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Abstract

We show that adding replications in replicated di�erence test results in larger power

and smaller variance when the number of assessors is �xed. On the other hand,

when the number of total assessments is �xed, the power usually decreases and

the variability increases whenever replications are considered instead of di�erent

assessors. The appropriate numbers of assessor needed to gain the same power

respectively variability when replications are used will be given. It is shown that

the number of assessors might indeed be reduced, but this has to be paid for by

an increasing total number of assessments. We show that two key models, namely

the mixture binomial and a corrected version of the Beta-binomial model, are quite

similar with respect to the properties of interest. We provide tables from which,

according to her/his requirements, the investigator might �nd an appropriate setting

with respect to the number of assessors and replications.

KEYWORDS: di�erence tests, replications, experimental design, power, variabil-

ity, mixture binomial model, Beta-binomial model
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Introduction

To consider whether or not di�erences between two (food) products of similar kind

occur in the consumer population, di�erence tests are frequently used. As far as each

consumer is only asked once, there are no doubts with respect to an appropriate

analysis of the respective experiment. However, since the use of many assessors

might become quite expensive, in practice a tendency towards di�erence tests with

replications can be found. In this case, each assessor is asked to perform the test

k times, say, where k > 1. From an intuitive point of view, the analysis of such

data should depend on the assessor heterogeneity, such that the �nal statistical

decision accounts for the fact that we considered less assessors but let them replicate,

cf. Brockho� and Schlich (1998). However, for the decision about whether or not

perceivable di�erences exist at all, Kunert and Meyners (1999) show that the simple

binomial test using nk observations is still applicable as far as the experiment has

been properly designed. Here, n denotes the total number of assessors in the panel.

In general we are not only interested in deciding whether or not there are di�er-

ences at all. In application, we might not worry about a single consumer or maybe

one in a hundred who might �nd the di�erence at least once in a while. On the other

hand, it will de�nitely be of importance to the investigator whenever nearly all con-

sumers will taste the di�erence in every second trial. However, to judge upon the

number of perceivers will strongly depend on the number of replications. Meyners

(2002) shows that for given values of n and k, very di�erent assessor performances

may lead to an identical total number of successes. As well, he proposes an esti-

mate of the lower limit of the number of consumers within the trial that must have

perceived the di�erence at least once in a while.

Furthermore, we are often interested in testing for similarity, or at least in claiming

it whenever no di�erences have been apparent. In order to prove similarity, though,

investigations have to be given to the power of the test. Therefore we will also
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stress this question here. Kunert and Meyners (1999) use a simple and extreme

example to show that the power might strongly decrease as soon as the number of

replications increases while the total number of assessments remains �xed. They

conclude that replications may be used, but will lead to less power for the test for

product di�erences as might be gotten from the same number of trials with di�erent

assessors. In general, this means that for a given number of assessments, the design

with the least number of replications will be the most powerful. In this paper, we will

show that this conclusion does only hold for a reasonable design of the experiment

in terms of the number of assessments in relation to the e�ect size of interest. On

the other hand, if the corresponding condition is ful�lled, we will prove this result

more formally.

Brockho� (2002) calculates the power using di�erent underlying models by means

of Monte-Carlo-integration methods. Independent from the model under considera-

tion, it could usually be seen that the power decreases as the number of replications

goes up for a �xed nk. Still, the results were surprising due to the small decrease

of power that was observed in this study and due to the counter intuitive slight

increase of power in some cases.

We will give some rather theoretical considerations that support these �ndings.

For this purpose, we will re-state two models proposed by Brockho� (2002) and

derive some properties under these assumptions. From this, we will determine dif-

ferent combinations of n and k which result in identical power of the corresponding

test. Finally, we will also stress the variability of the statistics of interest, for which

we will derive combinations of n and k as well, such that the variability remains

the same while using any of these combinations. From the corresponding tables

we might decide whether an increase of assessors or an increase of the number of

replications is more reasonable with respect to the variability of the estimators.

With it, we might also account for di�erent costs in acquiring additional assessors
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in comparison to saving some assessors but increasing the number of assessments.

Note that similar considerations have been given by Ennis and Bi (1998) and Bi

and Ennis (1999a). However, like Brockho� and Schlich (1998), they argue that

the statistical test for the null hypothesis has to be adapted in case of replications.

Hence it is clear that their considerations and tables respect for this assumption.

We do not agree with this at all and propose the use of the simple binomial test

even for replicated di�erence tests, as it was pointed out in Kunert and Meyners

(1999). Therefore the results of the di�erent studies are not directly comparable as

is the case for the power results of Brockho� (2002) and Bi and Ennis (1999b).

Model assumptions

For the theoretical considerations, we assume a quite general model. Let P

i

be a

random variable which gives the success probability for assessor i, say. Furthermore,

let X

i

be the number of successes of assessor i, say. Then we assume that X

i

under

the condition that P

i

= p

i

is binomial distributed with parameters k and p

i

, shortly

L(X

i

jP

i

= p

i

) = B (k; p

i

).

Considering the distribution of the P

i

for i = 1; :::; n, we �rst of all assume that

the experiment has been properly designed such that the outcomes of the di�erent

assessors are independent from each other (Kunert and Meyners, 1999). Further-

more, we assume an appropriate sampling from the overall population of interest.

In that case, all P

i

's are identically distributed with an arbitrary distribution. This

distribution represents the spreading of di�erent success probabilities within the

population under consideration. Note that these conditions are not very strict since

they can be ful�lled by an appropriate design of the experiment!

Finally, we assume that once a value has been chosen for any particular i, this

value is �xed for the respective assessor. This assumption implies that we neglect

possible fatigue or training e�ects of the assessors, i. e. we assume that an assessor
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will have the same success probability throughout all her / his replications. This

might be questionable for quite large numbers of replications k, while we guess that

this assumption can be justi�ed for reasonable values of k.

We do not generally assume any particular distribution of the random variables

P

i

, i = 1; :::; n, but some restrictions can be easily derived from the problem under

consideration. We �nd that the distribution of any P

i

has to satisfy two conditions:

Since in a properly designed experiment, the success probability of any assessor may

not become smaller than the success probability derived by pure guessing �

0

, say,

the respective values should not fall below �

0

(Kunert and Meyners, 1999). Neither

should it exceed 1, since any realization of P

i

represents a probability. Since �

0

= 0

is not useful for any practical applications, without loss of generality we con�ne

ourselves to distributions on the interval [�

0

; 1] where 0 < �

0

� 1.

Mean and variance of the total number of successes

We now consider the mean and the variance of the overall number of successes within

the experiment. To start with, we calculate the respective values for a single assessor

i. Once the value of P

i

is �xed to be p

i

for this assessor, the mean and variance of

the random variable X

i

given that P

i

= p

i

are well known to be

E(X

i

jP

i

= p

i

) = kp

i

Var(X

i

jP

i

= p

i

) = kp

i

(1� p

i

):

By basic probability calculus rules we �nd the unconditional expectation and vari-

ance to be

E(X

i

) = E [E(X

i

jP

i

)]

= E(kP

i

)

= kE(P

i

)
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and

Var(X

i

) = Var [E(X

i

jP

i

)] +E [Var(X

i

jP

i

)]

= Var(kP

i

) +E (kP

i

(1� P

i

))

= k

2

Var(P

i

)� kE(P

2

i

) + kE(P

i

)

= k

2

Var(P

i

)� kE(P

2

i

) + k (E(P

i

))

2

� k (E(P

i

))

2

+ kE(P

i

)

= (k

2

� k)Var(P

i

) + kE(P

i

)(1� E(P

i

)):

Noting that the X

i

are independently identically distributed, we can derive the

respective values for the total number of successes X, say, within the experiment as

E(X) = E

 

n

X

i=1

X

i

!

