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Pitman-closeness and the linear combination of multivariate

forecasts

Thomas Wenzel
Department of Statistics, University of Dortmund, Vogelpothsweg 87,
D-44221 Dortmund, Germany

Abstract: We use the Pitman-closeness criterion to evaluate the performance of
multivariate forecasting methods and we also calculate optimal matrices of weights for the
linear combination of multivariate forecasts. These weights are identical with the optimal

weights under the matrix-MSE criterion.
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1 Introduction

In the theory of combination of forecasts, most studies consider the univariate case only. In
that case several individual forecasts for a univariate random variable are combined, but
also the multivariate case is of great interest. Here, a multivariate forecasting technique
predicts a k-dimensional random vector (k=2). Therefore, combination methods based for
example on the minimum-matrix-MSE criterion or the covariance-adjustment-technique
depend on the covariance structure of the errors of a special method and also on the
covariances between the errors of the different methods.

In this article we analyse the comparison of multivariate forecast combinations under
Pitman-closeness (Pitman, 1937). In the multivariate case, there are different ways to
interpret this evaluation criterion. We will focus on the component-by-component Pitman-
closeness and calculate weights for the optimal combination of multivariate forecasts. We

shall see that these weights also depend on the covariance structure of all forecast errors.



Furthermore this optimality criterion is equivalent to the matrix-MSE-optimality. A short
example is given for a better illustration.
Finally we present a brief description of the general Pitman-closeness approach for

multivariate forecasts and problems that occur in applications.

2 The Problem
First we give a description of the problem.

Assume that

’

Y =(Y,....,Y, ) is arandom vector to be forecasted (k>2),

’

F, = (F,,....,F,) areunbiased multivariate forecasts (i=I,...,n) for Y and

li2*> ki

u =(Y,-F,,....Y, —F.) is the error vector of the i-th forecast method,

’
’

where u = (ul . ) ~N,, (0,2) , = p.d., and there exists a vector u;, without loss of

’

generality u, =u_, so that Cov{((u, —u_)’,...,(u,_, —u,)") ] is p.d. The quantities
i (i) (@) ()
31(1) oAy b11 blk
A= . |[eR*and B,=| : . i |e R" are matrices of weights,
0) (0) 0) Q)
a,, - a b ... b
kl kk J kl kk )
where

ZAi =1, , ZBi =1, , and I, denotes the identity matrix.

i=1 i=1

We make the assumption that the matrices of weights sum up to identity which guarantees

the unbiasedness of the combined forecast. The multivariate combinations of forecasts are

F, =Zn:AiFi and F, =iBiFi
i=1

i=l

and the corresponding error vectors are

u, =Y-F, :iAi(Y—Fi):iAiui and
i=l i=l

u, =Y-F; =i{Bi(Y—Fi)=j:Biui .
1=1 i1

Subsequently we are going to compare different combinations with the Pitman-closeness

criterion and also derive optimal weights.



3 Component-by-component Pitman-closeness

In this section we compare multivariate forecasts in each component separately.

Definition 3.1. The forecast F, is relative to component j Pitman-closer to Y; than the
forecast F, , je {1,...,k}, if and only if

p(Y, ~F,| <[y, ~E,|)> 0.5.
The probability statement of this definition can also be written as P(‘u jl‘ < ‘u i ‘)> 0.5.

The first forecast method is Pitman-closer toY; if the probability that it has a smaller

absolute error in the j-th component than the second method is larger than 0.5.

Consequently, it is reasonable to introduce the following definition.

Definition 3.2. The forecast F, is component-by-component Pitman-closer than the forecast
F, (F, #F,) ifand only if

P(lY, ~F,|<[Y, ~F,|)>0.5  Vje {L....k} where F, #F,,.

The probability statement of Definition 3.2 is equivalent to

P(‘uﬂ‘ < ‘ujz‘)> 0.5 Vjedl..,k}, where F, #F,.

With this definition in mind we will now find a combination which is the component-by-

component Pitman-closest.

Let al” := (a(.” 5}2) and b} = (b(‘) bﬁ()) , i=1,....k, i=1,...,n be the j-th row vectors of

fEER fEER
the i-th matrices of weights. Then the components of the error vectors of the two

combinations are given as

’

A=Y, Za(‘)F Za(‘) (Y-F,) 2 (‘), u =au

’ ’

a, :=(a§” sera” ) ~(n-k)xI, b, :=(b§” . ) ~(n-k)x1
J Y



and u ~ (n-k)xI.
With the definitions from above we are able to compare the two combinations of

multivariate forecasts. F, is in the j-th component Pitman-closer to Y; than Fy if and only
if

P(‘ujA‘ <‘uj3‘)> 05 P(u?A < u§3)>0.5
& P(u aau<u bjbju)>0.5 & P(u (ajaj —bjbj }1<0)>0.5
(:} P(u Z‘O'SZO'S(ajaj —b b, )20'52‘0'5u<0)> 0.5 (1)

This is similar to the characterization of Pitman-Closeness for the univariate case as in

Wenzel (1998).

