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Sequence-structure alignment using a
statistical analysis of core models and

dynamic programming

Marcus Brunnert1, Paul Fischer2 and Wolfgang Urfer1
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Abstract

The expanding availability of protein data enforces the application
of empirical methods necessary to recognize protein structures. In this
paper a sequence-structure alignment method is described and applied
to various Ubiquitin-like folded Ras-binding domains. On the basis of
two probability functions that evaluate similarities between the occur-
rence of amino-acids in the primary and secondary protein structure,
different versions of simple scoring functions are proposed. The appli-
cation of the program ’PLACER’ that uses a dynamic programming
approach enables the search for an optimal sequence-structure align-
ment and the prediction of the secondary structure.

Keywords: Sequence-structure alignment, core model, dynamic pro-
gramming, secondary structure prediction.

1 Introduction

Besides experimental methods like the x-ray crystallography, the ap-
plication of empirical methods are discussed very frequently in order to
recognize protein structures (Lathrop et al., 1996, Thiele et al., 1999,
Bienkowska et al., 2000). In order to achieve statistical inferences from
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multivariate protein data containing sequence and structure informa-
tion, we give an empirical method for the sequence-structure align-
ment. Alignment methods are commonly used in the field of bioin-
formatics (Durbin et al., 1998) and can imply new information about
protein structures using the analysis of protein data from experiments
or protein data banks like the PDB of the Research Collaboratory for
Structural Bioinformatics (RCSB-PDB). The idea of deducing the pro-
tein structure from an already known protein structure template uses
the nature of structural similarities that are likely to persist during
protein evolution (Madej et al., 1995). Cores, consisting of structural
elements that are conserved during protein evolution are used for the
deduction of protein structures, even if there is no relevant homol-
ogy on the protein sequence level. Structural models like these cores
are used for the sequence-structure alignment of a protein sequence
(Lathrop et al., 1996).
In this technical report, we give a statistical method of a sequence-
structure alignment by using the data of a specified protein struc-
ture template called a ’core model’. The constructing scheme of our
sequence-structure alignment method is described in Section 2. In Sec-
tion 3, we develop empirical scoring functions in order to compare dif-
ferent sequence-structure alignments. Furthermore, we present in Sec-
tion 4 an algorithm for solving this sequence-structure alignment prob-
lem. In Section 5, we present an application to data of Ubiquitin-like
folded proteins (SCOP–databank–http://scop.mrc–lmb.cam.ac.uk/
scop/Murzin et al., 1996). We apply the developed program ’PLACER’
that uses a dynamic programming approach to search for an optimal
sequence-structure alignment. Finally, we discuss the proposed sta-
tistical method for a secondary structure prediction using different
sequence-structure alignments.

2 Constructing alignments

Modelling the protein structure uses the principal concept of the pri-
mary structure (sequence of amino–acids), the secondary structure
(α-helix or β-sheet structures) and the tertiary structure (folded sec-
ondary structures). Important spatial structures that are highly con-
served during evolution can be described by protein cores. These cores
are cut off the whole protein structure and are used as structural tem-
plates in the sequence–structure alignment.
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Similarities between amino–acid sequences and known core models
representing the core structure can imply information about the struc-
ture of a new amino–acid sequence with hardly known structural infor-
mation. The concept of similarity in sequence–structure alignment is
not unique. Empirical approaches to scoring functions that quantify
similarities according to the sequence–structure alignment evaluate
complex multivariate sequence and structure data. Besides sequence
identities, the scoring of different structural interactions make use of
appropriate statistical methods and effective algorithms. A proposal
to the concept of similarity in the context of sequence–structure align-
ment will be described later by using two different probability func-
tions for scoring alignments.
Similarly to the core definitions in White et al. (1994), we con-
struct sequence–structure-alignments from structure templates that
are called core models. Using the information about the placement of
α-helix or β-sheet structures, we can assign a core segment to a spe-
cific secondary structure with its amino–acid sequence. Every specific
amino–acid in a core segment is called a core element. A vector ak of
nk core elements referring to a core segment k, k=1,. . .,K is denoted
by

ak = [ak(1), . . . , ak(nk)]
′
, (1)

where ak(i) ∈ A is the observed amino-acid using an amino-alphabet A
like the one–letter-code of 20 amino–acids (cf. Kanehisa, 2000). The
core elements of the K core segments according to the core model
are denoted by a1(1),. . ., a1(n1),. . ., aK(1),. . ., aK(nK). The lengths
of the core segments are denoted by l1,. . ., lK . For simplicity, the
lengths can be set to the number of core elements nk due to the kth
segment. The set of vectors a1,. . .,aK describes the whole core model.
We can denote a vector blk = [blk(t), . . . , blk(t + lk − 1)]