= nE(X

1

)

= nkE(P

1

) (1)

and

Var(X) = nVar(X

1

)

= n(k

2

� k)Var(P

1

) + nkE(P

1

)(1� E(P

1

)): (2)

Hence we �nd that the expectation and variance of X depend on the expectation

and variance of the random variable P

1

, which cannot be inuenced by means of

the design of the experiment. However, they depend as well on the numbers n

and k, which indeed can be inuenced by the experimental design. To be precise,

the expectation of the total number of success depends, besides the distribution of

P

1

, only on the total number of assessments nk, i. e. the expected test statistic

does not depend on whether or not the assessments have partly been derived from

replications.

The variance of X also depends on the total number of assessments nk, as can

be seen directly from the term at the right hand side of (2). However, the term
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on the left hand side depends on n(k

2

� k) and therefore disappears for k = 1.

Re-writing this as nk(k � 1) directly shows that for a �xed number of assessments

nk this term monotonically increases with the number of replications k. Hence,

independent of the distribution of P

1

, the variance of the total number of successes

increases with the number of replications as far as the total number of assessments

remains constant.

Linking variability to the power of tests

Unfortunately, no direct link between the variability of the test statistic and the

power of the test holds in general. Nevertheless, in this section we will give a link

that will hold whenever the design of the experiment �ts to the e�ect size in our

terms, meaning that the power of the test is not smaller than 50%. If so, the

median observed test statistic is not smaller than the critical value c, say. In case

of a symmetrical distribution of the test statistic, the median is equal to the mean

of the distribution, such that a power of more than 50% is equivalent to the mean

of the test statistic being larger than c. In this case we might say that we would at

least expect the rejection of the null hypothesis of the respective test.

To illustrate this, consider a triangle test (i. e. �

0

=

1

3

) and an arbitrary dis-

tribution of P

1

such that E(P

1

) = 0:45, while we �x nk = 50. Then we would

expect 22.5 correct answers. Since the critical value is equal to 21 at a 5%-level, we

therefore would expect to reject the null hypothesis of product equality. However,

the variance of X is smaller whenever we have n = 50 and k = 1 in comparison to,

e. g., n = 25 and k = 2 or n = 10 and k = 5. Running a large number of identical

experiments, with n = 50 and k = 1 we might hope to observe a lot of trials with

x = 22 or x = 23, which would lead to a rejection of the null hypothesis. On the

other hand, in one of the latter cases, we will more likely observe values x � 21 as

well, such that we cannot reject the null hypothesis. Of course, at the same time we
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will observe more larger values as, e. g., 25 or 26, however these have no additional

use compared to a value of 22: in both cases the test decision is the same! Recalling

the results from the section before concerning the variability, it can be seen that

we indeed might loose power while using replications. This case is illustrated in

�gure 1. Note that the distribution is symmetric such that the mean is equal to the

median.

c mean

large variance

small variance

Figure 1: Power of the test for a mean slightly larger than the critical value c in

case of small and large variance, respectively. The colored areas represent the power

of the test.

This consideration holds to a larger extent the closer the expected value of X is

to the critical value, whereas for an expected value of 30, say, in the upper example,

the di�erence in power might be negligible. This is illustrated in �gure 2, in which

the loss of power due to the increased variability is given by the black area.

However, as stated before, this link does not hold in general. If we had considered

E(P

1

) = 0:40 in our example, we would have only expected 20 correct answers and

therefore we would expect not to reject the null hypothesis. Following the same

argumentation as before, we �nd that in this case the power of the test increases

with an increasing number of replications! The graphical representation of this case
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can be found in �gure 3.

c mean

large variance

small variance

Figure 2: Power of the test for a mean much larger than the critical value c in case

of small and large variance, respectively. The small black area at the left represents

the loss of power due to the increased variability.

cmean

large variance

small variance

Figure 3: Power of the test for a mean smaller than the critical value c in case of

small and large variance, respectively. The colored areas represent the power of the

test.

More formally, stressing the asymptotic of the central limit theorem this can be

seen as follows. The random variables X

1

; :::; X

n

are assumed to be independently
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identically distributed. Denote the mean of X by �, say, and the variance by �

2

,

say. From the central limit theorem we know that L

�

X��

p

�

2

�

! N(0; 1) for n!1,

i. e. the distribution of X converges to the standard normal distribution. For the

probability P(X � c) to reject the null hypothesis we �nd

P(X � c) = P

�

X � �

p

�

2

�

c� �

p

�

2

�

� 1� �

�

c� �

p

�

2

�

; (3)

while � is the distribution function of the N(0; 1). If the mean � is larger than the

critical value, the argument of the distribution function � is negativ and therefore

decreases with a decreasing variability. Thus the probability to reject the null hy-

pothesis increases, as we usually would hope. On the other hand, if c � � > 0,

the argument of � is positive and therefore increases with an decreasing variance.

In that case, the power of the test actually decreases with the variability. Note

that due to the discreteness of X, in both cases the power may occasionally remain

unchanged, since a small change of the argument of the corresponding discrete dis-

tribution function may result in an identical value. However, at least it will never

behave in the opposite way to the one stated.

For a �xed number of assessors n, the variability of the total proportion of correct

responses will decrease with an increasing number of replications k. This intuitive

property will be formally proven in the appendix, while it may also be found under

slightly di�erent assumptions from, e.g., McCullagh and Nelder (1989). Knowing

this, from the considerations given before it can directly be seen that the power

of the corresponding test will increase whenever we have enough assessments in

comparison to the e�ect size such that the power of the test is larger than about

50%.

Note that the power of the test and the variability of estimators aim at two

di�erent goals. While the variability is of interest mainly in order to get an as
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precise as possible estimator for, e. g., the mean e�ect size, the power of the test

is particularly essential whenever we do not only aim at showing di�erences, but

also at claiming similarity when the null hypothesis cannot be rejected. We want

to stress that this is indeed a quite di�erent task in comparison to only aiming at

proving di�erences.

To illustrate the di�erence, we have to recall that statistical testing is an asym-

metrical procedure. We more or less easily control the level �, which gives the

probability to wrongly reject the null hypothesis and accept the alternative. On

the other hand, the probability � to mistakenly accept the null hypothesis is much

harder to determine and can usually only be inuenced by changing the number of

observations. In addition, the opposite of the null hypothesis has to be much more

precisely de�ned than we usually would do. In our context this means that we will

never be able to state that there are absolutely no di�erences between two products

by means of a triangle test. This is due to the fact that for any �xed number of

observations and level �, the error rate � will tend to 1 as soon as the e�ect size

tends to �

0

, i. e. the success probability by pure guessing. The only statement we

might ever achieve is that the e�ect between the products under consideration is not

larger than a given value , say. Given values of �

0

, � and , we may then control

the power of the test 1� � by using di�erent numbers of observations.

As we have found from (2), whenever the total number of assessments nk is �xed,

an increase of k debiting n will increase the variability. From what has been derived

earlier in this section from (3), we �nd that the probability 1 � � will decrease at

the same time and therefore the power of the test goes down, given that the power

has been larger than 50% before. This is also intuitively clear, since we have to rely

on the few assessors only. In an extreme case, we might only prove that a particular

assessor does not perceive a di�erence, but this will not be representative at all, cf.

the extreme example in Kunert and Meyners (1999). However, the question arises
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whether we may all the same use less assessors but increase the total number of

assessments instead.

This question has been addressed by Brockho� (2002) in more detail. He showed

that even for small numbers of assessor, the power of a test can become reasonably

high whenever some replications are considered. We will stress his results from

another point of view. To prove similarity, we should consider a small error rate �

respectively a large power 1��. We propose that the power should not fall below a

minimum of 90%, while 95% or 99% are to be preferred. (These values correspond

to a signi�cance level of 10%, 5% and 1%, respectively, in proving di�erences.) We

consider a worst case scenario, assuming a maximal heterogeneity for a given e�ect

size. This is given whenever the assessors are either non-perceivers with success

probability �

0

or perceivers with success probability 1 in all replications. Under these

assumptions, Brockho�'s (2002) tables 3 and 4 give the power of the corresponding

binomial test for all combinations of n 2 f5; 6; :::; 50g and k 2 f1; 2; 3; 4; 5g for

�

0

=

1

3

(e. g. the triangle test, table 3) and �

0

=

1

2

(e. g. the duo-trio test, table

4), respectively. All the same, di�erent e�ect sizes are considered. We extract some

of the data and add some more values to give those combinations of n and k that

result in a power of 90%, 95% and 99%, respectively. Schlich (1993) de�nes the

e�ect size to be the relative success probability above chance, i. e. an e�ect size of,

e. g., 50% would state that the mean success probability of the assessors is given

by �

0

+ (1 � �

0

) � 0:5, while an e�ect size of 25% is given by �

0

+ (1 � �

0

) � 0:25.

