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Abstract

The aim of this paper is to de�ne and investigate outlier�proneness for multivariate

distributions� This is done by using a concept of ordering multivariate data based on

isobar�surfaces� which yields an utmost analogy of the results to the univariate case�
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� Introduction

When modelling multivariate data� we often have some feeling about how outlier prone the

underlying distribution should be� That is� there are phenomena where some outliers in the

data will be a rule and are to be expected� rather than they are considered as very rare

exceptions� In such situations we would not want of course to choose e�g� a multivariate

normal distribution with very light tails as a model of the data�generating mechanism�

There are other multivariate distributions� di�erent from the normal where even such

a vague knowledge about their tendency to produce outliers is not known� Therefore� a

classi�cation of multivariate distributions w�r�t� their outlier�resistance and proneness as

available in the univariate case ��Green 	
�� �Gather� Rauhut ��� �Schuster ���� would be

useful�

This paper gives a formal framework and de�nitions of the terms outlier�proneness and

outlier�resistance of multivariate distributions based on an isobar � surfaces approach to

multivariate extremes �Delcroix� Jacob ����

More exactly� the limit behaviour of the di�erence of the two largest multivariate �ex�

tremes� Xn�n � Xn�n�� is used �in the sense of �Green 	
�� to de�ne the outlier�proneness

of the underlying distribution� Having to decide then� if some class of multivariate dis�

tribution functions is outlier�prone� we need a characterization� directly in terms of the

distribution function� too� This paper gives such equivalence theorems which allow to check

for outlier�proneness or outlier�resistance of a distribution in many di�erent ways�

As mentioned� we choose a concept of ordering multivariate data based on the isobar�

surfaces of the underlying distribution� Though this is a natural way of ordering multivariate

data� in contexts with just a given data set� it cannot be applied� when the data generating

distribution is not completely known� This is usually a de�ciency but in our situation� where

we want to check if a given distribution at hand is suitable for modelling a data structure�

we are able to use this natural notion of ordering in terms of isobar�extremes� since the

distribution is known then�
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Also� as in the univariate case� this new notion of outlier�proneness via isobar�extremes

is strongly related to weak stability of the extremes� Our approach di�ers from the one

by �Mathar ��� who de�nes outlier�resistance via the limit behaviour of the distance of

the upper extremes of the real valued norms of the sample points as ordering principle�

His approach therefore yields a characterization of multivariate outlier�proneness via the

minimum of the distribution function of the marginals� whereas our de�nition leads to

characterizations depending on the behaviour of the conditional distribution functions given

the angles� Hence� we take into account the complete shape of the multivariate distribution�

This paper is organized as follows� In section � we start with de�ning weak stability

of multivariate extremes by the isobar surface ordering� In Section � we de�ne outlier�

resistance and outlier�proneness of multivariate distributions� we relate these properties to

weak stability of the extremes and characterize outlier�resistance by the tail behaviour of

the conditional radial distributions� Section � gives a generalization and examples�

� Weak stability of multivariate extremes

We �rst recall the de�nition of the largest value of a multivariate sample� as given in

�Delcroix� Jacob ���� The motivation was to describe the asymptotic position of a multi�

variate sample� �Barme�Delcroix ���� without using classical convexity notions� �Ge�roy 
���

We consider random variables with values in the Euclidean space Rk�

For every x in Rk n fg we de�ne a pair �kxk� x
kxk� � �r� �� in R�� � Sk��� where k � k

is the Euclidean norm and R�� is the set of the strictly positive real numbers� The unit

sphere Sk�� in Rk is endowed with the induced topology of Rk�

For each random variable �r�v� for short� X � �R��� in Rk with radius R and angle ��

we assume that the distribution of �� and for all � in Sk��� the distribution of R given � � �

respectively� has a continuous density� F� denotes the continuous and one�to�one conditional

distribution function of R given � � �� This means in particular that we suppose F��r� � �

for all r �  and for all ��
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For each  � u � �� we call the mapping � � F��
� �u� a u�level isobar of the distribution

of R given � � � � We suppose that this mapping is continuous and strictly positive� The

surface given by �u��� � F��
� �u�� considered as a function of �� is also called a u�isobar for

all  � u � ��

Let x� � �r�� ���� � � � � xn � �rn� �n� be observations of an i�i�d� sample X�� � � � � Xn from

the distribution of X � �R����

Let uj � F�j �rj� for � � j � n� u�n � max
��j�n

uj� and de�ne x�n � �r�n� �
�
n� by

F��n
�r�n� � u�n�

Since F� is continuous and strictly increasing for all �� like this we have de�ned almost surely

