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Abstract

Abstract: These report presents two methods for the identi�cation of signal

peptides and their cleavage sites. The �rst method is based on based neural net-

works and the second on hidden Markov models. The transmembrane protein topol-

ogy can also be identi�ed by a method based on hidden Markov models, which is

described here in detail. The methodologies are then applied to identify a signal

peptide in fOg44 lysin and to determine the topology of the transmembrane protein

holin, also in fOg44 virus. Finally an outlook for possible improvements in these

methodologies combining, somehow, hidden Markov models and neural networks.

Keywords: Hidden Markov models, combined neural networks, signal peptide, cleav-

age site, transmembrane protein topology

1 Introduction

The number of papers concerning methods for predicting protein structure has grown ex-

traordinarily in the last few years. This probably re
ects the e�orts of computational biolo-

gists to �ll the gap between the explosion in available biological data and the relatively slow

speed at which experiments can reveal protein structures and untangle structure/function

relationships. Hidden Markov models and neural networks have become increasingly pop-

ular for signal peptide and transmembrane protein topology prediction, among others. In

protein data context the hidden Markov model consists of a sequence of unobservable states

following a �rst-order Markov chain. Each state emits a symbol (an amino acid) and only

the symbol sequence is directly observed. The neural network presented here is, in fact, the

combination of two di�erent networks allowing the recognition of signal peptides and their

cleavage sites.

To show the applicability of these models and their importance two proteins of the same

bacteriophage are analyzed. It is known that all tailed bacteriophages with double-stranded

DNA genomes appear to accomplish lysis of the host cell by the concerted action of a
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peptidoglycan hydrolase (referred to as endolysin or lysin) and a small hydrophobic protein

(holin) presumed to form speci�c lesions upon oligomerization in the membrane. The later

function seems essential to allow access of the lytic enzyme to the cell wall compartment

since in the phage lysins examined so far, the presence of a signal peptide that would

target them to the translocase of the general secretory pathway (GSP) has never been

demonstrated. Unlike most lysins, the N-terminal region of the Oenococcus oeni phage

fOg44 lysin (Lys44) seems to function as an export signal (signal peptide).

To decide about the existence of a signal peptide in Lys44, the hidden Markov model and

the neural network algorithm are applied. The models indicate, with high probability, the

presence of a signal peptide with cleavage site between residues 27 and 28. Experimental

data con�rm this prediction and thus the suitability of the models. The hidden Markov

model is once again applied but this time to predict the topology of fOg44 holin, detect-

ing two transmembrane helices. Since the topology of fOg44 holin is not experimentally

determined yet, neural networks are also applied for comparison showing slightly di�erent

results.

2 Protein Targeting

Proteins are always produced in the cell cytosol. However, many of them are meant to

operate in di�erent compartments and must be recognized by cellular components which

mediate their targeting to their �nal destination. The correct recognition and localization

of such proteins requires the presence of particular features in their primary, secondary

or tertiary structure that can function as signals. Typical examples are membrane and

secreted proteins.

Proteins which perform their function within the lipid environment of biological membranes

have at least one, but usually several continuous segments (about 18 - 22 amino- -acyl

residues) of high hydrophobicity, separated by stretches of hydrophilic and charged amino-

acids. While the latter are exposed to either side of the membrane, the former remain

inserted within the lipid bilayer, forming transmembrane domains.

2.1 Signal Peptides

The general secretory pathway (GSP) is a mechanism for protein secretion found in both

eukaryotic and prokaryotic cells. The entry to the GSP is controlled by the signal peptide,

an N-terminal peptide typically between 15 and 40 amino acids long, which is cleaved from

the mature part of the protein during translocation across the membrane. Translocation

takes place via multiprotein complex known as the translocon or translocation apparatus.

The most characteristic common feature of signal peptides is a stretch of hydrophobic amino

acids called the h-region. The region between the initiator Met (methionine) and the h-

region, the n-region, is typically one to �ve amino-acids in length, and normally carries

positive charge. Between the h-region and the cleavage site is the c-region, which consists

of three to seven polar, but mostly uncharged, amino acids. Close to the cleavage site a
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more speci�c pattern of amino acids is found: the residues at positions -3 and -1 (relative

to the cleavage site) must be small and neutral for cleavage to occur correctly.