Table 1 gives the corresponding values for the case of �

0

=

1

3

, while table 2 gives

these values for �

0

=

1

2

. The same e�ect sizes as in Schlich (1993) and Brockho�

(2002) are considered here. Note that the respective signi�cance level in all tables

is � = 5%.



T
H
E
D
E
S
I
G
N
O
F
R
E
P
L
I
C
A
T
E
D
D
I
F
F
E
R
E
N
C
E
T
E
S
T
S

1
3

1� � 90% 95% 99%

e�ect size 25% 37.5% 50% 25% 37.5% 50% 25% 37.5% 50%

k=1 n 74/81 35/39 18/22 95/102 43/47 23/27 130/135 58/60 34

nk 74/81 35/39 18/22 95/102 43/47 23/27 130/135 58/60 34

k=2 n 45 20 13 53/57 26/28 15 76/79 37 21

nk 90 40 26 106/114 52/56 30 152/158 74 42

k=3 n 34 15 9 39/43 20 13 58 28 16/18

nk 102 45 27 117/129 60 39 174 84 48/54

k=4 n 27 12 8 34 17 10 47/51 25 15

nk 108 48 32 136 68 40 188/204 100 60

k=5 n 23 11 7 31 16 9 45 23 13

nk 115 55 35 155 80 45 225 115 65

Table 1: Numbers n and nk for given k resulting in a power of at least 1� � for di�erent e�ect sizes for a success probability by

pure guessing of �

0

=

1
3

.
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1� � 90% 95% 99%

e�ect size 25% 37.5% 50% 25% 37.5% 50% 25% 37.5% 50%

k=1 n 132/143 60/65 30/35 169/175 76/78 42 228/239 102/104 56/58

nk 132/143 60/65 30/35 169/175 76/78 42 228/239 102/104 56/58

k=2 n 74 35 19 93 41/45 22/25 128 59 34

nk 148 70 38 186 82/90 44/50 256 118 68

k=3 n 54 26 14 67/69 31 17 94/98 42/44 24/26

nk 162 78 42 201/207 93 51 282/294 126/132 72/78

k=4 n 44 20 11 54 26 15 76/79 37 20/22

nk 176 80 44 216 104 60 304/316 148 80/88

k=5 n 35/38 17 10 46 23 12 66 31 19

nk 175/190 85 50 230 115 60 330 155 95

Table 2: Numbers n and nk for given k resulting in a power of at least 1� � for di�erent e�ect sizes for a success probability by

pure guessing of �

0

=

1
2

.
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Assume that we want to design a triangle test and are that we are interested

in �nding a large e�ect, i. e. an e�ect of 50%, with probability 95%. Stressing

table 1 we may either use 23 assessors without replications (the value 27 will be

explained in the next paragraph) or 15 assessors with two replications each, giving 30

assessments altogether, or 13 assessors with three replications each (39 assessments),

or ten assessors with four (40), or �nally 9 assessors with 5 (45). From these di�erent

combinations, the investigator might choose the one which results in lowest costs.

These values are valid for maximal heterogeneity of the assessors as mentioned

before. However, note that these values are only valid for this large e�ect size {

for smaller e�ect sizes, the number of assessments is much larger, as it can be seen

from the tables. Furthermore, these tables only address the power of the test. This

means that we may rely on the fact that we might have found similarity in case

we cannot reject the null hypothesis. As well, we could rely on the fact that the

products are di�erent in case we could reject the null hypothesis. However, we could

not necessarily rely on the estimated e�ect size. We might have induced a larger

variability to the estimator, such that the outcomes are less reliable. This will be

addressed later in this paper in more details.

For the interpretation of tables 1 and 2, �rst of all it has to be noticed that the

power in Brockho�'s (2002) paper is not monotonically increasing with an increasing

number of assessors. Even though it usually should be, for the binomial test this is

not the case. This is due to the discreteness of the binomial test distribution which

leads to a waste in the signi�cance level �. More precise, this means that in case

we perform a level-� test, in almost every case the true probability to mistakenly

reject the null hypothesis is actually smaller than �. Further details can be found in

any textbook giving an introduction to statistics and in particular non-parametric

statistics. In our context, this means that the power of the test might indeed decrease

with an increasing number of assessors. In tables 1 and 2, wherever appropriate we

give the smallest number of n and nk, respectively, for which the power does not
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fall below 1 � �, as well as the numbers for which we never will fall again below

this value while increasing n. For further details we refer to the tables provided by

Brockho� (2002).

Of course even smaller e�ect sizes might be of interest, recalling that an e�ect size

of 25% means that the assessors will perceive the di�erence in every fourth trial.

However, for an e�ect size of 12.5%, say, the number get very large and most likely

far beyond any reasonable number of assessments in practice. Even for k = 1, for

the triangle test we would need 283/301, 356/372 and 495/511 assessors to obtain

a power of 90%, 95% and 99%, respectively, while these number are even larger

for the duo-trio test, namely 546/565, 674/695 and 938/948, respectively. Knowing

that reducing the number of assessors while increasing the number of replications

will even increase the total number of assessments, this seems not feasible at all.

Numbers of this size are also derived by Schlich (1993) who states, e. g., that for an

e�ect size of 10% in the triangle test 447 assessors are needed to ensure a power of

90%.

One important interpretation of these tables is that we might indeed achieve

reasonable power even for small numbers of assessors. For instance in table 1, given

an e�ect size of 50%, 13 assessors replicating twice will result in a power of 90%,

while only 8 additional assessors are needed to increase this power to 99%. In the

latter case, we would need 34 assessors if no replications are considered to gain the

same power, i. e. we save 13 assessors by adding 8 additional assessments only.

However, note that this holds only for an e�ect size of 50%! An e�ect of this size

could mean that all assessors will actually perceive the di�erence in every second

trial. The other extreme case for this e�ect size is that half of the assessors will

never �nd any di�erence and will therefore only guess, while the other half will

always perceive it. Of course, many other assessor performances may result in the

same e�ect size. Using these values to design the experiment, accepting the null
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hypothesis and therefore claiming similarity implicitly means that the products are

still considered being similar whenever assessors will detect a di�erence every second

time! There might be applications aiming at similarity in which this might indeed

be appropriate, while we point out that we are mostly interested in small e�ect sizes

like 25%, say, or even less! A 25% e�ect means that the di�erence is on average

found in one out of four trials, which might already be a proportion to worry about.

Comparing the results of the two tables, it can be found that the increase of total

assessments needed for an identical power while increasing the number of replications

is smaller in the �

0

=

1

2

case in table 2 than for the one with �

0

=

1

3

in table 1. This

is due to the fact that these values depend on the heterogeneity of the assessors,

which is much more restricted in the duo-trio test than in the triangle test. If

the assessors were absolutely homogeneous, meaning that they all had an identical

success probability, we would not lose any information by considering replications

instead of di�erent assessors. However, here we consider the worst case in which the

assessors are as heterogeneous as possible, meaning that one part of the assessors

has success probability �

0

while the other has 1. Hence for the duo-trio-test these

probabilities are

1

2

respectively 1, such that they di�er from each other by

1

2

in

probability, while they do by

2

3

for the triangle test. Due to the experiment only,

assessors performing in a duo-trio test will therefore usually be more homogeneous

than those in a triangle test will { the success probabilities may obviously vary more.