′
, blk(j) ∈

b(1), . . . , b(n), for the alignment of a primary sequence b=b(1),. . .,b(n),
b(i)∈ A, to segment k. In aligning a sequence of core elements a1(1),. . .,
a1(n1),. . .,aK(1),. . ., aK(nK) to a primary sequence b, we consider the
following conditions to an admissible starting position t of the aligned
sequence

1 ≤ tk ≤ n + 1 −
∑

k
′≥k

lk′ , k = 1, . . . , K (2)

tk−1 + lk−1 − 1 < tk, k = 2, . . . , K. (3)

These conditions guarantee the alignment of all core segments and
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the sequential ordering of the segments. According to all admissi-
ble vectors blk , fulfilling (2) and (3), we can denote a set Tk :=
{[blk(t), . . . , blk(t+lk−1)]

′ |t is an admissible starting position} accord-
ing to segment k = 1, . . . , K.

3 Probability functions for sequence–

structure alignments

With respect to the structure templates, some amino–acids cannot
be assigned to a structure, these amino–acids are called here gaps.
Therefore we describe scoring functions without considering gaps and
with considering gaps.

Let us denote the probabilities of an occurrence of a specific amino–
acid at the sequence position j by P (blk(j) = w), w ∈ A and the
probability of an occurrence of a specific amino–acid pair in sequen-
tial adjacent positions (j, j + 1) by P (blk(j) = v, blk(j + 1) = w),
v, w ∈ A. Besides the one-letter code of 20 amino–acids, we use a bi-
nary code, that takes into account the hydrophobicity of amino-acids.
Then, we have to consider A = {hydrophobic, hydrophilic}. By ne-
glecting stochastic dependencies between aligned amino–acids we can
propose the following probability function for the alignment of the kth
segment,

pk : Tk → [0, 1],

pk(blk) =
t+lk−1∏

j=t

P (blk(j))
t+lk−2∏

j=t

P (blk(j), blk(j + 1)) (4)

Taking into account the various segment lengths, we divide pk(blk) by
the length lk. This ratio serves as a score for each aligned sequence.

Alternatively, we propose a second probability function for the
sequence–structure alignment. Now, we consider stochastic depen-
dencies within the sequence of amino-acids by applying the Markov
property as follows

p̃k : Tk → [0, 1],

p̃k(blk) = P (blk(t))
t+lk−2∏

j=t

P (bj+1|bj) (5)
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In order to recognize the various segment lengths, the ratio
p̃k(blk

)

p̃k(ak)

serves as a score for each aligned sequence, too. Analogously to (5),
p̃k(ak) is the corresponding probability of the amino–acid sequence of
the kth core segment.
To compute the scores, we need estimates for the probabilities. We
estimate the probabilities by using the frequencies of the occurrences
of the amino-acids and amino-acid pairs. In order to avoid zero values
we add so called pseudo counts (Durbin et al., 1998). Let c ≥ 0 be the
pseudo count (we use c = 1 in the application). Then our estimators
are:

P̂k(v) :=

⎧⎨
⎩

c+1
|A|c+1 if ak(t) = v

c
|A|c+1 otherwise

(6)

P̂k(w|v) :=
c + |{t | t ≥ 2 ∧ ak(t) = w ∧ ak(t − 1) = v}|

|{t | t ≥ 2 ∧ ak(t) = w}| + |A| c (7)

Finally, we add penalty terms to our scoring functions. In this
context, we penalize false gap lengths between aligned core segments.
The model gap length can be determined by the observed core gaps
from data or it can be determined by estimating the gap length. For
example, the arithmetic mean of all calculated gap lengths from the
alignments can be an estimate. Given the model gap length and the
resulting gap length of the alignment, we multiply the corresponding
difference by a penalty parameter.

4 A Dynamic Programming Algorithm

In this section we present an abstract formulation of the problem and
an algorithm solving it.

Let n be the length of the primary sequence and �0, . . . , �k−1 be the
lengths of the core sequences. We assume that indexing starts with 0.
Let a score matrix Sc(i, j), i = 0, . . . n − 1, j = 0, . . . , k − 1 with real
entries be given. Proposals to the calculation of Sc are given in the
previous Section. Then we want to solve the following problem: find
integers i0, . . . , ik−1 such that:

0 ≤ i0 < i1 < · · · < ik−1 ≤ n − �k−1 (8)
ij − ij−1 ≥ �j−1, j = 1, . . . , k − 1 (9)
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k−1∑
j=0

Sc(ij , j) is maximal. (10)

The conditions guarantee that order of the core sequences is main-
tained, that they do not overlap and are optimally placed.

