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Abstract� The best linear unbiased estimator BLUE�CX�� of a linear transform CX� in

the general Gauss�Markov model fy�E�y� � X��Cov�y� � �
�Vg is the linear transform

CBLUE�X�� of the best linear unbiased estimator BLUE�X�� of X�� Similarly� for the

ordinary least squares estimator� OLSE�CX�� � COLSE�X��� The problem of equality

of OLSE�X�� and BLUE�X�� has been widely discussed in the literature� In this note�

characterizations of the equality COLSE�X�� � CBLUE�X�� are given in terms of

projectors and subspaces�
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�� Introduction� Consider the general Gauss�Markov model denoted by

M � fy�X�� ��Vg� ��	�


where y is an observable n� � random vector with E�y
 � X� and Cov�y
 � ��V�

X is a known n � p matrix of rank r� � � r � n� V is a known n � n symmetric

nonnegative denite matrix �possibly singular
� � is a p � � vector of unknown

parameters� and �� � � is either known or unknown	

Our interest focuses on estimation of a linear transform CX� of X�� where C

is a given k � n matrix	 Recall that estimation of X�� with known X� � CX can

also be seen as �classical
 prediction of an unobservable random vector y� satisfying

E�y�
 � X��	
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It is well known ���� ��� that a representation of the best linear unbiased estimator

�BLUE
 of CX� is given by

BLUE�CX�
 � CX�X�T�X
�X�T�y� ��	�


where T � V�XX�	 Here� A� and A� denote the transpose and the Moore�Penrose

inverse of an arbitrary matrix A� respectively	 Since we have

BLUE�X�
 � X�X�T�X
�X�T�y� ��	�


it is clear that BLUE�CX�
 � CBLUE�X�
	 Although there exist further repre�

sentations of BLUE�X�
� all of them coincide almost surely� so that without loss of

generality we may conne ourselves to ��	�
	 Consider now the competing estimator

COLSE�X�
� where

OLSE�X�
 � XX�y ��	�


is known as the ordinary least squares estimator �OLSE
 of X�	 The problem of

equality of BLUE�X�
 and OLSE�X�
 has been widely discussed in the literature	

See e	g	 ��� where two di�erent versions of this problem are investigated� and ��� for

an excellent overview	 As one �among many other
 necessary and su�cient condition

for BLUE�X�
 � OLSE�X�
� Puntanen and Styan ��� cond	 AS�� state

PXV � PXVPX� ��	�


where the symbol PA � AA� is used to represent the orthogonal projector onto

the range �column space
 R�A
 of an arbitrary n� p matrix A	 The symbol QA �

In � PA will denote the orthogonal projector onto the orthogonal complement of

R�A
� compare also ��� Chap	 ���	

In the following we derive a condition similar to ��	�
 for the less restrictive

equality CBLUE�X�
 � COLSE�X�
	

�� Equality of estimators� By conning ourselves to the representation ��	�


of BLUE�X�
 we observe that CBLUE�X�
 � COLSE�X�
 almost surely if and

only if

CXX�y � CX�X�T�X
�X�T�y for all y � R�X
 �R�V
� ��	�


�



the latter being equivalent to the identities

CXX�X � CX�X�T�X
�X�T�X ��	�


and

CXX�V � CX�X�T�X
�X�T�V� ��	�


But since we have X � XX�X and

X � X�X�T�X
�X�T�X� ��	�


the latter being true in view of R�X�
 � R�X�T�X
� see e	g	 ��� Theorem ���

condition ��	�
 is always met	 Thus� the equality under study holds if and only if

��	�
 is satised	

Proposition �� Under model M � fy�X�� ��Vg� equality of CBLUE�X�
 and

COLSE�X�
 holds almost surely if and only if

CPXV � CPXVPX� ��	�


Proof� It remains to show that ��	�
 is equivalent to ��	�
	 Since by ��	�
 and

X�T�T � X� we have

X�X�T�X
�X�T�V � X�X�T�X
�X�T��T�XX�


� X�X�T�X
�X�T�T�XX�

� X�X�T�X
�X� �XX�� ��	�


it is clear that ��	�
 follows from ��	�
 by right�multiplication of ��	�
 with XX�	