Finally it has to be stated that these results are valid only if the sampling of

the assessors has been appropriate. It has to be assured that the assessors indeed

represent the overall population they are meant to represent. This means that a fully

randomized sampling from this overall population would be most favorable. Since

unfortunately this seems to be unfeasible in practice, even more concerns have to be

given that the sampling is nevertheless reasonably done. While sampling details are

beyond the scope of this paper, we want to point out that in case of replications,
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the outcomes of the test will be heavily inuenced by an inappropriate sampling

whenever this does not represent the population to a large extent. In this case,

we would not recommend the use of replications at all in order to account for an

absence of assessors. Nevertheless, whenever possible replications will be reasonable

if they can be done in addition to the initial design.

Con�dence intervals

The results of the former sections can also be transformed into results for con�dence

intervals. However, in this case we might be less interested in the total number of

successes itself, but rather in the relativ number of successes given the considered

number of assessments. This theoretical overall value will be denoted by �, say,

while the most commonly used estimator for this value is given by

�̂ =

X

nk

;

which is once again a random variable. From the results of the former section, we

easily �nd that

E(�̂) = E(P

1

) (4)

and

Var(�̂) =

k � 1

nk

Var(P

1

) +

1

nk

E(P

1

)(1�E(P

1

)); (5)

from which again the advantage of an as small as possible number of replications with

respect to the variance can be found. Contrariwise, the expectation still remains

una�ected. Furthermore, for a �xed n it can directly be seen that

Var(�̂) =

1

n

E(P

1

)(1� E(P

1

))

for k = 1, while for k !1 we �nd

Var(�̂) �!

1

n

Var(P

1

); (6)
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so that

1

n

Var(P

1

) is a lower limit of the variability for any given n.

Let us now consider a given number n where k = 1. We are interested in di�erent

combinations of the number of assessors, denoted by m for a moment, and replica-

tions giving a variance not larger than the setting with n and k = 1. The question

arises to what extent the number of assessors may decrease while k tends to in�nity.

From the formulae above we �nd that due to this restriction, we end up with the

condition

1

m

Var(P

1

) �

1

n

E(P

1

)(1� E(P

1

))

which is equivalent to

m � n

Var(P

1

)

E(P

1

)(1� E(P

1

))

: (7)

If the distribution of P

1

is known, this value can explicitly be determined as it will

be shown later in this paper.

As it has been mentioned before and is shown in the appendix, for a given number

of assessors n the variability of �̂ monotonically decreases with an increasing number

of replications k in all cases of practical interest. Hence an additional replication for

the assessor should be considered whenever this is possible.

Having said that, we should as well note that an increase of replications is only

reasonable to some extent. From (6)we �nd that the variance will not fall below a

certain lower limit, and whenever we already have a reasonable number of replica-

tions, adding another one might not result in a noticeable decrease of the variance

anymore. As well, we see that consistency can only be achieved by letting the

number of assessors n tend to in�nity. In that case, we have

Var(�̂) �! 0 (n!1):

Knowing from (4) that �̂ is an unbiased estimator for the expectation of P

1

, we have

proven the consistency of this estimator for n!1. Note that this does not depend
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at all on the value of k. However, as it has been said before, in practice we will

always have to con�ne ourselves to a �nite and usually rather small n, and therefore

some replications might decrease the variance to a reasonable extent.

Constructing con�dence limits using, e. g., the Tschebyche� inequality, a 95%

con�dence interval for � is given by �̂ � 2

p

Var(�̂), while a 99% interval is given

by �̂ � 3

p

Var(�̂). Hence, the con�dence intervals get larger as the variance of �

increases and therefore, in order to minimize the size of these intervals, for a �xed

number of assessments nk the number of replications k is to be minimized. Note

that in practice we do not know the variance of �̂ but have to estimate it. In this

case, the intervals given above become �̂ � 2

q

^

Var(�̂) and �̂ � 3

q

^

Var(�̂).

Note that usually better con�dence intervals exist than those derived by means

of the Tschebyche� inequality. This is mainly due to the Tschebyche� inequality

being very conservative, such that the intervals can be improved in case of more

restrictive assumptions, e. g. regarding the distribution of P

1

. For the di�erence

test we have at least the knowledge about P

1

being a distribution on the interval

[�

0

; 1] only. Nevertheless every reasonable interval will depend on the variance of

the respective estimator and therefore the general conclusion drawn here still holds

for any other (reasonable) case.
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Two special cases

In this section, we take two di�erent models into account, which have been frequently

considered with respect to replicated di�erence tests, see also Brochho� (2002). One

of these has previously been referred to as the mixture binomial model, the other

one as the beta-binomial model. We will determine the variance of �̂ in these cases,

depending on n and k, such that we may compare the variabilities induced from

di�erent strategies in designing the experiment.

The mixture binomial model

The �rst distribution considered here is derived from the assumption that a pro-

portion Æ, say, of the assessors will detect the di�erence with a common success

probability �

1

, say, where �

1

> �

0

. The other proportion of the assessors will only

be guessing, such that they have a success probability of �

0

. More formally, we may

write this as

P

i

=

(

�

0

with probability 1� Æ;

�

1

with probability Æ; �

1

> �

0

= (1��) �

0

+��

1

where L(�) = B (1; Æ). From the latter formulation, the reason for this model being

referred to as a mixture binomial model is obvious.

In this case, it can be easily shown that

E(P

i

) = �

0

+ (�

1

� �

0

)Æ;

depending on �

1

as well as on Æ, such that di�erent combinations of these two

values may result in an identical mean and therefore in the same e�ect size. This

may equivalently be written as

E(P

i

)� �

0

= (�

1

� �

0

)Æ (8)
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and

Æ =

E(P

i

)� �

0

�

1

� �

0

; (9)

respectively. As stated in Brockho� (2002), the variance of P

i

is given by

Var(P

i

) = E(P

2

i

)� (E(P

i

))

2

= �

2

0

+ Æ

�

�

2

1

� �

2

0

�

� (�

0

(1� Æ) + �

1

Æ)

2

= (1� Æ) Æ(�

1

� �

0

)

2

:

Using (8), this becomes

Var(P

i

) =

�

1

Æ

� 1

�

(E(P

i

)� �

0

)

2

:

For a �xed e�ect size respectively mean of P

i

, recalling Æ 2 [0; 1] we �nd that the

variability increases with a decrease of Æ and the other way round decreases with its

increase. Hence it is obvious that the variability is minimized by Æ = 1 and with it

�

1

= E(P

i

). This means that all assessors have exactly the same success probability.

Thus the heterogeneity is minimal, all assessments are independent from each other,

no matter whether they stem from replications or not.

In contrast, from (9) we �nd that the variability is maximized by minimizing

E(P

i

)��

0

�

1

��

0

respectively by maximizing �

1

. Since �

1

2 [E(P

i

); 1], for a �xed e�ect size

we �nd that the variability is maximized in case of �

1

= 1 and Æ =

E(P

i

)��

0

1��

0

. This

means that for this worst case scenario, Æ is identical with the e�ect size, which is

actually de�ned by this fraction (Schlich, 1993). All the same, here the assessor

heterogeneity is maximal: The success probabilities of the assessors are as far apart

from each other as possible. One group of relative size Æ has the maximal success

probability of 1 while the other group of relative size 1� Æ has the minimal success

probability of pure guessing, �

0

.

For practical applications, this means that we have to be aware of a large vari-

ability whenever we expect the assessors to be quite di�erent, i. e. some of them
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being (almost) pure guessers while the others are (almost) sure perceivers. In such

a case, an increase of the number of assessments might be particularly worthwhile

in order to decrease this variance and therefore get more reliable results.