Signal peptides from di�erent proteins do not share a strict consensus sequence; in fact, the

sequence similarity between them is rather low. Bacterial signal peptides are longer than

their eukaryotic counterparts, and those of Gram-positive bacteria are longer than those

of Gram-negative bacteria (which have an outer membrane in addition to the cytoplasmic

membrane).

2.2 Signal Anchors

Some proteins have sequences that initiate translocation in the same way as signal peptides

do, but are not cleaved by signal peptidase. As the rest of the polypeptide chain is translo-

cated trough the membrane, the resulting protein remains anchored to the membrane by

the hydrophobic region, with a short N-terminal cytoplasmic domain. The uncleaved sig-

nal peptide is known as a signal anchor, and the resulting protein is known as a type II

membrane protein.

The distinction between a true signal peptide and an N-terminal membrane anchor is often

elusive by simple inspection of the protein primary sequence. Signal anchors have h-regions

longer than those of cleaved signal peptides and the n-regions can also be much longer than

100 residues. Interestingly, experiments have shown that it is possible to convert a cleaved

signal peptide to a signal anchor merely by lengthening the h-region.

2.3 Transmembrane Proteins

Transmembrane protein amino acids have three main locations: in the transmembrane

helix core (in the hydrophobic tail region of the membrane), in the membrane helix caps

(in the head region of the membrane), and in loops. Nevertheless, residues have di�erent

distributions on the di�erent sides of the membrane. On the non-cytoplasmic side there

are short and long loops.

Most transmembrane alpha-helices are encoded by an unusual long stretch of hydrophobic

residues. This compositional bias is imposed by the constraint that residues buried in lipid

membranes must be suitable for hydrophobic interactions with the lipids.

The orientations of the transmembrane helices, i.e. whether they run inwards or outwards,

give the overall "topology" of the protein. It is known that the positively charged residues

arginine and lysine play a major role in determining the orientation as they are mainly

found in non-transmembrane parts of the protein (loops) on the cytoplasmic side, often

referred to as the positive-inside rule.

Note that the �rst transmembrane segment on a few membrane proteins may also function

as a signal peptide and its cleavage is required for proper function in these cases.
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3 Statistical Methods

As new protein sequences are permanently being deposited in Databanks, the number of

experimentally determined signal peptides, membrane anchors or transmembrane proteins

topology is increasingly available for comparisons and for the development of reliable and

stronger predictive schemes.

Two methods have been successfully applied to the recognition of signal peptides and their

cleavage sites: combined neural networks and hidden Markov models. In contrast to neural

networks, one of the advantages of the hidden Markov models is that it is usually very easy

to build biological knowledge into the model in an intuitive way.

Hidden Markov models have also been used to predict membrane protein topology. One of

the main advantages of these models is that it is possible to model helix length, which as

only been done fairly crudely in most other methods, by setting upper and lower limits for

the length of a membrane helix. Note that the hydrophobic region contained in the signal

peptide (that target a protein for export) can easily be mistaken for a transmembrane

region by a prediction program.

Models are estimated from the training data. The topology of the proteins in the training

data is experimentally determined by biochemical and genetic methods that are not always

entirely reliable. The accuracy of the model is tested by cross-validation. The resulting

models can then be applied to the analysis of whole genomes and other large data sets.

3.1 Combined Neural Networks

The combined neural networks approach to the recognition of signal peptides and their

cleavage sites was developed by Nielsen et al. (1997). It uses one network to recognize the

cleavage site and another network to distinguish between signal peptides and non-signal

peptides.

Neural networks

Advances in neurophysiology and new experimental techniques have greatly enhanced our

understanding of the anatomy of the human brain and the physical and chemical processes

occurring within it. Furthermore, mathematical models and algorithms have been designed

to mimic the information processing and knowledge acquisition methods of the human

brain. These models are called neural networks. As the name implies, neural networks

consist of neurons connected into networks. Because each neuron has a large number of

dendrites, many signals can be received by the neuron simultaneously. To each individual

signal corresponds a synaptic strength, weight. A group of neurons producing a set of

outputs simultaneously is called a layer.