The dynamic programming algorithms first computes the optimal
value Scopt(l, r, j) of Sc(i, j) for every interval [l, r], 0 ≤ l ≤ i ≤
r − �j + 1 as well as the (left most) position where this assumed.
Informally, Scopt(l, r, j) is the optimal start position of an alignment
of core sequence aj with b such that it totally inside the interval [l, r].

Scopt(l, r, j) := max {Sc(i, j) | l ≤ i ≤ r − �j + 1}
posopt(l, r, j) := argmax {Sc(i, j) | l ≤ i ≤ r − �j + 1}

Then the optimal solutions are iteratively computed for the first two,
three etc. core sequences. Let Sol(i, j) denote the (summed) score
for the optimal choice of i0, · · · , ij which respects conditions (8) – (10)
and ij + �j − 1 ≤ i, i.e. the last core sequence aj does not exceed i.
Obviously we have for j = 0:

Sol(i, 0) = Scopt(0, i, 0) (11)

For convenience let Lj−1 :=
∑j−1

t=0 �t and Rj(i) = i− �j +1 be the first
resp. last possible choice for ij . Then the computation rule for j > 0
is

Sol(i, j) = max
Lj−1≤t≤Rj(i)

{Sol(t, j − 1) + Scopt(t, i, j)} (12)

That is, for every choice t of ij which respects conditions (8) – (10) we
add the optimum solution for the first j−1 sequences before t and the
optimal placement of the j-th segment after t but not exceeding i and
take the maximum. Then an overall maximum is Sol(0, n−1). In order
to trace the positions of an optimal choice of the ij a solution should
also maintain a list P (i, j) of the optimal positions for i1, i2, . . . , ij ,
where ij ≤ i, computed so far. In the computation step (12) the list
P (t, j − 1) is extended by the optimal choice if ij to become P (i, j).

Let us look at the running time of the algorithm. The computa-
tion of the initial values Scopt(l, r, j) can be performed in time O

(
kn2

)
because for fixed j and r the value Scopt(l, r, j) can be computed in
constant time from Scopt(l, r − 1, j). The update formula has to be
computed for O (kn) many pairs (i, j) every such update means com-
putation the maximum over at most n values. Hence we have

Theorem 4.1 The placement problem can be solved in time O
(
kn2

)
.
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5 Application

This sequence-structure alignment method has been applied to data of
protein domains. From the primary structure and the secondary struc-
ture information of the RCSB-PDB concerning the protein Ubiquitin
(RCSB-PDB ID: 1ubi) as well as the Ras-binding domains of RalGEF
(1lxd), Raf (1guaB), Rgl (1ef5), Rlf (1rfl), Pi(3)-kinase (1he8B) the
core models were constructed. In the SCOP-databank, Ral, Raf , Rgl,
Rlf and Pi(3)-kinase are classified into the superfamily of Ubiquitin-
like folded proteins. Optimal sequence-structure alignment are com-
puted with different versions of the program PLACER with respect
to different scoring functions. The different versions of PLACER were
programmed in JAVA. We use the binary code for A in all PLACER
versions. First of all, we implemented the scoring function according
to the probability function pk from (4) in the PLACER versions 2,
3a and 3b. In PLACER version 2 we consider no gaps. Linear gap
penalties are implemented in PLACER version 3a and 3b. In Placer
version 3a the gap penalty parameter is estimated by using the data
of a single protein. Contrary to this, in PLACER version 3b, the gap
penalty parameter is estimated by the data of all proteins. Finally, the
one-letter-code of the 20 amino–acids is implemented in PLACER ver-
sion M alternatively to the binary code using the probability function
in (5).

Due to the fact that the score matrices are based on simple prob-
ability estimates, some sequence-structure alignments have identical
scores and therefore a set of possible optimal alignments have to be
considered. In this application, we present the results of the program
PLACER that choose the optimal alignment of a segment placed left-
most on the primary sequence. In the Appendix, examples of the
calculated secondary structure according to the optimal sequence-
structure alignments are included. The helices are denoted by ’H’,
the beta sheets are denoted by ’S’ and the gaps are denoted by ’-’.

5.1 Comparison of sequence-structure align-
ment methods

We compare the results of the PLACER versions by analysing the
sequence-structure alignments calculated from sequence data of the
five domains and Ubiquitin and their corresponding observed cores.
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Figure 1: Frequencies of correctly aligned core elements referring to the
Pi(3)-kinase sequence.

Figure 2: Frequencies of correctly aligned core elements referring to the
Raf sequence.
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Figure 3: Frequencies of correctly aligned core elements referring to the
Ral sequence.

Figure 4: Frequencies of correctly aligned core elements referring to the
Rgl sequence.
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Figure 5: Frequencies of correctly aligned core elements referring to the
Rlf sequence.

