
�X

i��

dX

j��

Kj�jaij j� �Kj�jaij j� � �� �
�

where d� denotes the dimension of the lower dimensional space and Kj�jaij j�
are the weights �costs� of the di�erent features� These costs depend on the
entries aij of the projection matrix A� Only the relative magnitude of these
costs compared to each other is relevant� not the absolute value� In this paper
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we use the natural choice

Kj�jaij j� � jaij jKj �Kj � �� ���

Another choice of the cost function would be the more sophisticated logistic
function

Kj�jaij j� �
exp��jaij j � tj��sj�

� � exp��jaij j � tj��sj�
� i � �� � � � � d� �	�

with target weight tj � � and smoothness sj � �
 The bigger sj � the smoother
Kj�jaij j� varies around the target weight


The second penalty term is taking into account the deviation of the error
rate from a tolerated error rate t �

P� �
exp��error rate� t��s�

� � exp��error rate� t��s�
 t� s � �� ���

with� again� s being a smoothness parameter
 The tolerated error rate spec�
i�es how much bigger than the optimal error rate a realized error rate is
allowed to be with the suboptimal choices of the projection space caused by
unequal costs for the di�erent features
 In order to judge how big t should be�
one should calculate a reference error rate with Kj � � � j
 An application
will be given in subsection �
�


� Simulations

��� Comparison of MEC � and MEC �

To compare MEC � with MEC �� we consider the following two group case
with normal densities pi�x� �i � �� �� and parameters

�� � ��� �� � � � � ��� �� � Id and ���

�� � ��� �� � � � � ��� �� � Id�

The dimension is varied �� � d � ��� and the sample size is �xed at n� �
n� � ���
 We want to �nd the best one dimensional projection direction

The following procedure is repeated ��� times in each dimension�

�
 Generate n� � n� � ��� random realizations according to the group
densities pi�x� �i � �� ��


�
 Apply MEC � to these samples


�
 Draw B � ��� bootstrap samples from each sample and apply MEC �
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This procedure results in ��� error rates for MEC � and MEC �� The mean
and standard deviation of these error rates are used to characterize the good�
ness of both methods�

Table � lists the results� The columns entitled with the corresponding method
report the mean � the standard deviation� The columns with the title
anglemean report the mean of the angles between the true optimal projec�
tion direction ��� �� � � � � ��� and the calculated one�

dimension MEC � anglemean MEC � anglemean

d 	 � �
��� ���� ��� �
�
� ���� ����

d 	 � ����� ���� �
��� �
�� ���� ����

d 	 � ����� ���� ����� �
��� ��� �����

d 	  ����� ���� ����� �
��� ���� �����

d 	 �� ���� ��� ����� �
��� ���� �����

Table �� MEC � and MEC � results ordered by dimension�

One may argue that MEC � can not be recommended if the quotient �sample
size��dimension is small�

� The small sample is not representative for the underlying group den�
sities� The optimization leads to an optimistic bias because there are
many possibilities to project into an one or two dimensional space sep�
arating the few points in an optimal way�

� I�e�� the optimal projection space should not be expected to be identi��
able because there will probably be many possibilities to separate� e�g��
� points in two groups in two dimensions with an error of one or two
points� Then� which projection space should we choose�

Table � clearly indicates the optimistic bias� From dimension eight on� the
true Bayes error of �
��� does not even lie in the one standard deviation
interval� Moreover� the mean deviation angle to the optimal direction is
bigger with MEC � than with MEC ��

Both methods use normal densities as group densities and estimate the pa�
rameters from the sample� This means that both methods use the same
model� i�e� there is no information bias in the model choice and the di�er�
ences in table � are only due to the di�erent procedures�

MEC � might be more useful when the densities are complicated� so that
we have to resort to nonparametric density estimation� Indeed� when we
then do not have enough data to estimate the group densities in the original
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space� MEC � might be the better alternative� especially when the sample
size is large enough to reduce the optimistic bias� This can be judged by
small simulations� approximate the group densities by some simple group
densities� �xing at least the group means and spread� and perform the same
simulation as above� Then you can decide whether the bias is signi�cant for
your problem at hand�

Note that the projection space is determined in a model dependent way in
MEC �� but �nally� the error rate is calculated modelfree by leave one out or
bootstrap with the projected data set�

��� Comparison of MEC � and discriminant analysis

MEC � with known densities is now compared to the classical approach� The
classical procedures do not provide a direct link to the misclassi�cation rate
�that is� from a small perturbation of the direction a� you can not analytically
derive the corresponding variation in the misclassi�cation rate	� In fact� in
some special cases �depending on constellation of the groups and the form of
the covariance matrices	� a signi�cant di
erence between the two procedures
can be detected� Apart from the pure comparison� emphasis is put on the
question when classical methods collapse� In these cases only MEC � supplies
valid results�

The classical procedure LDA proceeds by maximizing

�� ��
a�SBa

a�a
� where jjajj � � �McLachlan ����	� ��	

In this formula SB �
Pg

i�� �i��i � ��	��i � ��	�� where �i � mean in the i�th
group� �� � overall mean and �i �

�

g
� apriori group probabilities� is the

between�groups covariance matrix and  is the common covariance matrix
inside the groups�

To compare MEC � and LDA� we conduct some simulations with three groups
assuming normality� First� we transform the common covariance matrix 
by the transformation xnew �� ��xold to the identity matrix Id� This does
not change the misclassi�cation rate� Because of the symmetry induced by
three groups� it su�ces to take d � �� Therefore we set

�� � ��� �	�� �� � ��� �	� and �� � �x� y	�� ���	

Mean �� only determines the origin and �� is somewhat arbitrary� A vari�
ation of �� would only alter the misclassi�cation level� not the qualitative
conclusion� The third mean contains two variables x and y�

We are looking for the optimal �D�projection� The two dimensional surface
of the dependency of the corresponding error rate on x� y can be conveniently



��

plotted� Because of the symmetry of the constellation� it is enough to regard
the positive quadrant� We take the range � � x � ��� and � � y � ����

Figures � and � show the estimated misclassi�cation rates 	given the means
and the covariance matrix
 of the classical and the optimized procedure�
respectively� Note the di�erent scales of the two graphs�

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

25
30
35
40
45
50
55

y

x

Figure �� Misclassi�cation rate with the classical procedure�
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Figure �� Misclassi�cation rate with the optimized procedure�

The results of the classical procedure are qualitatively similiar in the front
range 	� � x � ��� and � � y � ���
� whereas there is a signi�cant di�erence
in the back�
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We now analyze the reason of the �mountain ridge� in the classical case in
more detail� A special situation arises� when the means of the three groups
constitute a regular triangle� For that reason� we reparametrize the third
mean� �� � �� 	 �x�

p

 	 �y�� In the special case �x � � one can then show

that

� �
�

�

n
��y 	

p

�� � a�

�

�
��y 	

p

�� � 


�o
� ����

and after maximization we get the following distinction of cases�

��y 	
p

�� � 
 � �y � � or �y � ��

p

 � a� � �� a� � � ����

��y 	
p

�� � 
 � ��

p

 � �y � � � a� � �� a� � �

��y 	
p

�� � 
 � �y � � � a�� a� arbitrary�

The mean �� � ���
p

�� results in a singularity �projection vector a �

�a�� a��
� not de�ned�� But this mean is realized with probability zero by

the empirical mean value and is therefore unimportant� More important is
the fact that the projection behaviour �turns over� at this value� As long as
�y � �� the projection is onto the x�axis �as by the optimized procedure��
then onto the y�axis� This causes a higher misclassi�cation rate compared
to the optimized procedure� because the projected �rst group coincides with
the second one� while the optimized method still projects onto the x�axis�

The classical approach even more often fails for more than g � 
 groups�
because there are more critical constellations� A more detailed discussion
and a comparison with quadratic discriminant analysis in the case of unequal
covariance matrices can be found in �R�ohl and Weihs ������

��� User requests

We use the I � � group densities introduced in Fukunaga ������� The pa�
rameters of the ��dimensional normal densities are

�� � ��� � � � � ��� with �� � diag��� � � � � �� and ��
�

�� � �
���� 
���� ����� ����� ����� ����� ����� ������ with

�� � diag������ ������ ����� ����� ����� ����� ��
�� ���
��

There are no symmetries and the constellation is therefore quite general�
The true Bayes error is ���� and the best one�dimensional projection gives
an error slightly bigger than ���

The penalty terms ��� and ��� are combined with weights �� � �� �� � ��
and s � �� i�e� P� is a hard constraint� The cost vector is

K � ����� ���� ���� ���� ���� ���� ���� ����� ����



��

t minimum projection direction
�tolerance� S� � S�

�� �	�
 ��	�
��	���	����	�
��	����	����	����	����


� �	�� ��	
���	����	����	����	����	����	����	����
��� �	�� ��	����	����	����	����	����	����	����	����

Table �� Results ordered by the tolerance t	

These costs study the importance of the �rst two features	

With a tolerance level of ��� the in�uence of the �fth feature on the best one�
dimensional projection can not be removed �cp	 table ��	 Only the last two
features have no in�uence	 With 
�� the in�uence of feature �ve is reduced�
all the other features� except for the �rst two� are rather unimportant	 With
���� the �rst two features are enough to separate the groups	 Now we can
vary the costs and prefer other variables �costs���	 This gives an impression
of the importance of the features when the other ones are present	

� Conclusions

The computerintensive methods MEC � and MEC � based on the powerful
simulated annealing optimization algorithm minimize the classi�cation error
rate directly and are �exible tools for incorporating constraints� e	g	 user
requests	 For more than two groups� it has been shown that there exist
some group constellations which induce a signi�cant di�erence between this
approach and the classical procedure	 In future work� the optimistic bias of
MEC � should be reduced	

� Computation

The simulation study was done on a ���MHz PC with �MB main memory
using the programming language C	 The operating system was LINUX	 With
MEC � the identi�cation of the optimal one dimensional projection needs a
few seconds� the identi�cation of the optimal �D�plane from some minutes to
half an hour depending on the grid size in the integration routine computing
the error rate	
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