As each neuron j produces its own net input Net

j

(function of all signals, s

ji

, and of all

weights, w

ji

) and output signal Out

j

, these individual signals of one layer can be combined

to vectors, the net input signal vector, Net, and the output vector, Out. The output

vector, Out, can be used as an input vector, Inp or X, to another layer of neurons. The

layers above the passive input layer are usually referred to as the hidden layers, because
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they are not directly connected to the outside world as the input units and the output

neurons are, as shown in �gure 3.1. If every unit sends its output to higher layers than its

own and receives its input from lower layers than its one, that is the so called feed-forward

network.

The basic operation of a neuron is always the same: it collects a net input and transforms

it into the output signal via a transfer function (Zupan and Gasteiger, 1993); the only thing

one has to choose in advance is the number of layers, and the number of neurons in each

layer. The input or output variables can be: real numbers (preferable in the range from 0

to 1, or -1 to +1); binary numbers, i.e. 0 and 1; or bipolar numbers, i.e. -1 and +1. The

aim is to �nd the appropriate vector of weights, W from the training data. Nevertheless, a

learning procedure is needed to recursively improve the weights and thus the output vector.

One of the most applied strategies for the correction of weights is the learning method

back-propagation of errors. The attractiveness of the back-propagation method comes from

the well de�ned and explicit set of equations for weight corrections. These equations are

applied throughout the layers, beginning with the correction of the weights in the last

(output) layer, and then continuing backwards towards the input layer.

Network design

Nielsen et al. (1997), used a network design in which the input symbols are the 20 amino

acids and a special spacer symbol for regions between proteins; the output symbol is a

score between 0 and 1 for each amino acid in the sequence. The output from the signal

peptide=non-signal peptide network, the S-score, can be interpreted as an estimate of

the probability of the position belonging to the signal peptide, while the output from the

cleavage site=non-cleavage site network, the C-score, can be interpreted as an estimate of

the probability of the position being the �rst in the mature protein (position +1 relative

to the cleavage site).

A diagram of the basic network is shown in Figure 3.1. The processing units are arranged

in layers, with the input units shown on the bottom and output unit shown at the top.

The network is given a contiguous sequence of m amino acids (typically m = 13). The

goal of the network is to correctly predict if the middle amino acid belongs to the signal

peptide (for the S-score network) or if it is the �rst in the mature protein. The network can

be considered a "window" with m positions that moves through the protein, 1 amino acid

at a time. The input layer is arranged in m groups. Each group has 21 units, each unit

representing 1 of the amino acids (or spacer). For a local encoding of the input sequence, 1

and only 1 input unit in each group, corresponding to the appropriate amino acid at each

position, is given a value 1, and the rest are set to 0. This is called a local coding scheme

because each unit encodes a single item.

Network training procedure

Initially, the weights in the network are assigned randomly. The performance is gradually

improved by changing the weights using the back-propagation learning algorithm. During

the training, the output values are compared with the desired values, and the weights in

the network are altered by gradient descent to minimize the error.
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Figure 3.1 - A diagram of the network architecture illustrating the case of m = 7 input groups, with 21

units per group. Information from the input layer is transformed by an intermediate layer of hidden units

to produce the output unit.

Nielsen et al. (1997), used a data set of 1418 proteins for the training. The data set was

divided into prokaryotic and eukaryotic entries and the prokaryotic date set was further

divided into Gram-positive and Gram-negative bacteria. The sequence of the signal peptide

and the �rst 30 amino acids of the mature protein from the secretory proteins were included

in the data set. The �rst 70 amino acids of each sequence were used from the non-secretory

proteins. The neural networks were feed-forward networks with zero or one layer of 2 to 10

hidden units, trained using back-propagation with a slightly modi�ed error function.

To access the performance of the method to distinguish between secretory and non-secretory

proteins, the correlation coeÆcient was calculated (Mathews, 1975):

C =

(p� n)� (u� o)

q

(n+ u)(n+ o)(p+ u)(p+ o)

;

where p and n are the correctly predicted positives and negative examples and u and o

are similarly the incorrectly predicted positives and negatives. The test performances were

calculated by cross validation; each data set was divided into �ve approximately equal sized

parts and then every network run was carried out with one part as test data and and the

other four parts as training data.