Now using the results from (1) and (2), for the mean and variance of X we get

E(X) = nk

�

�

0

+ (�

1

� �

0

)Æ

�

and

Var(X) = n(k

2

� k)

�

(1� Æ) Æ(�

1

� �

0

)

2

�

+nk

�

�

0

+ (�

1

� �

0

)Æ

��

1� �

0

� (�

1

� �

0

)Æ

�

;

respectively, as well as we get for �̂

E(�̂) = �

0

+ (�

1

� �

0

)Æ

and

Var(�̂) =

k � 1

nk

�

(1� Æ) Æ(�

1

� �

0

)

2

�

+

1

nk

�

�

0

+ (�

1

� �

0

)Æ

��

1� �

0

� (�

1

� �

0

)Æ

�

: (10)

This equation will be used later to calculate di�erent combinations of n and k leading

to identical variabilities and therefore to identical con�dence intervals.

Here, using (7) results in

m �

(1� Æ) Æ(�

1

� �

0

)

2

(�

0

+ (�

1

� �

0

)Æ)(1� (�

0

+ (�

1

� �

0

)Æ))

n: (11)

Considering the worst case scenario in terms of maximal assessor heterogeneity for

the triangle test, it was shown above that we have �

0

=

1

3

and �

1

= 1. In this case,

the e�ect size is identical with the value of Æ. Hence the lower limits for the number

of assessors needed even if k tends to in�nity are easily found to be

n

3

,

3

7

n and

n

2

for

an e�ect size of 25%, 37.5% and 50%, respectively. To say it the other way round:

No matter how many replications we consider, for an e�ect size of, e. g., 50% we

will never be able to achieve the same small variance compared to the respective

unreplicated design with less than

n

2

assessors.
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The corrected Beta-binomial model

The other distribution considered for P

i

is the corrected Beta-distribution. The

Beta-distribution is frequently used due to its nice properties, meaning that most

calculations of interest end with not too complicated terms. However, the Beta-

distribution itself is not applicable within this context, since it is a distribution on

the interval [0; 1] instead of [�

0

; 1]. However, Brockho� (2002) proposes an adaption

of the probability density such that values smaller than �

0

will not occur, while

the distribution remains easy to handle. The Beta-distribution has two parameters,

� > 0 and � > 0, say. Brockho� (2002) gives details about how to estimate these

parameters from the data.

The corrected Beta-binomial model can be expressed such that the random vari-

able P

i

is derived by means of

P

i

= �

0

+ (1� �

0

)Q

i

;

where L(Q

i

) = Beta(�; �) for i = 1; 2; 3; ::: Hence, knowing that

E(Q

i

) =

�

� + �

and

Var(Q

i

) =

��

(�+ �)

2

(� + � + 1)

;

for the expectation and variance of P

i

we directly get

E(P

i

) = �

0

+ (1� �

0

)

�

� + �

and

Var(P

i

) = (1� �

0

)

2

��

(�+ �)

2

(� + � + 1)

;

respectively. Again, note that the same e�ect size may stem from di�erent combi-

nations of the parameters � and �.
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Using (1) and (2) once more, we �nd the expectation and variance of the total

number of successes to be

E(X) = nk

�

�

0

+ (1� �

0

)

�

� + �

�

and

Var(X) = n(k

2

� k)

�

(1� �

0

)

2

��

(� + �)

2

(� + � + 1)

�

+nk

�

�

0

+ (1� �

0

)

�

�+ �

��

(1� �

0

)

�

1�

�

� + �

��

as well as we get for �̂ that

E(�̂) = �

0

+ (1� �

0

)

�

� + �

(12)

and

Var(�̂) =

k � 1

nk

�

(1� �

0

)

2

��

(�+ �)

2

(� + � + 1)

�

+

1

nk

�

�

0

+ (1� �

0

)

�

�+ �

��

(1� �

0

)

�

1�

�

� + �

��

: (13)

The equations developed here will be used in what follows to compare di�erent

strategies in designing the experiment with respect to the choice of n and k.
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How to design an experiment?

From the results given before, two main strategies are directly derived for the design

of an experiment investigating in di�erences between products:

� Use as many assessments as possible.

� For a given number of assessments nk, let the number of assessors n be as large

as possible and restrain the number of replications k to a minimum necessary

to achieve the intended number of trials.

Besides these main recommendations, however, we are now considering some kind

of mixed strategy. In doing so, we assume that the use of replications instead

of additional assessors might be much cheaper and convenient to the investigator.

Therefore it might occur that, e. g., we have to decide whether we have n = 30 and

k = 1 or rather n = 20 and k = 2. Now, the total number of assessments should no

longer be considered as �xed, such that we have to trade o� between the di�erent

possibilities we have. If we knew the true underlying distribution of P

i

, we could

easily compare the variances of, e. g., �̂ and choose the option with the smallest value

under the given circumstances. Unfortunately, in practice we do not even know the

class of distributions that includes the one of the P

i

, let alone the exact parameters.

Therefore, we give the corresponding values for di�erent parameter settings within

the two models considered here. No general recommendations might be drawn from

these, but in practical circumstances the investigator might rely on the following

tables to consider the worst-case scenario, or maybe she / he is willing to append

some further assumptions with respect to the distribution, maybe based on some

prior knowledge regarding the products and their di�erences.

First of all, using (10) we consider the worst case scenario for the mixture binomial

model within the triangle test, which means that we have maximal heterogeneity
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between the assessors, i. e. �

1

= 1 as it has been shown earlier. This is also referred

to as the common limit model (Brockho�, 2002), since it is the asymptotic limit

model for the three possible models considered within his paper, when the assessor

heterogeneity tends to its maximal value. These models are namely the mixture

binomial, the Beta-binomial and the generalized linear mixed model which is not

considered within this paper. In this case, it has been shown earlier as well that

the e�ect size is equal to the value of Æ. Considering the triangle test, we �nally

have �

0

=

1

3

, such that we can easily determine the variability of the estimator for

the e�ect size depending on di�erent true e�ect sizes according to (10). Starting

with a particular n and k = 1, we determine the essential number of assessors for

k = 2; 3; :::; 10 resulting at least in an as small variance as the �rst case. The results

for an e�ect size of 50%, 37.5% and 25% including the respective total numbers of

assessments are given in tables 3, 4 and 5, respectively.

k 1 2 3 4 5 6 7 8 9 10

n 10 8 7 7 6 6 6 6 6 6

nk 10 16 21 28 30 36 42 48 54 60

n 15 12 10 10 9 9 9 9 9 9

nk 15 24 30 40 45 54 63 72 81 90

n 20 15 14 13 12 12 12 12 12 11

nk 20 30 42 52 60 72 84 96 108 110

n 25 19 17 16 15 15 15 15 14 14

nk 25 38 51 64 75 90 105 120 126 140

n 30 23 20 19 18 18 18 17 17 17

nk 30 46 60 76 90 108 126 136 153 170

n 35 27 24 22 21 21 21 20 20 20

nk 35 54 72 88 105 126 147 160 180 200

n 40 30 27 25 24 24 23 23 23 22

nk 40 60 81 100 120 144 161 184 207 220

n 45 34 30 29 27 27 26 26 25 25

nk 45 68 90 116 135 162 182 208 225 250

n 50 38 34 32 30 30 29 29 28 28

nk 50 76 102 128 150 180 203 232 252 280

Table 3: Combinations of n and k resulting in a variance not larger than the

respective case with k = 1 for the worst case scenario of the triangle test with an

e�ect size of 50%.
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k 1 2 3 4 5 6 7 8 9 10

n 10 8 7 6 6 6 6 5 5 5

nk 10 16 21 24 30 36 42 40 45 50

n 15 11 10 9 9 8 8 8 8 8

nk 15 22 30 36 45 48 56 64 72 80

n 20 15 13 12 11 11 11 10 10 10

nk 20 30 39 48 55 66 77 80 90 100

n 25 18 16 15 14 14 13 13 13 13

nk 25 36 48 60 70 84 91 104 117 130

n 30 22 19 18 17 16 16 15 15 15

nk 30 44 57 72 85 96 112 120 135 150

n 35 26 22 21 20 19 18 18 18 18

nk 35 52 66 84 100 114 126 144 162 180

n 40 29 25 23 22 21 21 20 20 20

nk 40 58 75 92 110 126 147 160 180 200

n 45 33 28 26 25 24 23 23 23 22

nk 45 66 84 104 125 144 161 184 207 220

n 50 36 31 29 28 27 26 26 25 25

nk 50 72 93 116 140 162 182 208 225 250

Table 4: Combinations of n and k resulting in a variance not larger than the

respective case with k = 1 for the worst case scenario of the triangle test with an

e�ect size of 37.5%.