The eigenvalues of the matrix C; =X*’ (a a, —bb, )20'5 are

2

2 2 2
el =[] e +aifle, -a n o) ~Ja] Je;+a]le,-aj]
i1 s fvi2 o >
2 2

with corresponding eigenvectors v, and v;, , where
¢, =X"a; and d, =X"b, .
Then

(e P(?»jlu v Zutdu TV, v, 2 < O)> 0.5

e PR,X3+1,X3 <0)>05 )
where
X;=u 2%, , X,=u Z"v,,

E(X,)=E(X,)=0, Var(X, )= Var(X ,)=1, Cov(X,, X ,)=0.

As a weighted sum of normal distributed random variables, the X’s are also normally

X.
distributed. Since they are independent with zero mean and unique variance, the ratio —-
j2

is Cauchy(0, 1)-distributed. Hence we have the following equivalences:



Q)= P|- >0.5
2
& “arctan
T

With the same conclusions as in the univariate case this is equivalent to
2 2 ’ ’
lej|" <|a;]” < a;za;<b;Zb;.

An optimal combination of forecasts for the j-th component is given by a vector a; which

’

minimizes a; Xa,. Since the weight matrices sum up to the identity matrix, we have

al’ +...+a{"” =e, where e, is the j-th unit vector. This leads to the minimization problem:

Minimize a; Xa,
" (MP)
subject to Y al’ =e,

i=l

’

’ ’ n—l1

s O] (n-1) _ ()

= Minimize a;’ ,..a, ,(ej E a; }
i=1

’
’ ’ n-I
M (n-1) _ (i)
Sl at....al ,[ej Sa ] |
i=1

J J

With £:=(Z,) Y =Cov(u,,u,), we obtain:

r,s=l,..,n ?

’

’ ’ nl ’ ’ nl ’
al’ ,...,a"" ,(ej - ag‘)} WZ al’ ,...al"" ,(ej —Zag‘)} W
i=1 ) i=l1 )
n—1 n—1 ’ n—1 n—1 ’
= ag” (er DI )ags) + aj” (2m -2 )ags)
=1 5=l =1 s=1
el s nl
+Za§” (Zm T )eJ +2{ej .-z, )a? +e, X, e
r=1 s=1
n—1 n—1 ’
= a? (€ +%, -2, %, ¥
r=1 s=1
n-1 ’ n—1 ’ ’
aﬁr) (Znn -2, )ej _Zej (Zrm -X. )aES) te, Znnej (3)
r=1 s=1



Now, defining
V=2 +2 -2, -2 . ,,s=L...,n—-1,

v=(V,)

r,8=l,...,n—1 ~ (n - 1) ’ k X (n - 1) : k9
n
W, = (wﬂ seees Wi )~ (n—1)-kx1,
G = (1)’ (n—l)’
a; .—(aj seees ] )~(n—1).k><1
J
and inserting in equation (3) yields

’ ’ ’ ’ ’

a,Xa;=a;Va,—a,w,—w,a;+e; X e =L(a))

The necessary condition for a minimum is

oL(a) - rr
——=2a, V-2w, =0,
da,

and the sufficiency condition

8 L(a,
0" a,

follows from the assumption that V := Cov(z) with z:=((u, —u,)’,...,(u

Thus we get: a/™ =V 'w, .

Now we are able to formulate the following two theorems.

Theorem 3.1. The Pitman-closest-combination of n multivariate forecasts for the j-th

WwW. = (Znn _Zin )eJ ~ kXI and therefore Wji = ej, (Znn -

1

), j=1,..k, i=1,..,n—1,

’

component of a random vector Y of dimension k (k>2) is given by the vector of weights

’

’ 7 ,
Sl (a(l)jopt T Yo ) Z(Wj Ve,

J J J J
J

/

where I} =[I,...,I, ] ~(n-1)-kxk.

-w, V‘II;) ,

—u)) isp.d.



Theorem 3.2. The component-by-component Pitman-closest-combination of n multivariate
forecasts for a random vector Y of dimension k (k>2) is given by the matrix of weights
AP =[AP AP =W VL - WV

where W i=(w,...,w, )~ (n—1)kxk,

/
*

I =[...I]~0-1)kxk.