Conversely assume that ��	�
 is satised	 Then�

CPXV � CPXV�X�
�X�

� CPXV�X�
�X�T�X�X�T�X
�X�

� CPXVPXT
�X�X�T�X
�X�

� CPXVT
�X�X�T�X
�X��

But since in view of ��	�
 we have

VT�X�X�T�X
�X� � X�X�T�X
�X�T�V�

�



it follows that

CPXV � CPXX�X
�T�X
�X�T�V � CX�X�T�X
�X�T�V�

showing ��	�
	

As an immediate corollary we obtain the following	

Corollary� Under model M � fy�X�� ��Vg� the following statements are equiv�

alent �

�i
 BLUE�X�
 � OLSE�X�
�

�ii
 X�BLUE�X�
 � X�OLSE�X�
�

�iii
 X�BLUE�X�
 � X�OLSE�X�
�

Proof� Observe that for C � X� and C � X�� equations ��	�
 and ��	�
 are

equivalent	

Obviously each of the numerous equivalent conditions for BLUE�X�
 �

OLSE�X�
 is su�cient for CBLUE�X�
 � COLSE�X�
� including

PXV � VPX� ��	�


which is called Zyskind�s condition in ���	

It is clear that ��	�
 may be reformulated as

CPXVQX � �� ��	�


where QX � In�PX	 If we are interested in characterizing all matrices C satisfying

CBLUE�X�
 � COLSE�X�
 almost surely� then we simply have to inspect the

general solution to ��	�
 with respect to C� being

C � Z�In �PXVQX�PXVQX

�
� ��	�


where Z is an arbitrary k � n matrix	 In view of

rank�PXVQX
 � rank�QX
 � n� rank�X
 � n

it is obvious that there always exists more than one �trivial
 solution to ��	�
	

�



If we are interested in characterizing all nonnegative denite matrices V sat�

isfying CBLUE�X�
 � COLSE�X�
 almost surely� then we have to inspect the

general nonnegative denite solution to ��	�
 with respect to V	 It is clear that ��	�


is equivalent to MVQ
X
� �� where M � PXC

�CPX� see ��� Lemma ��	�	��� which

in turn is equivalent to

PMVQX � �� ��	��


The general nonnegative denite solution to ��	��
 can be derived from Theorem

�	� in ���	 By letting Rm�n denote the set of m� n real matrices and R�
n�n denote

the set of n � n real �symmetric
 nonnegative denite matrices� we may state the

following	

Proposition �� Under model M � fy�X�� ��Vg� the following two statements

hold�

�i
 For given X � Rn�p and V � R
�
n�n the set of all matrices C � R

k�n satisfying

CBLUE�X�
 � COLSE�X�
 almost surely is given by

fC � ZQLjZ � Rk�ng �

where L � PXVQX�

�ii
 For given X � Rn�p and C � Rk�n the set of all matrices V � R
�
n�n satisfying

CBLUE�X�
 � COLSE�X�
 almost surely is given by

fV�PMZ�PM�QXZ�QX��PX�PM
Z��PX�PM
jZ��Z��Z� � R
�
n�ng�

where M � PXC
�CPX�

Proof� The proof of �i
 is clear from the above considerations	 For the proof of

�ii
 observe beforehand that

PXPM � PM � PMPX� ��	��


�PM �QX

� � PM �QX� ��	��


see also ��� Theorem �	�	�� for ��	��
	 From Theorem �	� in ���� the general nonneg�

ative denite solution to ��	��
 with respect to V is given by

V � �PM �Q
X

��A�B
�PM �Q

X

�

��In � �PM�Q
X

��PM�Q

X

�Z��In � �PM�Q

X

��PM�Q

X

��

�



where Z� � R
�
n�n is arbitrary� and A and B are arbitrary nonnegative denite

solutions of

A�PM �Q
X

�Q

X
� �� ��	��


PM�PM �QX

�B � �� ��	��


such that A�B is nonnegative denite	 By using ��	��
 and ��	��
 it follows that

��	��
 is equivalent to AQ
X
� � with general nonnegative denite solution� see ���

Theorem �	���

A � �In �QX
Z��In �QX
 � PXZ�PX� ��	��


where Z� � R
�
n�n is arbitrary	 Moreover� it is seen that ��	��
 is equivalent to