The C-problem was best solved by networks with asymmetric windows (windows including

more positions upstream than downstream of the cleavage site); the S-problem, on the

other hand, is best solved by symmetric or approximately symmetric windows.

Combined neural networks

If there are several C-score peaks of comparable strength the true cleavage site may often be

found by inspecting the S- score curve in order to see which of the C-score peaks coincides

best with the transition from the signal peptide to the non-signal peptide region. In order
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to formalize this and improve prediction, Nielsen et al. (1997), present a geometric average

of the C-score and a smoothed derivative of the S-score, termed the Y -score:

Y

i

=

q

C

i

�

d

S

i

;

where �

d

S

i

is the di�erence between the average S-score of d positions before and d

positions after position i:

�

d

S

i

=

1

d

�

d

X

j=1

S

i�j

d�1

X

j=0

S

i+j

�

3.2 Hidden Markov Models

Consider a stochastic system consisting of N distinct states, each of wich produces output

according to di�erent probabilistic rules. A set of probabilities can be associated with each

state to govern transitions from one state to another. A comprehensive description of the

system requires the speci�cation of the current state and all the previous states. If the

system is modelled as an m-order Markov chain, there is the assumption that the next

state of the system depends only on the current state and the previous m � 1 states. In

most natural systems, the Markov states cannot be detected directly, but only indirectly

through the observation of the output, emissions. Thus, the term "hidden" is used.

When dialling with protein sequence data, it is often useful to think of HMMs as generative

models that can "emit" protein sequences by randomly going from state to state, and in

each state emit an amino acid according to the distribution for that state. For a given

sequence one can calculate for instance the most probable way this sequence was generated

by the model, or the total probability that it was generated by the model at all. Because it is

a probabilistic model, one can use standard methods like maximum likelihood to determine

the model parameters (Sousa et al., 2001).

3.2.1 Predicting Signal Peptides and Signal Anchors

As it was said in the previous section, signal peptide prediction involves two tasks: (1) given

that the sequence is a signal peptide, locate the cleavage site; and (2) discriminate between

secretory proteins with signal peptides and non-secretory proteins. A hidden Markov model

(HMM) can be applied for both prediction tasks. For signal peptides the model�s design is

so that it has parts corresponding to each of the three regions of a signal peptide and such

that reasonable length constraints are hard-wired in the model.

Another advantage of the HMM approach is that the HMM can easily be extended by

adding other modules to the model. The signal peptide module is combined with a model

of signal anchors, in order to make a model that is good at discriminating between signal

peptides and anchors.

To predict signal peptides and signal anchors by an HMM, Nielsen and Krogh (1998) make

the states of the model correspond to the unobserved regions in the signals (n, h and c).

Associated with each state is a distribution over the 20 amino acids.

7



Figure 3.2.1 - The models used for signal peptides (a), signal anchors (b), and the combined model (c).

The states in a box are tied to each other.

8



Model structure

To construct the topology of the hidden Markov model it is necessary to have an idea of

the length and amino acids distribution of the three di�erent regions regions in a signal

peptide. This can be done using the training data. In this data set all the signal peptides

were assigned an h-region ranging from 6 to 20 in length. The c-region is by de�nition at

least three residues long, whereas the n-region is typically between 2 and 7 long, but can

be signi�cantly longer.

The regions de�ned in this way were used while designing the model shown in Figure 3.2.1

(a). It implements an explicit modelling of the length distribution of the h-region with

an array of 20 states, where there is a transition from the �rst state directly to each of

the following 15 states, which means that the minimum length of the h-region is 6 and

the maximum 20. All these states are tied, which means that they have the same amino

acid distribution. The n-region is modelled by an array of 8 states, of which the last 7 are

also tied to each other (but use another distribution than the h states). The �rst state

has probability one for Met, because all the proteins in the data sets begin with Met. The

c-region is modelled by an array of 6 states prior to the cleavage site, in which each state

has a speci�c distribution to capture the pattern of amino acids just before the cleavage

site (states c

1

to c

6

in Figure 3.2.1 (a)).