The proofs of these two theorems follow directly from the calculations above. It is obvious
that the optimal weights in each component depend on the covariance structure of the

whole system of forecast errors.
Looking again to the minimization problem (MP) we get the following theorem:

Theorem 3.3. With the assumptions in Section 2 the optimal matrix-MSE-combination is

identical with the component-by-component Pitman-closest-combination.

Proof: The matrix-MSE of the errors of the combined forecast F, is given as

o )= [Sa0m [ Savn)

i=1 i=l j=I

= E‘AiZ..Aj , where X, = E(uiuj )

Odell et al. (1989) analysed the minimization problem for the linear combination of
multivariate estimators with the assumptions of Section 2. They pointed out that in this case

minimizing the matrix-MSE in the sense of the Lowner-ordering implies that the scalar-

’

MSE is also minimized. The scalar-MSE is defined as the trace of E(u AU,

tr(E(uAuA D= Zaj Za,.
j=l1

We see that the j-th term of the sum depends only on the j-th weight vector. Thus the

). The trace is

minimal trace is given by the minimum of each of the n components in the sum and



therefore by the optimal weight vectors ag"p‘). This means that the optimal matrix-MSE-
combination is also the component-by-component Pitman-closest.

On the other hand, if we calculate the component-by-component Pitman-closest-

’

combination, we begin by minimizing the trace of E(u AU, ) Consulting again the paper

of Odell et al. (1989) it follows that the matrix-MSE is also minimized in the sense of the

Lowner-ordering.

Application. The theoretical description of the problem will now be underlined by a short

example. We analyse a problem where n=3 forecasts are given for a random vector of
dimension k=2. The 6x6 covariance matrix of the forecast errors which, in pratice, can be

calculated using the general ML-estimators is

2 35 4 1 6
38.0 1 -1 7
5 03 1 1 2
Covlw)=l , | 1 3 5
1 -1 1 -2 5 3
6 7 2 0 3 10

Now we take the forecast combination given by the the component-by-component Pitman-
closest technique as F, and intuitive combination techniques for F, , ie. the three

individual multivariate forecasts, the technique which uses for each component the optimal

univariate combination and a combination with the weight matrices given below.

1 1 1 1 1
3 2 3 4 3 4
B, = B, = B, =
1 1 1 1 1
43 4 3 2 3

The following table shows the probabilities for each of the two components that the

component-by-component Pitman-closest-combination outperforms the other combinations.



combination component j p(‘u " ‘ < ‘u s ‘)
first individual 0,91992
forecast 0,95241
second individual 0,84555
forecast 0,92287
third individual 0,87810
forecast 0,95739
optimal univariate 0,81172
combination 2 0,91234
combination with 1 0,84373
the weights above 2 0,93091

4 General Pitman-closeness

In Section 3 we considered Pitman-closeness for each component. In this case the
probability that all components of the Pitman-closest-combination have a smaller absolute
forecast error than another combination could be less than 0.5. Therefore, it is reasonable to

define a general Pitman-closeness criterion.

Definition 4.1. The forecast F, is general Pitman-closer than the forecast F, if and only if

P(Y-F|<|Y-F[)>05 .

Thus, if P(|u1| < |u2|)> 0.5 then F, is general Pitman-closer than F,. Here |x| <|y| means

that |xi| <|yi ,Vi=1....k.

With the transformations in Section 3 we can write this as

S CPI STI I O Y
7\’11 X-21 7\’11

P <l : I >0.5.
7\,](2 Xkl 7\,](2
oAy | [ Xe A




It is obvious that for the calculation of the probability we have to take into account the

X.
multivariate distribution of the k components — j=1,...,k, which are dependent

j2
Cauchy(0,1)-variables. Another point is that two multivariate forecasts could be not
comparable which means that none of them is general Pitman-closer. Especially in
situations of “high” dimensions (k ”large”) it might be possible that no general Pitman-

closest-combination exists.

5 Conclusions

We derived the component-by-component Pitman-closest-combination of forecasts which
is equivalent to the optimal matrix-MSE-combination. With the component-by-component
Pitman-closeness criterion we are able to specify a probability that a multivariate forecast in
a special component performs better than another forecast. We have to emphasize that the
assumption of normal distributed errors is needed. Furthermore we discussed the general
Pitman-closeness criterion. By transforming each component as in the component-by-
component case it was possible to calculate the distribution of each component but their
joint distribution is needed. Therefore more research in the area of multivariate distributions

is necessary. Finally as a new problem the case of incomparable forecasts may occur.
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