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Abstract

This paper illustrates the Support Vector Method for the classification problem with two and
more classes. In particular, the multi-class classification Support Vector Method of Weston
and Watkins (1998) is correctly formulated as a quadratic optimization problem.
Then, the method is applied to the problem of predicting business phases of the German
economy. The generated support vectors are interpreted, in particular with respect to whether
they are able to characterize business phase switches. Finally, the classification power of the
Support Vector Method and of Linear Discriminant Analysis are compared.
The results are two-fold. On the one hand, after the analysis of the results of this study it
appears questionable that the Support Vector Method delivers an interpretable (dimension
independent) data reduction by identifying the support vectors. Indeed, the support vectors did
not appear to be sufficient to characterize the switches between the business phases.
On the other hand, the classification power of the Support Vector Method was distinctly
better than with Linear Discriminant Analysis. Note however that the Support Vector Method
needs very much more computation time than Linear Discriminant Analysis.

KEYWORDS: support vector method, multi-class classification linear discriminant analysis,
business cycle analysis
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1. Introduction

On the one hand, lately Support Vector Methods got more and more popular, especially in
computer science, as an implementation of Vapnik’s (1979, 1995, 1998) learning theory for
binary classification. On the other hand, in statistics other classification techniques stay the
most popular, namely discrimination methods and decision tree methods. In a way, computer
science took the lead in a field occupied in history by statistics, because statistics did not
prove to be flexible enough to realize the power of Support Vector Methods. In particular,
Support Vector Methods deliver so-called support vectors which characterize the border
between the classes to be separated. In this respect, the Support Vector Method promises to
deliver (dimension independent) data reduction.

This paper illustrates the Support Vector Method for the classification problem with 2
and more classes. In particular, the underlying optimization problem and its practical
solution are discussed.

Then, the method is applied to a business cycle data set. The generated support vectors are
interpreted, in particular with respect to whether they are able to characterize business phase
switches. Finally, the classification power of the Support Vector Method and of Linear
Discriminant Analysis are compared.

2. Binary classification

The Support Vector Method is well developed for the solution of binary classification
problems (cp. Vapnik (1979, 1995, 1998); Cortes, Vapnik (1995)). In this case the data set
has the form

(xi,yi) ∈ IRn ×{−1,1}

where xi is a vector of length n and yi ∈ {−1,1} represents the class of the observation xi,
i = 1, ..., N.

The main idea of the Support Vector Method is to construct a hyperplane w´x + b to
separate the two classes so that the distance between the hyperplane and the nearest
observation (the margin) is maximized. Note that w is the normal vector of the hyperplane. If
the classes are not linearly separable, one simultaneously has to try to minimize the
classification error.

This leads to the following (mixed) constrained optimization problem:

min )C(
N

i
i�ξ+

=1

2

2
1 w (1)

with respect to w and ξi constrained by
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yi(w´xi + b) ≥ 1 − ξi, i = 1, ..., N, and ξi ≥ 0, i = 1, ..., N (2)

where ξi are so-called slack variables and C is a given parameter that controls the influence of
possibly misclassified observations in the training set (cp. Cortes, Vapnik (1995)).

Indeed, ξi > 0, if and only if observation i lies at the ‘wrong side’ of the hyperplane parallel
to the hyperplane w´x + b which goes through the closest observations of the class of
observation i in that half space of the hyperplane w´x + b containing the most observations of
this class (cp. Figure 1). All these ‘closest’ observations on the ‘right side’ of the hyperplane
plus those observations with ξi > 0 together are called support vectors.

Figure 1: 2-class separation
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This optimization problem is usually solved by using the method of Lagrange multipliers and
the Kuhn-Tucker theorem. One can show that the corresponding dual quadratic problem is
of the form:

max �
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ii =� α

=
and 0 ≤ αi ≤ C, i = 1, ..., N. (3)

Then, one can show that the optimal Lagrange multipliers αi* of the N first inequalities in
(2) determine the solution w* of (1), (2) as follows:

�α=
=

N

i
iii y**

1
xw (cp. Vapnik (1979, 1995, 1998)).

For any vector x the decision function of the classification problem is
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f(x) = sign �
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, and

x+ and x− are any support vectors of the classes +1 and −1, respectively, with 0 < αi* < C.

The characterization of a support vector is αi* > 0. Note that vectors xi with αi* = 0 lie on
the ‘save’ side of the separating hyperplane but not closest to the hyperplane. Vectors xi with
C > αi* > 0 correspond to the closest observations on the ‘save’ side, and vectors xi with
αi* = C have the property ξi > 0, i.e. lie on the ‘wrong’ side of the hyperplane. Thus, only the
support vectors determine the decision function.