unique r�v��s U�� � � � � Un as well as an almost surely unique r�v� X�
n � �R�

n��
�
n� which is an

element of fX�� � � � � Xng for which

F��n�R
�
n� � max

��j�n
Uj�

We call X�
n the isobar�maximum of X�� � � � � Xn�

Obviously� to �nd this isobar�maximum of a multivariate sample� the underlying dis�

tribution has to be known� However� this kind of extreme value� and more generally� the

ordering of the sample according to the isobars� does not give up any information the sample

carries� like the ordering by norms� e�g� It is possible to give an estimation of the isobars

by regression methods for particular cases � �Jacob� Suquet �	� � One can also estimate the

origin by using the barycentre of the sample points� However for many situations this origin

is given in a natural way�

It has been shown in �Delcroix� Jacob ��� that the conditional distribution of R�
n given

��
n is F n

� � hence the distributions of �R�
n��

�
n� and �R��� have the same set of isobars which

led to the following de�nition�

De�nition � For a sequence �En�n of multivariate r�v��s� the sequence �X�
n�n � ��R�

n��
�
n��n

of the isobar�maxima is called stable in probability if and only if there is a sequence �gn�n of

�



isobars satisfying

��� R�
n � gn��

�
n�

P
����  �

Following �Ge�roy ��� it is possible to choose gn��� � F��
� ��� �

n
��

It is convenient to �x a point x� � ��� ���� �� in Sk��� For every point x � �r� ��� � there

is a unique surface g��� r�� � in Sk��� containing x� which has a level denoted by u�r� and

which is given by

��� g��� r� � �u�r���� � F�
���F���r���

Note that g���� r� � r� Moreover the mapping r� u�r� from R�
� into R�

� is increasing and

one�to�one�

The following conditions �H� and �K� will be needed�

�H� There exist  � � � 	 �� such that for all � in Sk�� and for all r �  �

� �

g


r
��� r� � 	�

�K� For all � � � there exists � �  such that for all r �  �

sup
�

fg��� r � ��� g��� r � ��g � � �

Clearly� �H� implies �K��

Remark � Condition �H� entails a regularity property of the isobars following from the

mean value theorem �

For all 	� �  there exists � �  and for all r � � there exist two isobars h����� r� and

�h����� r� such that for all ��

g��� r�� 	� � �h����� r� � g��� r�� � � g��� r� � � � h����� r� � g��� r� � 	��

Note that � does not depend on r�

�



Remark � For a bivariate Gaussian sample with covariance matrix

�
B� � 

 � �

�
CA� we have

g��� r� � r���� with ���� � �p
��
� cos

��
���

� sin��
���

�
��

� and the isobars are the density contours�

Note that condition �H� is satis	ed� For  � � � � the distribution is spherically symmetric

and the isobars are circles� Hence in this particular case the ordering of the sample is the

ordering of the norms of the sample points�

The next theorem gives conditions for stability similar to those of �Ge�roy ��� in the

univariate case �see �Delcroix� Jacob ��� for a proof�� For this purpose we de�ne W �
n by

F���W
�
n� � F��n�R

�
n� for X

�
n � �R�

n��
�
n�� i�e� W

�
n � F��

��
�F��n�R

�
n�� is the intersection of the

half axis containing x� � ��� ��� and the isobar containing X�
n�

Theorem � a� Under condition �K� the sequence �X�
n�n is stable in probability if �W �

n�n is

stable in probability �

b� Under condition �H� the sequence �W �
n�n is stable in probability if and only if �X�

n�n is

stable in probability �

c� Consider for some 	xed integer � the sequence �Xn�n�����n� this being de	ned by ordering

the sample according to increasing levels by

Xn��� � � � � Xn�n����� � � � � Xn�n � X�
n�

Let �H� be satis	ed� Then �X�
n�n is stable in probability if and only if �Xn�n�����n is stable

in probability�

For the proof of a� and b� see �Delcroix� Jacob ���� c� follows immediately from a� and

b� and the univariate result of �Ge�roy ����

Possibilities to check for the weak stability of �X�
n�n on the basis of the distribution

function F��r�� r � � � in Sk��� will be provided by the characterization results in Theorem

� below�






� Multidimensional outlier�prone and outlier�resistant

distributions

We give an application of stability in probability of multivariate samples as de�ned in

the previous section to the notion of outlier�resistant and outlier�prone distributions� In