Figure 6: Frequencies of correctly aligned core elements referring to the
Ubiquitin sequence.
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In Figure (1)-(6) the frequencies of correct helix-, β-sheet- and gap-
elements are shown. Additionally, in these Figures the reference fre-
quencies of helix-, β-sheet- and gap-elements with respect to the RCSB-
PDB are shown. Only the PLACER version M20 yield an align-
ment with the correct assignments of secondary structure elements
(core elements). Analogously, we calculated the optimal sequence-
structure alignments from the results of the secondary structure pre-
diction method DSSP (Kabsch and Sander, 1983). Again, PLACER
version M20 yielded the best results (Figures not shown).

5.2 Empirical prediction of the secondary struc-
ture

In this Section, the empirical prediction of the secondary structure
using the results of optimal sequence-structure alignments will be pre-
sented. The sequence of the protein Byr2 (1i35) is aligned with differ-
ent versions of PLACER to one of the five core model from Section 5.1.
With respect to the differences in the sequence lengths of Pi(3)-kinase
and Byr2 we divided the core of the Pi(3)-kinase in two halves of 5 and
6 segments. Therefore the relevant case that the core is not known
and has to be predicted from related cores is examined now. With
the set of optimal sequence-structure alignments the empirical distri-
bution at each residue position for the three structure types (helix,
β-sheet and gap) can be calculated. Aiming at the empirical predic-
tion of the secondary structure, the maximal probable core element
(or the structure type) can be selected. In comparison to the known
secondary structures of the RCSB-PDB data bank a validation of this
prediction method can be done.

In Figure (7) it is shown that the sequence–structure alignments
referring to the core of Pi(3)-kinase yield the best prediction of the
secondary structure of Byr2. More than 50% of the core elements are
correctly aligned. The worst result yield the prediction on the basis of
the Ubiquitin core model. Comparing the scoring methods according
to the different PLACER versions, Figure (8) indicates the pooling of
all Placer results as the best prediction method. Moreover, the usage
of the sequence– structure alignments results according to the binary
code versions 2 and M2 yields less correct aligned core elements than
the usage of the one–letter–code versions. Finally, the comparison of
the versions based on the probability functions leads to the conclusion
that the consideration of stochastic dependencies (denoted by p2 in
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Figure 7: Frequencies of correctly aligned core elements referring to the
Byr2 sequence and methods.

Figure 8: Frequencies of correctly aligned core elements referring to the
Byr2 sequence and core models.
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Figure (8)) is more appropriate for the prediction.

6 Discussion and outlook

The computations of the score matrices described above require the
multiplication of many potentially small real numbers. This leads
to numerical problems on computers working with a fixed precision.
Adding the logarithms of the factors often helps to achieve greater
numerical stability. This can, however, lead to different results of the
dynamic programming algorithm because there are a, b, c, d > 0 such
that a + b < c + d and log(a) + log(b) > log(c) + log(d).

Another way to overcome the problem is to use implementations
of real numbers which allow arbitrary precision. These are present in
most modern programming languages (e.g., the class BigDecimal in
Java) or are available as libraries.

Arbitrary precision arithmetic can become quite slow. Thus one
might want to represent the the model parameters as rationals, i.e.,
two integers. This is possible because they are derived from empirical
frequencies. When computing the score matrix one first tries to find
cancellations before multiplying. Nevertheless one might be forced
to use integer arithmetic with arbitrary precision which is also sup-
ported by many modern programming languages but slows down the
computations.

In this paper, four sequence-structure alignment methods were pro-
posed and applied by using a dynamic programming approach. In the
application to a small protein data set of Ubiquitin-like folds proteins
we were able to choose the best alignment method among the pro-
posed. Furthermore, this application showed that the consideration
of gap penalties improves the sequence-structure alignment results.
Nevertheless, the usage of the one-letter-code of the 20 amino-acids
without gap consideration yielded the best alignment method. But
the validation of the empirical prediction method using the optimal
sequence-structure alignments of the PLACER version M showed that
only almost the half of the Byr2 secondary structure can be correctly
predicted. Therefore, this prediction methods failed in the commonly
used case of unknown core structure but known related core struc-
tures. The consideration of multivariate sequence data that contain
the information of more than one amino-acid alphabet may be an
improvement of the sequence-structure alignment and the empirical
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prediction method.
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Appendix

Figure 9: Optimal sequence-structure alignments of the Pi(3)-kinase se-
quence.
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Figure 10: Optimal sequence-structure alignments of the Raf sequence.

Figure 11: Optimal sequence-structure alignments of the Ral sequence.

16



Figure 12: Optimal sequence-structure alignments of the Rgl-kinase se-
quence.

Figure 13: Optimal sequence-structure alignments of the Rlf sequence.
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Figure 14: Optimal sequence-structure alignments of the Ubiquitin se-
quence.
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