Components of the hidden Markov model

Basically, in HMMs there is, �rst, a sequence of states visited, denoted by x

1

; x

2

; x

3

; :::,

and second, a sequence of emitted symbols, denoted by y

1

; y

2

; y

3

; ::: . Often the sequence

y

1

; y

2

; y

3

; ::: is known but the sequence x

1

; x

2

; x

3

; ::: is unknown. In such a case the

sequence x

1

; x

2

; x

3

; ::: is called hidden.

Here, the HMM for signal peptides consists of the following �ve components:

(1) A set of 43 states S = fn

1

; :::; n

8

; h

1

; :::; h

20

; c

0

1

; :::; c

0

4

; c

1

; :::; c

6

;m

1

; :::m

5

g,

where n refers to n-region residues, h to h-region, c to c-region and m refers to

the residues located after the cleavage site, in the mature protein.

(2) An alphabet of 20 distinct observation outputs A = fall the 20 amino acidsg.

(3) The transition probability matrix � = [�(i; j)], where,

�(i; j) = P (X

k+1

= jjX

k

= i); i; j 2 S.

(4) The emission probabilities: for each state i 2 S and a 2 A,

H(i; a) = P (state i emits an output a) = P (A

k

= aj X

k

= i).

For tied states, the emission probabilities are the same for each amino acid, e.g.,

P (A

k

= ajX

k

= n

b

) = P (A

k

= ajX

k

= n

c

) , for any a 2 A and

b; c 2 f2; :::; 8g.

(5) An initial distribution vector � = [�(i)], where �(i) = P (X

1

= i).

Since the amino acid in the �rst state (n

1

) is Met, � is a column of zeros, except

for the �rst element referring to �(n

1

) which is one.
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Training the hidden Markov model

For training the model, data sets were made for four types of proteins: signal peptides,

signal anchors, cytoplasmic and nuclear proteins (the last two as non-secretory proteins).

All sets were grouped in subsets for eukaryotes, Gram-positive bacteria and Gram-negative

bacteria. Proteins in all sets were truncated after 70 residues, which is the region chosen to

model because almost all signal peptides are shorter then 70. All the data sets were then

homology reduced so that no two sequences were homologous within a set.

The parameters of the model were then estimated from the training data by the Baum-

Welch algorithm, which is a maximum likelihood procedure that iteratively increases the

total likelihood of the training data (for detail see Ewens and Grant, 2001). Nielsen and

Krogh (1998) did the training with the labelled data, such that the cleavage site was always

correctly positioned during training, but the model was left to �nd out for itself where to

put the boundaries between n-, h- and c- regions. To predict the cleavage site for a new

sequence, the most probable path through the trained model was found by the standard

Viterbi algorithm. The most probable path was also used for assigning a region to each

amino acid in the sequence.

The accuracy of the HMM was tested by �ve-fold cross validation. The estimated model

can be then used to predict the location of the cleavage site, which it �nds correctly in

nearly 70% of signal peptides in the training set.

Discrimination between signal peptides, signal anchors and non-secretory proteins

To discriminate between signal peptides, signal anchors and non-secretory proteins, the

model was augmented by a model of anchors as shown is Figure 3.2.1 (b); (c). The structure

of this model is the like the model for signal peptides, but the n- and h-regions are simpler

and the c-region is of course omitted.

The whole model was trained from all types of sequences (signal peptides, signal anchors,

cytoplasmic and nuclear). The most likely path through the combined model yields a

prediction of which of the three classes the protein belongs to. The HMM correlation

coeÆcient for discrimination between signal peptides and signal anchors was 0,74. For

discrimination between signal peptides and non-secretory proteins the correlation coeÆcient

was 0,94.

3.2.2 Predicting Transmembrane Protein Topology

By de�ning states for transmembrane helix residues and other states for residues in loops,

residues on either side of the membrane, and connecting them in a cycle, it is possible to

produce a model that in architecture closely resembles the biological system that is being

modelled. If the model parameters are tuned to capture the biological reality, the path of a

protein sequence through the states with the highest probability should be able to predict

the true topology.

The hidden Markov model (HMM) is very well suited for prediction of transmembrane he-

lices because it can incorporate hydrophobicity, charge bias, helix lengths and "grammatical

constraints" into one model for which algorithms for parameter estimation and prediction
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already exist. "Grammatical constraints" refer to a "grammar" followed by helical mem-

brane proteins in which cytoplasmic and non cytoplasmic loops have to alternate.