�Neyman� Scott 	�� we �nd a de�nition which has been improved by Green� �Green 	
��

The goal is to distinguish between two classes of distributions � distributions for which as

a rule there exist observations far apart from the main group of the data� and distributions

for which this phenomenon occurs with very small probability� So� Green called a univariate

distribution F absolutely outlier�resistant if for all � �  �

��� lim
n���P �Xn�n �Xn�n�� � �� � 

where Xn�� � Xn�� � � � � � Xn�n are the usual univariate order statistics of X�� � � � � Xn�

distributed identically according to F �

On the other hand� a distribution F is called absolutely outlier�prone if there exist � � �

� �  and an integer n� such that for n � n� �

��� P �Xn�n �Xn�n�� � �� � ��

Remark � The AOR�and AOP�property depend only on the tail�behaviour of F � e�g� AOR

is equivalent to lim
x���

��F �x�
��F �x�h� �  for all h �  � Moreover� the behaviour of many types of

univariate distributions is investigated in 
Gather �� yielding the following special results�

the Gumbel distribution with F �x� � exp��e�x� for x � R is not AOR but is AOP�

Also the Frechet distribution with F �x� � exp��x����fx��g is not AOR but is AOP for all

� � �

Distribution functions of the type F �x� � ��� cexp��bx����fx��gwith constants c� b� � � �

are AOR as long as � � ��

Other de�nitions of outlier proneness of univariate distributions have been given for

example by �O�Hagan 	��� and �Goldstein ��� in a Bayesian framework� �Gather� Rauhut ��

	



discuss these di�erent notions for univariate data� Here� we will extend the notion of outlier�

proneness given by Green to multidimensional samples by using isobars�

Recall that for all �� F� denotes the distribution function of R given � � � and that

G� � � � F�� Note also that for each sample point Xi � �Ri��i�� i � �� � � � � n� there

exists almost surely a unique isobar containing Xi� Let gn�n denote the isobar containing

X�
n � Xn�n and gn�n�� the isobar containing Xn�n��� Thus for all � in Sk��� gn�n and gn�n��

are real valued r�v�s� Since W �
n was de�ned as the intersection of the half axis containing

��� ��� and the isobar containing X�
n� we now have W �

n � gn�n����� If we de�ne analogously

for all � � i � n� Wi � F��
���F�i

�Ri��� we get Wn��� � � � �Wn�n � W �
n as the usual order

statistics of the real valued sample W�� � � � �Wn distributed identically according to F�� �

��� Multivariate AOR distributions

De�nition � The distribution of the multivariate r�v� �R��� is absolutely outlier�resistant

�AOR�� if and only if for all � �

��� gn�n���� gn�n�����
P

���� �

For a real sample it has been shown in �Ge�roy ��� and �Gnedenko ���� that �Xn�n�n is

stable in probability if and only if Xn�n � Xn�n��
P

���� � The following theorem gives an

analogous result and as mentioned in Remark � a characterization of weak stability by the

tail behaviour of the underlying distribution�

Let condition �H� always be satis�ed in the following�

Theorem � All the following statements are equivalent �

�i� The distribution of �R��� is AOR�

�ii� �X�
n�n is stable in probability�

�iii� For all � � � � n� �Xn�n�����n is stable in probability�

�iv� There exists �� such that lim
x���

G��
�x�

G��
�x�h� � � for all h � �

�v� For all �� lim
x���

G��x�
G��x�h� � � for all h � �

�



�vi� W �
n �Wn�n��

P
���� �

�vii� �W �
n�n is stable in probability�

�viii� For all �� the distribution F� is AOR�

�ix� There exists �� such that the distribution F�� is AOR��

Proof � Theorem �c� shows that �ii� and �iii� are equivalent� Gnedenko�s Theorem and

Theorem �b� show that �ii�� �iv�� �v� and �vii� are equivalent� Moreover� from �Ge�roy ����

�vii� and �vi� are equivalent� Now� �i� involves �ii� � if for all �� gn�n��� � gn�n�����
P