3. Multi-class classification

To solve multi-class classification problems typically methods based on combination of many
binary classification functions are used (i.e. the one-against-all method, cp. Schölkopf,
Burges, Vapnik (1995)).

Weston and Watkins (1998) propose an extension to the SVM method to solve M-class
problems in one step. In this case the classes of the sample are represented by yi ∈ {1, ..., M}.
This approach is to construct a decision function that considers all classes at once.

The generalization of the minimization problem (1) is

min 1
2

2
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with respect to w and ξi and with constraints

w x w xy i y i m m i mi i
b b' ',+ ≥ − + +2 ξ , ξi,m ≥ 0, i = 1,...,N, m ∈ {1,...,M}\yi (cp. Figure 2).

The corresponding Lagrange function is

L(w,b,ξ,α,β) = 12
2
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Here, α βi y i yi i, ,= = 0 , ξ i yi, = 2 are pseudo variables and the constraints

αi,m ≥ 0, βi,m ≥ 0, ξi,m ≥ 0, i = 1, ..., N, m ∈ {1, ..., M}\yi have to hold.
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Figure 2: Multi-class separation
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Note that the planes Hm,1 and Hm,2 correspond to the normal vector wm, m ∈ {1,2,3}

Considering the derivatives of L(w,b,ξ,α,β) w.r.t. wn, bn, and ξi,n, n ∈ {1, ..., M}, and using
the equations
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the Lagrange function (5) leads to the dual quadratic problem
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Note that Weston and Watkins (1998) mistakenly did not arrive at the dual quadratic problem
(6).

Solving the quadratic maximization problem (6) with respect to αi,m for any vector x the
decision function is

f(x) = arg ( ) �
�
�

�
�
�� +α−

=
*b'**Acmax

N

i
mim,iim,im 1

xx . (8)

If αi,m* ∈ (0; C], the vector xi is called a support vector with regard to class m.

The matrix form of (6) is

( ) ( )� −−−
=

M

m
mmS

'
mmLIN

12
1 eaXea (9)

with
��

�
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� =� α
= =′

otherwise

myi
M

m
mi
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,0

,*
)( 1

,a and *)( ,miim α=e .

The matrix XS = (x xi j' )ij, i, j = 1, ..., N, contains the scalar products of the observation

vectors. The term LIN denotes the linear term of (6).

4. Quadratic optimization

Expression (9) is not quite in the standard matrix form of a quadratic optimization
problem

g(α) = p´α + α´Xα = max! w.r.t.

α = (α1,1 , ..., αN,1 , ..., α1,M , ..., αN,M)´ with M⋅N entries, (10)

where p is a coefficient vector and X is a coefficient matrix.
In the literature many solution methods for these problems are suggested (e.g. cp. Fletcher
(1981)).

One can show that one can fill X according to the following rules:

1) The coefficients of the parameters α i yi, can be set to 0, i = 1, .., N. This means that the

corresponding rows and columns of X are 0.
2) The coefficients of parameter products αi,m⋅αi,m (m ≠ yi) on the main diagonal of X are

ii xx '− , i = 1, .., N.

3) The coefficients of the mixed terms αi,m⋅αi,q (m ≠ q) are ii50 xx '.− for i = 1, .., N and
m, q ∈ {1, .., M}\{yi}.
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4) The coefficients of the products α αi y j yj i, ,⋅ (i ≠ j) are ji xx ' for i,j = 1, .., N.

5) The coefficients of the products
iyjmi ,, α⋅α (i ≠ j) are ji50 xx '. for i,j = 1, .., N and

m ∈ {1, .., M}\{yi, yi }.
6) The coefficients of the products αi,m⋅αj,m (i ≠ j) are ji50 xx '.− for i,j = 1, .., N and

m ∈ {1, .., M}\{yi, yj}.
7) The coefficients of the products αi,m⋅αj,q (i ≠ j, m ≠ q) are 0 for i,j = 1, .., N and
m,q ∈ {1, .., M}\{yi, yj}.