Sonnhammer et al. (1998), to predict transmembrane protein topology consider the states of

the model corresponding to the unobserved topology, with each state representing residues

belonging to one of 7 structural categories. Although there are three main locations of a

residue (transmembrane helix core and helix caps, and loops), due to the di�erent residue

distributions on the di�erent sides however, seven di�erent states are used: one for the helix

core, two for caps on either side, one for loops on the cytoplasmic side, one each for short

and long loops on the non-cytoplasmic side, and one for "globular domains" in the middle

of each loop. Associated with each state is a distribution over the 20 amino acids.

Model structure

The layout of the model is is shown if Figure 3.2.2. The amino acid emission probabilities

of all states of the same type are tied to each other, i.e., they are estimated collectively.

The transmembrane helix is modelled by two cap regions of 5 residues each, surrounding

a core region of variable length 5-25 residues. The loops between the helices are modelled

by modules that contain 2� 10 states in a ladder con�guration, and one self-looping state.

The idea is that the 10 �rst states should contain most of the topogenic signals (bias, in

amino acid usage), while larger globular domains are modelled in a simple way by the single

self-looping state, which has a neutral amino acid distribution.

Components of the hidden Markov model

When modelling transmembrane proteins topology, the HMM consists of the following �ve

components:

(1) A set of 96 states S = fh

1

; :::; h

25

; cc

1

; :::; cc

5

; cn

1

; :::; cn

5

; l

1

; :::l

20

; sl

1

; :::;

sl

20

; ll

1

; :::; ll

20

; gg, where h refers to residues in the helix core, cc in the helix

caps on the cytoplasmic side, cn in the helix caps on the non-cytoplasmic side, l

in loops, sl in short loops, ll in long loops) and g in globular domains.

(2) An alphabet of 20 distinct observation outputs A = fall the 20 amino acidsg.

(3) The transition probability matrix � = [�(i; j)], where

�(i; j) = P (X

k+1

= jjX

k

= i); i; j 2 S.

(4) The emission probabilities: for each state i 2 S and a 2 A,

H(i; a) = P (state i emits an output a) = P (A

k

= aj X

k

= i).

(5) An initial distribution vector � = [�(i)], where �(i) = P (X

1

= i).

Training the hidden Markov model

As for signal peptide prediction, the parameters of the model were estimated from the

training data by the Baum-Welch algorithm. Sonnhammer et al. (1998) also did the

training with the labelled data. The accuracy of the HMM was tested by ten-fold cross
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Figure 3.2.2 - (a) The overall layout of the HMM for transmembrane protein topology. (b) The structure

of the inside loop, outside loop and helix cap models. (c) The structure of the model for the helix core.

validation and predicted correctly all the transmembrane segments for 77% of the proteins,

regardless of their orientation.

The model was trained from a set of 160 membrane proteins, most of which have experi-

mentally determined topology.

Discrimination between membrane and non-membrane proteins

The discrimination between membrane and non-membrane proteins investigated by Krogh

et al. (2001), is based on the expected number of residues in the transmembrane helices.

If this number is high, the probability that it is a helical membrane protein is also high. A

threshold value can be determined from the data and used for discrimination.

4 Applications

The good quality of wine is ensured by a proper fermentation. The bacterium Oenococcus

oeni is an important player in this process due to its ability to convert malic acid into
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lactic acid, in the presence of high ethanol concentrations, thus leading to a reduction in

wine acidity. Bacteriophages such as fOg44 can destroy O. oeni cells, impairing malolactic

fermentation. Successful bacteriophage attack depends on a phage product, a lytic hydro-

lase known as lysin. The fOg44 lysin (Lys44) belongs to a family of lysosymes with the

capacity to cleave 6-O-acetylated peptidoglycans such as the present in the cell walls of

bacterial pathogens such as Staphylococcus aureus, which are not hydrolysed by other en-

zymes. Studies on the fOg44 lysin and holin may therefore give insights on how to prevent

oenococcal lysis and, at the same time, may lead to its use as a food preservative due to

its action on bacterial pathogenic contaminants.