k 1 2 3 4 5 6 7 8 9 10

n 10 7 6 5 5 5 5 5 5 5

nk 10 14 18 20 25 30 35 40 45 50

n 15 11 9 8 8 7 7 7 7 6

nk 15 22 27 32 40 42 49 56 63 60

n 20 14 12 10 10 9 9 9 9 9

nk 20 28 36 40 50 54 63 72 81 90

n 25 17 14 13 12 12 11 11 11 11

nk 25 34 42 52 60 72 77 88 99 110

n 30 21 17 16 15 14 13 13 13 12

nk 30 42 51 64 75 84 91 104 117 120

n 35 24 20 18 17 16 16 15 15 15

nk 35 48 60 72 85 96 112 120 135 150

n 40 27 23 20 19 18 18 17 17 17

nk 40 54 69 80 95 108 126 136 153 170

n 45 30 26 23 21 21 20 19 19 19

nk 45 60 78 92 105 126 140 152 171 190

n 50 34 28 26 24 23 22 21 21 21

nk 50 68 84 104 120 138 154 168 189 210

Table 5: Combinations of n and k resulting in a variance not larger than the

respective case with k = 1 for the worst case scenario of the triangle test with an

e�ect size of 25%.
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From tables 3-5 we �nd that indeed a reasonable decrease in the number of as-

sessors can be obtained by means of replications. However, it is easily seen that

introducing replications results in a very strong increase in the total number of as-

sessments. For an e�ect size of 50% and n = 50, say, we would have to carry out

more than 50% of additional tests in order to shorten the essential number of as-

sessors at less than 25% (k = 2 in table 3). To reduce the number of assessors at

40% to a total of 30, a 200% increase of the number of assessments to 150 is needed

(k = 5 in table 3). Note that the minimal number of assessors cannot fall below

n

2

in this case as has been shown earlier. Similar conclusions can be drawn from tables

4 and 5 for an e�ect size of 37.5% and 25%, respectively. Note that in these cases

the minimal number of assessors will not fall below

3n

7

and

n

3

, respectively.

In tables 6-8, the respective values for the two-alternative-forced-choice di�erence

tests like, e. g., the duo-trio test can be found. Here, �

0

=

1

2

holds.

k 1 2 3 4 5 6 7 8 9 10

n 10 7 6 5 5 5 5 5 5 4

nk 10 14 18 20 25 30 35 40 45 40

n 15 10 9 8 7 7 7 7 7 6

nk 15 20 27 32 35 42 49 56 63 60

n 20 14 12 10 10 9 9 9 9 8

nk 20 28 36 40 50 54 63 72 81 80

n 25 17 14 13 12 12 11 11 11 10

nk 25 34 42 52 60 72 77 88 99 100

n 30 20 17 15 14 14 13 13 13 12

nk 30 40 51 60 70 84 91 104 117 120

n 35 24 20 18 17 16 15 15 15 14

nk 35 48 60 72 85 96 105 120 135 140

n 40 27 23 20 19 18 18 17 17 16

nk 40 54 69 80 95 108 126 136 153 160

n 45 30 25 23 21 20 20 19 19 18

nk 45 60 75 92 105 120 140 152 171 180

n 50 34 28 25 24 23 22 21 21 20

nk 50 68 84 100 120 138 154 168 189 200

Table 6: Combinations of n and k resulting in a variance not larger than the

respective case with k = 1 for the worst case scenario of the duo-trio test with an

e�ect size of 50%.
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k 1 2 3 4 5 6 7 8 9 10

n 10 7 6 5 5 4 4 4 4 4

nk 10 14 18 20 25 24 28 32 36 40

n 15 10 8 7 7 6 6 6 6 6

nk 15 20 24 28 35 36 42 48 54 60

n 20 13 11 10 9 8 8 8 8 7

nk 20 26 33 40 45 48 56 64 72 70

n 25 16 13 12 11 10 10 10 9 9

nk 25 32 39 48 55 60 70 80 81 90

n 30 20 16 14 13 12 12 11 11 11

nk 30 40 48 56 65 72 84 88 99 110

n 35 23 19 16 15 14 14 13 13 13

nk 35 46 57 64 75 84 98 104 117 130

n 40 26 21 19 17 16 16 15 15 14

nk 40 52 63 76 85 96 112 120 135 140

n 45 29 24 21 19 18 17 17 16 16

nk 45 58 72 84 95 108 119 136 144 160

n 50 32 26 23 21 20 19 19 18 18

nk 50 64 78 92 105 120 133 152 162 180

Table 7: Combinations of n and k resulting in a variance not larger than the

respective case with k = 1 for the worst case scenario of the duo-trio test with an

e�ect size of 37.5%.

k 1 2 3 4 5 6 7 8 9 10

n 10 6 5 4 4 4 4 3 3 3

nk 10 12 15 16 20 24 28 24 27 30

n 15 9 7 6 6 5 5 5 5 5

nk 15 18 21 24 30 30 35 40 45 50

n 20 12 10 8 8 7 7 6 6 6

nk 20 24 30 32 40 42 49 48 54 60

n 25 15 12 10 9 9 8 8 8 8

nk 25 30 36 40 45 54 56 64 72 80

n 30 18 14 12 11 10 10 9 9 9

nk 30 36 42 48 55 60 70 72 81 90

n 35 22 17 14 13 12 11 11 11 10

nk 35 44 51 56 65 72 77 88 99 100

n 40 24 19 16 15 14 13 12 12 12

nk 40 48 57 64 75 84 91 96 108 120

n 45 28 22 19 17 15 15 14 14 13

nk 45 56 66 76 85 90 105 112 126 130

n 50 30 24 20 18 17 16 15 15 15

nk 50 60 72 80 90 102 112 120 135 150

Table 8: Combinations of n and k resulting in a variance not larger than the

respective case with k = 1 for the worst case scenario of the duo-trio test with an

e�ect size of 25%.
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Stressing (11) once again, we �nd the lower limit for the number of necessary

assessors to be

n

3

,

3n

11

and

n

5

for an e�ect size of 50%, 37.5% and 25%, respectively.

In comparison with tables 3-5, note that the two di�erent groups of assessors are not

as di�erent from each other in the two-alternative-forced-choice case as they are in

the three-alternative-forced-choice case considered before, since �

1

��

0

is now equal

to

1

2

instead of

2

3

as before. Therefore the heterogeneity is not as large anymore and

the loss in terms of increasing variance is not as large as it was before in the three-

alternative-forced-choice cases. Nevertheless, considering an e�ect size of 50% once

more, we still have to pay with 36% additional assessments to reduce the number of

assessors at 32% only (k = 2 in table 6). In order to halve the number of assessors,

we would have to double the number of assessments (k = 4 in table 6). Again,

similar results can be found for other e�ect sizes as shown in tables 7 and 8.

The considerations given here hold only for the worst case scenario described

above, i. e. the common limit model for maximal assessor heterogeneity. Assuming

the mixture binomial model, it can be easily found from (10) that in case of Æ = 1,

the variability does not depend on the number of replications, but on the number

of total assessments nk only. Hence it does not matter at all whether we consider

replications or not. For any number of replications, the total number of assessments

needed to obtain the same small variability remains the same. For the corrected

Beta-binomial model, this holds only in a certain limit, namely if both � and �

tend to zero as it can be seen from (13). However, besides being the other extreme

cases for the two special cases considered here, these ones are not of much use

for applications, since we will never assume all assessors to have identical success

probabilities. The truth usually will be somewhere in between these extreme cases,

while we will never now what the correct model will be. Hence for the design of

the experiment, it seems reasonable to consider the worst case given above. To give

an impression about the behavior of other circumstances, we consider now some

di�erent circumstances for the three-alternative-forced-choice di�erence tests, all of
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which result in the same e�ect size of 50%.