Example: 4-class problem with N = 4 observations. For simplicity let y1 = 1, y2 = 2, y3 = 3,
and y4 = 4. Thus c1,1 = c2,2 = c3,3 = c4,4 = 1, otherwise ci,j = 0 (i,j = 1, .., 4), and
α1,1 = α2,2 = α3,3 = α4,4 = 0. Then, the quadratic term of equation (6) is given by the following
expression:

1
2

⋅[ ( −A1A1 − α1,22 − α1,32 − α1,42 )⋅ x x1 1' (i)

+ ( α2,1A1 + α1,2A2 − α1,3α2,3 − α1,4α2,4 )⋅ x x1 2' (ii)

+ ( α3,1A1 + α1,3A3 − α1,2α3,2 − α1,4α3,4 )⋅ x x1 3' (ii)

+ ( α4,1A1 + α1,4A4 − α1,2α4,2 − α1,3α4,3 )⋅ x x1 4' (ii)

+ ( α1,2A2 + α2,1A1 − α2,3α1,3 − α2,4α1,4 )⋅ x x2 1' (ii)

+ ( −A2A2 − α2,12 − α2,32 − α2,42 )⋅ x x2 2' (i)

+ ( α3,2A2 + α2,3A3 − α2,1α3,1 − α2,4α3,4 )⋅ x x2 3' (ii)

+ ( α4,2A2 + α2,4A4 − α2,1α4,1 − α2,3α4,3 )⋅ x x2 4' (ii)

+ ..... ]

where A1 = α1,2 + α1,3 + α1,4, A2 = α2,1 + α2,3 + α2,4, A3 = α3,1 + α3,2 + α3,4,
A4 = α4,1 + α4,2 + α4,3.

Rule 1 follows from constrains (7). The lines marked with (i) are related to the rules 2 and 3.
They contain the quadratic and the accompanying mixed coefficients. The rules 4 to 7 are
associated to the lines denoted by (ii).

The result of the seven rules for the given 4-class problem is the following symmetric
coefficient matrix X corresponding to the coefficients vector

( )'44342414433323134232221241312111 αααααααααααααααα=α
Note that the abbreviation xij := xi’xj is used.
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X =

− − − − −
− − − − −
− − − − −

− − − − −

− −
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− − − − −

− − − − −
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�

�

�
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�
�
�
�
�
�
�
�
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�
�
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�
�

(11)

5. Example Data and Models

The data set consists of 13 "stylized facts" (cp. Lucas (1983)) for the German business
cycle and 157 quarterly observations from 1955/4 to 1994/4 (price index base is 1991). The
stylized facts are real GNP (gr), real private consumption (gr), government deficit, wage and
salary earners (gr), net exports, money supply M1 (gr), real investment in equipment (gr), real
investment in construction (gr), unit labor cost (gr), GNP price deflator (gr), consumer price
index (gr), nominal short term interest rate and real long term interest rate. The abbreviation
‘gr’ stands for growth rates corresponding the last years corresponding quarter.

For the investigation of the data with respect to business cycle phases we use the same 4-
phase scheme as Heilemann and Münch (1996) where phases are called "upswing", "upper
turning points", "downswing", and "lower turning points" (model 1). Table 1 shows the
number of observations of each phase.

This 4-phase-model can be considered as an extension of a 2-phase-model containing only
the phases upswing and downswing. The turning points will be handled in two different ways:

• For model 2 the phases "lower turning points" and "upswing" are joined as well as "upper
turning points" and "downswing" since each turning point phase can be understood as the
beginning of an upswing or a downswing, respectively.

• For model 3 the separation of phases takes place in the middle of the upper and lower
turning phases. This leads to two classes called "long upswing" and "long downswing".
The term "long" is added to indicate that these phases are longer than the same classes in
the 4-phase-model 1. Figure 3 illustrates the phases.
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Table 1: Number of observations in phases (including phase code)
model 1
4-phase

model 2
2-phase

(joined phases)

model 3
2-phase
(separated

turning phases)
lower turning points 27 (4) 84 (+1)
upswing 59 (1) 86 (+1)
upper turning points 24 (2) 71 (−1)
downswing 47 (3) 73 (−1)

Figure 3: Phases
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model 3 (top): phase codes: long downswing (7), long upswing (8)
model 2 (middle): upper turning point + downswing (5), lower turning point + upswing (6)
model 1 (below): upswing (1), upper turning point (2), downswing (3), lower turning point (4)

The idea is that the classification of phases depends on the stylized facts. Unclear is the
influence of time on the classification. Adding a variable TIME does not promise a gain of
information because time increases monotonously. Therefore time is modeled by using the
lag 1 phase. Thus for each model we consider two submodels without (a) and with (b) the lag
1 phase as an additional explanatory variable.

6. Results for the 2-phase-models

The SVM includes a parameter C to be optimized. The goal is to minimize the error rate.