PMB � � with general nonnegative denite solution� see ��� Theorem �	���

B � �In �PM
Z��In �PM
 � QMZ�QM� ��	��


where Z� � R
�
n�n is arbitrary	 Clearly A�B is nonnegative denite for all choices

of Z��Z� � R
�
n�n	 By using again ��	��
 and ��	��
� we observe that

In � �PM �Q
X

��PM �Q

X

 � PX �PM�

Therefore� the general nonnegative denite solution to ��	��
 is given by

V � �PM �QX
�A�B
�PM �QX
 � �PX �PM
Z��PX �PM
�

where A and B are as in ��	��
 and ��	��
� respectively	 By writing

�PM �QX
�A�B
�PM �QX


� �PM �Q
X

�PXZ�PX �Q

M
Z�QM
�PM �Q

X



� PMPXZ�PXPM �QXQMZ�QMQX

� PMZ�PM �Q
X
Z�QX�

we arrive at

V � PMZ�PM �Q
X
Z�QX � �PX �PM
Z��PX �PM
�

where Z��Z��Z� � R
�
n�n are arbitrary	

�



A related but somewhat di�erent problem is to determine the subspace of

possible observation vectors y for xed C� X and V satisfying CBLUE�X�
 �

COLSE�X�
	 Under the assumptions r � rank�X
 � p� rank�V
 � n and

C � BX�� where B is an arbitrary �but xed
 k � p matrix� this subspace has

been identied in ��� to be

E � R�X
�
�
R�X�
 �

�
R�VX�
� �R�X
 � N �C
�

��
� ��	��


where X� denotes any matrix of maximal rank such that X�X� � �� and N �C


denotes the null space of C	 In case B � Ip� k � p� the subspace E reduces to

E � R�X
�
�
R�X�
 � R�VX�


�
� ��	��


which has been observed earlier in ���	

We will now demonstrate that the subspace ��	��
 remains the appropriate choice

under the more general assumptions of model ��	�
� when in addition y is restricted

to be inR�X
�R�V
	 The latter guarantees that di�erent choices of representations

of BLUE�X�
 cannot lead to di�erent estimates of X�	

Proposition �� Under model M � fy�X�� ��Vg� for given X � Rn�p� V � R
�
n�n

and C � Rk�n� the set E of all vectors y � R�X
�R�V
 satisfying CBLUE�X�
 �

COLSE�X�
 is given by

E � R�X
� �R�X�
 � F��

where F � R�VX�
� �R�X
 � N �C
��

Proof� The set of all vectors y � E is

E � N �C�PX �R
� � �R�X
 �R�V
�� ��	��


where R � X�X�T�X
�X�T�	 Let F � �R�X
 �R�V
� �N �CR
	 Then

F � R�VX�
� �R�X
 �N �C
� ��	��


follows similarly as in the proof of Lemma � in ���� and it remains to show

N �C�PX �R
� � �R�X
 �R�V
� � R�X
�
�
R�X�
 � F

�
� ��	��


Let y be a vector belonging to the left�hand subspace of ��	��
	 Such a vector y can

be written as y � a � b for some a � R�X
 and some b � R�X�
	 Obviously� b �

�



y�a � R�X
�R�V
	 Moreover we have CPXy � Ca and CRy � CRa�CRb �

Ca � CRb� yielding � � C�PX � R
y � �CRb	 Therefore� b � F � N �CR
 �

�R�X
 � R�V
�� showing that the left�hand subspace of ��	��
 is contained in the

right�hand subspace of ��	��
	 To demonstrate the reverse inclusion let y � Xa�b�

where a � R
p and b � R�X�
 � F� where clearly R�X�
 � F � R�X
 � R�V
�

and therefore y � R�X
 �R�V
	 Moreover� X�b � � and CRb � �� and in view

of �PX � R
X � � we obtain C�PX � R
y � C�PX � R
Xa � C�PX � R
b �

C�PX � R
b � C�X�
�X�b � CRb � � � � � �� showing y � N �C�PX � R
�	

Hence� the right�hand subspace of ��	��
 is contained in the left�hand subspace of

��	��
	

Note that for the special choice C � In� k � n� we have F � R�VX�
� showing

that the set E of all vectors y � R�X
�R�V
 satisfying BLUE�X�
 � OLSE�X�


is given by ��	��
	

�� Example� Consider the one�way classication model

yij � �� �i � eij� i � �� � � � � a� j � �� � � � ni�

where the eij�s are uncorrelated random variables with means � and variances dij�
�	

Assume for a numerical example a � �� n� � �� n� � �� n� � �� and dij � �

if �i� j
 	� ��� �
	 Assume in addition d�� 	� � but otherwise unknown	 Then the

error variances are not homogenous within groups� and from Corollary � in ��� it

follows that we do not have equality of OLSE and BLUE of any parametric function	

However� if we consider the contrast ����� � c
�X�� where c� � ��� �� ����

�
���

�
� �
�

it follows easily from our Proposition that OLSE��� � ��
 � BLUE��� � ��
 �

y�� �
�

�
y�� �

�

�
y��	
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