���� 

we get gn�n���� � gn�n������
P

���� � that is W �
n � Wn�n��

P
����  � and since �vi� and

�vii� are equivalent� �W �
n�n is stable in probability and from Theorem �b� �X�

n�n is stable in

probability�

Conversely� if �X�
n�n is stable in probability� �W �

n�n is also stable and

W �
n �Wn�n��

P
���� � Then gn�n����� gn�n������

P
����  � but �� being arbitrary� we obtain

�i��

Clearly� these properties are equivalent to �viii� and �ix��

For univariate samples� it is possible� following �Gather� Rauhut ��� to give other char�

acterisations of AOR distributions based on the mean residual life function �mrlf�� which is

de�ned for a real r�v� X by

e�x� � E�X � x j X � x��

For i � �� � � � � n� �� and for x � � y �  and n � �� let

�
� Mi�n�x� y� �� � Pfgn�i������ gn�i��� � y j gn�i��� � x�g

For �xed� � � ��� Mi�n�x� y� �� can be written as

�	� Mi�n�x� y� ��� � PfWn�i�� �Wn�i � y jWn�i � xg�

From �Gather� Rauhut �� and Theorem � we obtain the following result�

Theorem � The distribution of �R��� is AOR if and only if there exists �� such that for

�



all y �  �

��� lim
x���Mi�n�x� y� ��� � �

for some � � i � n �

Proof � From Theorem �� the distribution of �R��� is AOR if and only if there exists

�� such that F�� is AOR� But� from �Gather� Rauhut ��� F�� is AOR if and only if ��� is

valid� To show this we observe that the order statisticsWn��� � � � �Wn�n form a Markov chain�

�Arnold� Becker� Gather� Zahedi ���� �David ��� and that

Mi�n�x� y� ��� � PfWn�i�� � x� y jWn�i � xg �

�
�� F���x� y�

�� F���x�

�n�i
�

Assertion �iv� of the previous theorem completes the proof�

In De�nition �� the sample size increases � but in Theorem �� the sample size is �xed which

makes it intuitively easier to relate the de�nition of outlier resistance of the distribution to

the non�occurence of outliers in the sample � the larger Xn�i gets� the smaller the probability

for the di�erence Xn�i�� � Xn�i to be larger than an arbitrary positive number� The next

theorem describes this fact in average�

For all � in Sk�� and for all i � �� � � � � n� consider

��� �Mi�n�x� �� � E�gn�i������ gn�i��� j gn�i��� � x��

For �xed � � ��� �Mi�n�x� �� can be written as

�Mi�n�x� ��� � E�Wn�i�� �Wn�i jWn�i � x�

Theorem  Suppose that for all ��
R
x dF� exists� Then� the distribution of �R��� is AOR

if and only if there exists �� such that for all n � � �

lim
x���

�Mn���n�x� ��� � �

The proof is again only an application of Theorem �b� and of �Gather� Rauhut ���

�



��� AOP distributions

De�nition � The distribution of �R��� is called absolutely outlier�prone� �AOP�� if and

only if for all � there exist � � � � �  and an integer n�� such that for all � and for all

n � n��

��� P �gn�n���� gn�n����� � �� � ��

That is� for all �� the distribution F� is AOP�

Theorem � All the following statements are equivalent �

�i� The distribution of �R��� is AOP�

�ii�For all �� there exist � � � 	 �  such that for all x

����
�� F��x � 	�

�� F��x�
� ��

�iii� There exist ��� �� �  and 	� �  such that for all x

����
�� F���x � 	��

�� F���x�
� ���

�iv� There exists �� such that F�� is AOP�

Proof � From �Green 	
� Theorem ���� we have that for �xed �� the univariate distribution

F� is AOP if and only if ���� is ful�lled� This proves that �i� and �ii� are equivalent�

Clearly� �ii� implies �iii��

To show that �iii� implies �ii� we consider �� 	� �� � for all r � � There exists an isobar

g��� r�� � in Sk��� containing the point �r� ��� � Let u�r� denote the level of this isobar� Since

�H� is satis�ed �see Remark �� there exist � �  and an isobar h����� r� such that for all r

and for all �

g��� r� � � � h����� r� � g��� r� � 	��

��



Let u���r� denote the level of h����� r�� Since G�� � �� F�� is decreasing�

G���r� � G���g���� r�� � �� u�r� � G���g���� r�� �

and

G���r � �� � G���g���� r� � �� � G���h������ r�� � �� u���r��

Moreover�

�� u���r� � G���h������ r�� � G���g���� r� � 	���

and

G���g���� r� � 	��

G���g���� r��
�
G���r � ��

G���r�
�

Thus� if
G��

�r����

G��
�r�

� �� for all real x� then for all �� 	� ��� there exist

	� � � �  and �� � �� �  such that for all r

G���r � 	��

G���r�
� �� �

and we obtain �ii� �

Clearly� �iv� is equivalent to the other statements�

Examples �

a� For a bivariate Gaussian sample such as in Remark �� we have

F��r� � � � exp��r������ and following Theorem �iv� we can conclude that this distri�

bution is AOR�

b� Suppose that F��r� � � � cexp��br������fr��g with � a strictly positive continuous

function and b� c �  �Gumbel type distribution�� It has been shown in �Delcroix� Jacob ���

that neither �H� nor the regularity property of isobars from Remark � is satis�ed for this

distribution� But if inf
�
������ � �� condition �K� is ful�lled for r large� Moreover� as in the

univariate case� from Theorem � a�� �X�
n�n is stable and the distribution of �R��� is AOR�

If � is constant and equal to �� the distribution is AOP� And if there exists �� such that

����� � � then the distribution is neither AOP nor AOR�

��



c� For the bivariate Morgenstern distribution with density

f�x� y� � e��x�y��� � ���e�x � ����e�y � ��� with �� � � � � it is possible to write

down the distribution function F� explicitely�

F��r� �
�

d���

�
�� � ��

�
��� e��cos ��sin ��r�

�cos � � sin ���
�
re��cos ��sin ��r�

�cos � � sin ��

�

� ��

�
�� e���cos ��sin ��r

��cos � � sin ���
�

re���cos ��sin ��r

��cos � � sin ��

�

� ��

�
�� e��� cos ��sin ��r

�� cos � � sin ���
�

re��� cos ��sin ��r

�� cos � � sin ��

�

� ��

�
�� e��cos ��� sin ��r

�cos � � � sin ���
�

re��cos ��� sin ��r

�cos � � � sin ��

�	

where d��� is a function of �� Hence F��r� is of the type

�� Aexp��ar��Bexp��br� � Cexp��cr��Dexp��dr�

�A�rexp��ar�� B�rexp��br�� C �rexp��cr��D�rexp��dr�

with a � cos��� � sin���� b � �a� c � cos��� � �sin���� d � �cos��� � sin��� and A� B� C�

D� A�� B�� C�� D� all depending only on � and �� We can then apply Theorem � iii� which

yields after some manipulations that the bivariate Morgenstern distribution is AOP�

The following corollary is also obvious from Theorem � as well as from using �
� �	� and

����

Corollary � a� The distribution of �R��� is AOP if and only if there exists �� such that

for all y � � there exist �� and x� such that

Mi�n�x� y� ��� � �� �

for all x � x�� for some � � i � n� ��

b� Suppose that
R
xdF� exists for all � and that the distribution of �R��� is AOP� then

there exist ��� �� and x�� such that for x � x� and for all n � �

�Mn���n�x� ��� � ���

��



� Generalization and examples

Of course� a lot of multidimensional distributions do not have stability properties� However

we can generalize the notion of weak stability� to ��stability� see e�g� �Delcroix� Jacob ����

�Gather� Rauhut ��� �Ge�roy ���� �Gnedenko ���� �Green 	
�� �Resnick �	��

�Tomkins� Wang ���� For a positive� increasing� concave� one�to�one C��function de�ned

on R�� we consider the set of points ����R������ � � � ���Rn���n�� instead of the initial

sample� Then� for a suitable function ��we obtain stability properties for many usual mul�

tivariate distributions �exponential distributions� Cauchy distributions���� Having de�ned

��stability �Delcroix� Jacob ���� we can also de�ne multidimensional ��outlier�resistant or

��outlier�prone distributions� It su�ces to consider the distribution of ���R���� instead of

the distribution of �R���� For example� if the distribution of �R��� is AOR and if � is a

positive� increasing� concave� one�to�one C��function de�ned over R�� then the distribution

of ���R���� is also AOR� When ��x� � max�� Log x�� we come to the notions of relatively

outlier�resistant or relatively outlier�prone distributions� In this case� ��outlier�resistant and

��outlier�prone are denoted by ROR and ROP as they are given in �Green 	
� for univariate

distributions�

Examples �

a� Exponentional�type distributions with

F��r� � ��� cexp��b���r���fr��g �

c �  and b being a strictly positive and continuous function� are ROR and AOP �see

example �b in section ���

b� Cauchy distributions with conditional density

f��r� �
�

�

����

r� � �����
�fr��g �

� being a strictly positive� and continuous function� are ROP� but are ��OR for ��x� �

LogLog x�

��



c� If  � m � � and

F��r� � ��� exp������rm���fr��g �

the distribution of �R��� is ��OR� with ��x� � x
�

�m �

�For each example the general form of � is given in �Delcroix� Jacob �����
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