Table 2 shows the error rates for both kinds of the models 2 and 3. The columns "tr.set"
contain the error rates for the training set, the columns "cv" contain the rates computed with
crossvalidation (leave-one-out). The selection criterion for C is the crossvalidated error
rate because it is an unbiased estimator for the real misclassification rate (cp. Weiss and
Kulikowski (1991)). In Table 2 the values for each model printed in bold have the lowest
crossvalidated error rate: C2a = 5, C2b = 100, C3a = 10, and C3b = 5. For some values of C
the SVM computes the same support vectors. In these cases, shaded in grey, the parameter C
has no influence on the classification.
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Table 2: Error rates for models 2 and 3
model 2a model 2b model 3a model 3b

phase lag 1 phase lag 1
C tr.set cv tr.set cv tr.set cv tr.set cv
1 0.128 0.172 0.064 0.134 0.108 0.185 0.057 0.089
5 0.108 0.159 0.051 0.102 0.115 0.178 0.038 0.089
10 0.102 0.166 0.032 0.102 0.115 0.172 0.038 0.096
50 0.108 0.172 0.032 0.102 0.115 0.185 0.045 0.089
100 0.102 0.178 0.026 0.064 0.115 0.185 0.045 0.089
500 0.102 0.178 0.032 0.083 0.115 0.185 0.045 0.089
1000 0.102 0.178 0.032 0.089 0.115 0.185 0.045 0.089

Furthermore the error rates of the models with the lag 1 phase as an additional variable are
lower than those of the models without this information. It is remarkable as well that the error
rates of the models 2 are lower than those of the models 3.

The number of support vectors for the computed models is different. The models 2a and 3a
contain more support vectors than the models 2b and 3b. Depending of the choice of C model
2a contains between 48 and 61 support vectors, and 3a 51 up to 54. Model 2b has between 21
and 30, and in one case 42 support vectors (C = 1). The number of support vectors for model
3b is between 28 and 38. It is remarkable that for each model the choice C = 1 is coupled with
the highest number of support vectors.

The optimal models, i.e. the models with the optimal choice of parameter C, i.e. with C2a = 5,
C2b = 100, C3a = 10, and C3b = 5 will now be analyzed.
In particular, the position of support vectors and of misclassified vectors will be discussed.

The Support Vector Method estimates a hyperplane which marks the boundary between the
two classes dependent on the variables. The normal vector of the hyperplane has one
component for each economic variable. But the number of variables is too big to discuss each
component. Therefore we only analyze the support vectors in relation to the variable GNP
being the most important economic indicator.

Figures 4 and 5 show the variable GNP together with the course of phases for the models 2
and 3. The squares mark the support vectors which are not crossvalidated errors, and the
crosses mark the crossvalidated errors. Note that all crossvalidated errors have to be
support vectors.
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Figure 4: Support vectors and crossvalidated errors (GNP, models 2a and 2b)
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Figure 5: Support vectors and crossvalidated errors (GNP, models 3a and 3b)
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The number of support vectors is 53 in the optimal model 2a, and 22 in the optimal model
2b. The number of crossvalidated errors is 25 in model 2a, and 10 in model 2b. In the
optimal model 3a the number of support vectors is 52, and 33 in model 3b. The number of
crossvalidated errors is 27 in model 3a, and 14 in model 3b.

The support vectors mainly appear in the first half of the observed time period, and the
majority of the vectors are located near to a phase switch. This means that the boundary of
classes in IRN is marked by observations which are close to phase switches in the data set.
One reason why this might have been expected is that observations near to phase switches
will have related values independent of their phases.

Somewhat more surprising is that the support vectors appear in the whole region of the
(growth rates of) GNP. In some cases the support vectors are located at striking positions of
the time plot of GNP (e.g. the observations 18 and 108 with model 2a). But apparently no
rule exists concerning the relationship of the value of GNP and the location of a support
vector. In particular, support vectors cannot be found near all phase switches. Thus, the idea
of data reduction to support vectors appears questionable if one is interested to
characterize phase switches.

Also most of the crossvalidated errors appear in the first half of the time period. Maybe one
reason for this that economic growth rates changed more erratically during the period of the
so-called ‘economic miracle’ (“Wirtschaftswunder”). This might lead to the observed
misclassification errors.

Model 2a has 25 crossvalidated errors, model 2b only 10. Most of these errors are located
near to switch phases. Also many errors lie in the periods from observation 23 (1962/2) to 33
(1963/4) and from number 63 (1971/2) up to 66 (1972/1). The last periods coincide with the
first oil crisis and are often misclassified also by clustering techiques (cp. Theis and Weihs
(1999)). Model 3a has 27 misclassified observations and model 3b only 14. The main
periods with errors are located from 26 (1962/1) to 39 (1965/2) and from 65 (1971/4) to
observation 69 (1972/4), similar as in models 2a, 2b.

Thus, it is remarkable that for all 4 models misclassified observations nearly lie in the same
area, although the corresponding decision functions are very different. Obviously it is difficult
to classify these time periods.