To start with, we reconsider the mixture binomial model. The common limit

model stressed before is equal to the mixture binomial model with �

1

= 1 and

Æ = 0:5, cf. table 3. The case of no heterogeneity is given by Æ = 1 and �

1

=

2

3

.

Recalling that hence E(P

i

) =

2

3

and stressing (9), we �nd that the same e�ect size is

all the same given for the settings �

1

=

9

10

and Æ =

10

17

respectively �

1

=

3

4

and Æ =

4

5

.

Tables 9 and 10 give the same values as considered before for these combinations.

k 1 2 3 4 5 6 7 8 9 10

n 10 7 6 6 5 5 5 5 5 5

nk 10 14 18 24 25 30 35 40 45 50

n 15 11 9 8 8 7 7 7 7 7

nk 15 22 27 32 40 42 49 56 63 70

n 20 14 12 11 10 10 9 9 9 9

nk 20 28 36 44 50 60 63 72 81 90

n 25 17 15 13 12 12 12 11 11 11

nk 25 34 45 52 60 72 84 88 99 110

n 30 21 17 16 15 14 14 13 13 13

nk 30 42 51 64 75 84 98 104 117 130

n 35 24 20 18 17 17 16 16 15 15

nk 35 48 60 72 85 102 112 128 135 150

n 40 27 23 21 20 19 18 18 17 17

nk 40 54 69 84 100 114 126 144 153 170

n 45 31 26 24 22 21 20 20 19 19

nk 45 62 78 96 110 126 140 160 171 190

n 50 34 29 26 24 23 23 22 22 21

nk 50 68 87 104 120 138 161 176 198 210

Table 9: Combinations of n and k resulting in a variance not larger than the

respective case with k = 1 for the mixture binomial model in the triangle test and

an e�ect size of 50% derived from the setting �

1

=

9

10

and Æ =

10

17

.
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k 1 2 3 4 5 6 7 8 9 10

n 10 6 5 4 3 3 3 3 3 3

nk 10 12 15 16 15 18 21 24 27 30

n 15 9 7 6 5 5 4 4 4 4

nk 15 18 21 24 25 30 28 32 36 40

n 20 12 9 7 6 6 5 5 5 5

nk 20 24 27 28 30 36 35 40 45 50

n 25 15 11 9 8 7 7 6 6 6

nk 25 30 33 36 40 42 49 48 54 60

n 30 17 13 11 9 9 8 8 7 7

nk 30 34 39 44 45 54 56 64 63 70

n 35 20 15 13 11 10 9 9 8 8

nk 35 40 45 52 55 60 63 72 72 80

n 40 23 17 14 12 11 10 10 9 9

nk 40 46 51 56 60 66 70 80 81 90

n 45 26 19 16 14 13 12 11 10 10

nk 45 52 57 64 70 78 84 88 90 100

n 50 29 21 18 15 14 13 12 12 11

nk 50 58 63 72 75 84 91 96 108 110

Table 10: Combinations of n and k resulting in a variance not larger than the

respective case with k = 1 for the mixture binomial model in the triangle test and

an e�ect size of 50% derived from the setting �

1

=

3

4

and Æ =

4

5

.

As was to be expected, from tables 9 and 10 it can be seen that the increase of the

number of assessments nk in order to reduce the number of assessors gets smaller

the smaller �

1

and the larger Æ. The results in table 9 are quite similar to those

in table 3, while in table 10 we are close to the situation of no heterogeneity and

therefore an reasonable reduction of the number of assessors can be achieved by a

relative minor increase of assessments. Nevertheless, we state once again that we

will never be sure in applications that this situation is truly given, therefore an use

of these tables in order to determine the number of assessor and replications might

be quite risky.

Finally, we also consider two circumstances within the Beta-binomial model. It

has been mentioned before that the case of extreme heterogeneity is given by � and

� tending to zero. As pointed out in Brockho� (2002), a measure of heterogeneity
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is given by

� =

1

�+ � + 1

;

while the heterogeneity increases with an increase of �. Hence, the assessors are most

homogeneous if � and � tend to in�nity. From (12) we easily �nd that the e�ect

size is given by

�

�+�

, such that we get � = � in order to get an e�ect size of 50%. Bi

and Ennis (1998) use values of � = 0; 0:1; :::; 0:5, from which we chose 0.5 and 0.2,

resulting in � = � =

1

2

and � = � = 2, respectively. The results are quite similar

to those found in tables 9 and 10, respectively, such that we do not give them here

for brevity. In fact, even though this does not hold for these particular values, we

may derive identical tables for the mixture binomial and the Beta-binomial model.

The variance of �̂ in (10) and (13), respectively, is decomposed in two addends. In

each case, the latter one depends on the total number of assessments nk and the

mean of P

i

only. Since the e�ect size has been �xed to 50% here, this latter term is

therefore identical for both models. The former addend depends in both models on

the number of replications relative to the total number of assessments given by

k�1

nk

.

For given Æ and �

1

, say, we can �nd � and � such that the variance of �̂ is identical.

For this purpose, we would have to solve

(1� Æ)Æ(�

1

� �

0

)

2

= (1� �

0

)

2

��

(� + �)

2

(�+ � + 1)

:

Recalling that in our case � = �, this simpli�es to

(1� Æ)Æ(�

1

� �

0

)

2

= (1� �

0

)

2

�

2

4�

2

(2�+ 1)

;

resulting in a simple quadratic equation after inserting the appropriate values of �

0

,

�

1

and Æ. Even though for the e�ect size of 50%, this is particularly simple, we will

�nd corresponding values for any possible combination. The other way round, we

might as well �x � and � and determine the corresponding values for the mixed

binomial model.
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This result similarly holds in more general. From (5) we �nd that we have the

same structure for any distribution of P

1

, the latter term depending on the e�ect

size while the former one depends on the variability. This means that whenever we

may vary the parameters of the distribution such that variability and mean can be

independently adjusted, we will be able to equate this model with any other one.

To say it the other way round: It does not matter which model is considered, we

may always �nd a setting of the other reasonable models which leads to the same

variability of the estimator for �. This nicely supports the �ndings of Brockho�

(2002), who stated as well that the outcomes with respect to di�erent models do

not di�er too much. However, he was rather stressing the power of the corresponding

test, while we consider the variability of the estimators.

Discussion

The use of replications in di�erence tests is sometimes considered whenever the

number of available assessors seems to be too small and cannot be increased due

to, e. g., budget restrictions. Doubts have arisen that the application of commonly

used statistical procedures is still reasonable in this case, cf. Brockho� and Schlich

(1998). Though Kunert and Meyners (1999) showed that the binomial test with

nk observations will not violate the signi�cance level � of the test whenever the

experiment is properly designed, we have shown that the power of the test will

increase whenever the number of assessments is large enough such that the power

is larger than 50%. On the other hand, the power will decrease in case that either

the number is too small or the e�ect size is smaller than assumed and hence the

true power of the test is smaller than 50%. Hence adding replications after having

the experiment designed such that it would work out without these replications will

always be a plus for the analysis and the reliability of the interpretation.

Unfortunately, chances are this will not be considered very often in practice.
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Interests are rather given to a reduction of the number of assessments in all, while

often preferred in assessors. From our results it has to be stated that both the

estimation of the e�ect size and the prove of similarity will be disadvantageously

inuenced by adding replications and reducing the number of assessors while the

number of assessments remains the same. This holds to a larger extent the more

heterogeneous the assessors are. We have developed di�erent formulae to determine

the variability of reasonable estimators. Furthermore, we have compared the power

of di�erent designs according to Brockho�'s (2002) approach. For both cases, we

have determined di�erent combinations of n and k that lead to the same variability

respectively the same power. From these it can always be found that a decrease in

the number of assessors has to be paid for by an increase of the total number of

assessments nk. However, it might be reasonable to use these results according to

the respective costs in hiring assessors and performing additional assessments. Since

the results for the di�erent criteria do not coincide, an a-priori decision is essential

about which information will be of main interest. If both are, the approach with

more assessors and, in case, less replications should be chosen.