S~ao-Jos�e et al. (2000), described the sequence of the lysin and holin genes from the Oeno-

coccus oeni bacteriophage fOg44 and noted that the N-terminal region of its putative lysin

(Lys44) was highly hydrophobic. However, during an attempt to overproduce Lys44 in

an easily purifying form (as histidine-tagged fusion product, His-Lys44), they detected the

production of two proteins rather than a single polypeptide, in E. coli extracts. They then

observed that only the larger product reacted with commercial ant-His

6

antibodies, sug-

gesting that a processing event had removed part of the N-terminal region in a fraction

of synthesized proteins. From these preliminary observations came the idea that the hy-

drophobic N-terminal region of the fOg44 lysin, could indeed be functioning as a cleavable

signal peptide.

4.1 Prediction of a Signal Peptide and Cleavage site in fOg44

Lysin

To predict the signal peptide structure and the cleavage site, S~ao-Jos�e et al. (2000)

used neural networks and hidden Markov models through the public domain SignalP v2.0

(http://www.cbs.dtu.dk/services/SignalP) con�rming the experimental results.

Both algorithms indicate, with high probability, the presence of a peptidase cleavage site

between residues 27 and 28 of Lys44, as it is shown in Figure 4.1. In the neural network

method the C- and Y-scores are high at position 28, while the S-score is high before the

cleavage site and low thereafter. The hidden Markov model output provides not only a

prediction of the presence of a signal peptide and the position of the cleavage site, but also

an approximate assignment of n-, h- and c-regions within the signal peptide. These are

shown in the graphical output as probabilities for each position being in one of these three

regions.

The term "endolysins" has been traditionally used to designate bacteriophage-encoded

peptidoglycan hydrolases, owing to their cytoplasmic localization as long as membrane

integrity is maintained. However, the results strongly suggest that the O. oeni bacteriophage

fOg44 encodes a secretory lytic enzyme, or exolysin, which is structurally competent for

export through the GSP. Primary structure analysis predicted that the �rst 27 residues of

fOg44 should function as a signal peptide in both Gram-positive and Gram-negative hosts.
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Figure 4.1 - SignalP v2.0 output using neural networks and hidden Markov models for Lys44

4.2 Prediction of Transmembrane Topology in fOg44 Holin

It is known that fOg44 holin is a transmembrane protein, nevertheless its topology is

not experimentally determined, yet. The sequence of amino acids constituting holin,

was analyzed by a the hidden Markov model for trough the public domain TMHMM2.0

(http://www.cbs.dtu.dk/services/TMHMM). The results are shown in Figure 4.2. The plot

shows the posterior probabilities of inside/outside/transmembrane helix. Here one can see

possible weak transmembrane helices that were not predicted, and one can get an idea of

the certainty of each segment in the prediction. The model predicts two transmembrane

helices: the �rst corresponding to the amino acids in positions 5-27 and the second from

the 37th to the 54th amino acid. The N-terminal of the protein stays in the cytoplasmic

side of the membrane running outwards and then inwards again.

For comparison neural networks (Rost et al., 1995) were also applied trough the prediction

server PHDhtm (http://cubic.bioc.columbia.edu/predictprotein/submit adv.html). This

method predicts two transmembrane helices but not exactly composed by the same residues

as for TMHMM prediction. Here, the �rst transmembrane helix corresponds to the amino

acids in positions 10-27 and the second from the 35th to the 52nd amino acid, but with the

same in/out orientation as for TMHMM.
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Figure 4.2 - TMHMM2.0 output for fOg44 holin

5 Outlook

A variety of tools are available to predict the topology of transmembrane proteins. M�oller

et al. (2001) evaluated the performance of the currently best known and most widely used

methods for the prediction of transmembrane regions in proteins. Their results show that

TMHMM is currently the best performing transmembrane prediction program. Neverthe-

less, they did not include in their study the TM126 model (Li�o and Goldman, 1999), in

which a particular secondary structure di�erent from the structure considered by Sonnham-

mer et al. (1998), in TMHMM, is considered.

In future we develop di�erent approaches to identify transmembrane protein topology,

namely, some methodologies that have been applied to speech recognition, such as: hidden

neural networks, bayesian networks and some combinations of hidden Markov models and

neural networks.
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