7. Results for the 4-phase-model

For model 1 the model optimization with respect to the constant C is repeated (cp. Table 3).
First, it appears remarkable that the optimal error rates are higher than with the 2-phase
models. This might indicate that there is not enough evidence in the data to separate 4 phases.
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Note in particular that the turning point phases are supported by only a small number of
observations.

Table 3: Error rates for model 1
model 1a model 1b

phase before
C tr.set cv tr.set cv
1 0.172 0.267 0.070 0.204
5 0.166 0.229 0.076 0.178
10 0.166 0.261 0.064 0.204
50 0.159 0.255 0.038 0.217
100 0.140 0.274 0.025 0.222
500 0.127 0.280 0 0.236
1000 0.134 0.274 0 0.242

The optimal error rate 0.229 found by the Support Vector Method for model 1a might be
compared with the error rate 0.285 found by Weihs et al. (1999) by means of Linear
Discriminant Analysis (LDA) in the whole 13 dimensional space using Bayes decision rules
based on estimated normal densities with identical covariance matrices for all 4 classes to
construct separating hyperplanes for all pairs of classes. Thus, the Support Vector Method
has a distinctly better error rate than LDA. This result might have been expected since the
Support Vector Method was constructed to find optimal separating hyperplanes.

Figures 6 and 7, analogous to figures 4 and 5 in the analysis of models 1 and 2, show the GNP
curve and the course of the business phases together with the support vectors and
classification errors for models 1a, 1b.

In the optimal model 1a (C = 5), overall 76 of the 157 observations are support vectors.
Thereof, 36 observations are misclassified. In the optimal model 1b (C = 5, again), 57
observations are support vectors, and 28 of them are not correctly classified. Note that the
classification errors mainly lie near to phase switches, whereas the other support vectors more
often appear inside of phases.

The majority of the crossvalidated errors again appear in the first halve of the observed time
period. Moreover, those observations wrongly allocated by models 2 and 3 are again falsely
classified by model 1. The errors particularly appear in the time periods 8-15, 28-33, and 68-
75.

The number of support vectors, number of crossvalidated errors, and the corresponding
crossvalidated error rate of the optimal models 1a (C = 5), 2a (C = 5), 3a (C = 10), 1b (C = 5),
2b (C = 100), and 3b (C = 5) are contrasted in Table 4. Again, the best entries are marked for
both ‘static’ and ‘dynamic’ model versions. Note the superiority of models 2.
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Figure 6: Support vectors and crossvalidated errors (GNP, model 1a)
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Figure 7: Support vectors and crossvalidated errors (GNP, model 1b)
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Table 4: Number of support vectors and crossvalidated errors, as well as error rates
for optimal models
model 1a 2a 3a 1b 2b 3b

no. of support vectors 76 53 52 57 22 33
no. of errors 36 25 27 28 10 14
error rate 0.229 0.159 0.172 0.178 0.064 0.089
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8. Computational Aspects

The computation of the support vectors takes very much computer time in the case of more
than M > 2 classes, especially since an optimization problem in M.N dimensions has to be
solved, N = number of observations.

We utilized an active sets algorithm (cp. Fletcher, 1981) in SAS/IML to solve the quadratic
optimization problem. The program needs around 2.5 minutes on a 300 MHz PC for one
optimization. Cross validation with 157 observations thus needed around 7 hours which is by
any means unacceptable. One should check alternatives, at least concerning the programming
language and the resampling algorithm.

9. Conclusion

In this paper the multi-class classification Support Vector Method of Weston and Watkins
(1998) is correctly formulated as a quadratic optimization problem. The standard binary
classification Support Vector Method and this multi-class classification method were applied
to the problem of predicting business phases of the German economy.

The results are two-fold. On the one hand, after the analysis of the results of this study it
appears questionable that the Support Vector Method delivers a meaningful (dimension
independent) data reduction by means of identifying the support vectors only. Indeed, the
support vectors did not appear to be sufficient to characterize the switches between the
business phases. Note however that there might be arguments not to expect that all phase
switches are ‘covered’ by support vectors since in such a case the reasons for a phase switch
would never be similar!

On the other hand, the classification power of the Support Vector Method was somewhat
better than with Linear Discriminant Analysis. Note however that the Support Vector Method
needs very much more computation time than Linear Discriminant Analysis.

Overall, the properties of the Support Vector Method have to be analyzed in greater detail
in order to decide in which situations the bigger effort to construct a classification rule can be
justified. Especially the notion of a support vector might have to revised. For this the
interpretation of support vectors should be analyzed more thoroughly, e.g. by means of
simulation studies.
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