Using replications, serious concerns should be given to the sampling of the asses-

sors. The results presented in this paper only hold if the sampling is appropriate

with respect to the overall population that should be represented. Most favorable

would be a full randomized sampling from the population of interest. Whenever this

is not possible, representativeness of the sample will be questionable. Even though

this is a problem for non-replicated di�erence tests as well, this holds to a much

larger extent whenever we use replications. In the latter case, we rely much more

heavily on single assessors { if those few assessors have been poorly chosen (due

to chance or an inappropriate procedure), the results will be heavily inuenced by

even letting these assessors replicate. Thus we might end up with serious misinter-

pretations. Hence, whenever the sampling of the assessors might be questionable,

we do not recommend to rely on replications at all. Even if the outcomes of a non-
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replicated design using the same sampling might be doubtful as well, chances are

that we will nevertheless get more reliable results.

Assuming that the sampling has been properly done such that no more concerns

have to be given to this point of the experimental design, we will now discuss the

design of an experiment as well as the interpretation of the outcomes. In a triangle

test, suppose we are interested in an e�ect size of 37.5% (or larger) and want to

restrict the type II error rate � to 10% respectively guarantee a power of at least

90%. From table 1 we �nd that without replications we need 35 assessors to achieve

these values. In order to reduce the number of assessors, we might use as well

20 assessors only but letting them perform the test twice, such that we end up

with 40 assessments. All the same, we might consider 15, 12 and 11 assessors only

with 3, 4 and 5 replications and 45, 48 and 55 total assessments, respectively. From

these combinations, the investigator might choose that one that �ts his requirements

best { given he is only interested in showing di�erences or similarity! If she/he is

interested in estimating the true e�ect size in case di�erences have been shown, table

4 has to be stressed. From this we �nd that, according to the e�ect size of interest,

the variance of the estimator of interest derived from 20 assessors performing the

triangle test twice only accounts of about 27 / 28 assessments of di�erent assessors.

For the other combinations, with 3 replications this value is given by about 24, while

for k = 4; 5 it is 20 only. Hence, using table 1 to design the experiment will result

in an increased uncertainty about this estimator.

On the other hand, we might still want to use replications. Table 4 shows as well

that the variability derived from 35 assessments from di�erent assessors is the same

as from 26 assessors with 2 replications as from 22, 21 and 20 assessors with 3, 4 and

5 replications. Hence, the total number of assessments has to be increased to 52,

66, 84 and 100, respectively. Now again, the investigator might choose one of these

combinations according to his interest, and we claim that this will indeed result in
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the same certainty of the estimator. In addition, since these values are larger than

those derived from table 1, the true power of the test will increase! In this case,

the use of replications might indeed be useful, while the total number of assessment

de�nitely has to be reasonably increased. In application, 35 assessors doing the test

once only might be cheaper and better feasible than letting 20 assessors replication

5 times. Nevertheless, if the latter case is feasible, this might be a plus since the

true power rises over 95% as it can be seen from table 1. In contrast, not increasing

the total number of assessments while using replications will de�nitely reduce the

power as well as the reliability of any estimators of interest.

The outcomes of such a series of triangle tests might be very di�erent. First of

all, it might appear that we cannot prove di�erences and therefore claim similarity.

In case the experiment has been designed according to table 1, we can claim this

similarity with a maximal error rate of �. If the total number of assessments has

not been increased but replications have been used, this does not hold any longer,

since the power of the test will decrease as it can been seen from our tables 1 and

2 as well as from those provided by Brockho� (2002). and we usually cannot claim

similarity since the power of the test is unknown. Note that, considering an e�ect

size of 37.5%, we explicitly agree to claim similarity at a 5%-level in case of not

being able to prove di�erences with 16 assessors only, but 5 replications each such

that we have 80 assessments. Still, concerns have to be given to the sampling once

again!

Second, we might �nd di�erences. As Kunert and Meyners (1999) have shown,

this is the easiest case since these di�erences have been proven to a signi�cance level

� whenever the experiment has been properly designed. In this case, it does not

matter whether or not the assessments stem from replications.

Finally, having proven di�erences, we might want to estimate the e�ect size. In

this case, the experiment should have been designed according to, e. g., table 4.
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Then the variability of the estimator of interest is identical no matter which of the

corresponding combinations of n and k has been chosen, meaning that a reduction

of assessors goes together with a reasonable number of assessments. On the other

hand, if we have not appropriately increased the number of assessments, we will

end up with a much less reliable estimator. This means that the variability of this

estimator is quite large and therefore any reasonable con�dence interval will be as

well. Frankly spoken, estimating the e�ect size to be, e. g., 37.5% might mean that

the e�ect size could be 5% or 70% as well. Hence the uncertainty is very large. The

use of more di�erent assessors and less replications or an appropriate number or

additional assessments to respect for the replications would have notably decreased

the uncertainty. Then, with the same estimated e�ect size of 37.5%, we might be

sure that the true one is not smaller than 25% and not larger than 50%, say.

As a �nal remark, we want to point that using replications more powerful tests

exits besides the binomial test. These tests base on the likelihood-ratio approach

and are much more complicated to carry out. Due to this, the binomial test will be

the mostly used one in applications, such that details about other tests are beyond

the scope of this paper.

To summarize, we state that together with an appropriate sampling, replications

might be used to reduce the number of assessors to some extent. However, to derive

similarly reliable results, the total number of assessments has to be reasonably in-

creased. In that case, these combinations of n and k might even increase the power

of the test. On the other hand, if the number of assessments cannot be heavily

increased, we propose to use non-replicated tests whenever this is possible. Further-

more, main concerns have to be given to an appropriate sampling of the assessors.

Even though this holds for non-replicated tests as well, it holds for replicated designs

to a larger extent.
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Appendix

Proposition: For a �xed number of assessors n, Var(�̂) monotonically decreases

with an increasing number of replications k, while the monotonicity is strict when-

ever P

1

is not almost sure equal to 1.

Proof: Due to the distribution of P

1

being restricted on the interval [�

0

; 1] where

�

0

> 0, 0 < E(P

1

) � 1. From 0 < P

1

� 1 it follows P

2

1

� P

1

and hence E(P

2

1

) �

E(P

1

). Equality holds if and only if P

1

= 1 almost sure.

Now let n be �xed and 0 < k < l be two possible numbers of replications. �̂

k

and

�̂

l

denote the estimate �̂ given k and l replications, respectively. Then we have

Var(�̂

k

)�Var(�̂

l

)

=

1

n

��

k � 1

k

�

l � 1

l

�

Var(P

1

) +

�

1

k

�

1

l

�

E(P

1

)(1� E(P

1

))

�

=

1

n

�

kl � l � lk + k

kl

Var(P

1

) +

l � k

kl

E(P

1

)(1�E(P

1

))

�

=

l � k

nkl

[E(P

1

)(1�E(P

1

))�Var(P

1

)]

=

l � k

nkl

�

E(P

1

)� (E(P

1

))

2

�Var(P

1

)

�

�

l � k

nkl

�

E(P

2

1

)� (E(P

1

))

2

�Var(P

1

)

�

(14)

=

l � k

nkl

[Var(P

1

)�Var(P

1

)]

= 0

Equality in (14) holds if and only if E(P

1

) = E(P

2

1

), i. e. if and only if P

1

is almost

sure equal to 1. This completes the proof of theorem 1.

Note that a similar result under slightly more restrictive conditions is also given

by, e. g., McCullagh and Nelder (1989). Also note that P

1

being almost sure 1

means that each assessor will always succeed, i. e. the product di�erences must

be extremely large. This case might not be of much importance, nevertheless it is

already intuitively clear that the variability of X respectively �̂ does not depend on

the number of replications considered, since it will always be zero.


