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Abstract

In this paper we describe the special role of moment theory for the construction of

optimal designs in statistical regression models. A careful introduction in the problem of

designing experiments for certain polynomial regression models is given, and it is demon-

strated that the maximization of certain Hankel determinants over the moment space

plays a particular role for the construction of optimal designs in these models. We intro-

duce the theoy of canonical moments, which povide a powerful tool for the maximization

of functionals of Hankel determinants and illustrate its application in several statistical

problems. On the other hand these results can be used for the derivation of several new

results in approximation theory. As examples we give simple proofs for the asymptotic

distribution of the zeros of classical orthogonal polynomials, generalize the trigonometric

identity sin

2

�+ cos

2

� = 1 to abitrary systems of polynomials orthogonal with respect to

a measure with compact support and give a solution of a nonlinear extremal problem for

polynomials.

AMS 1991 Subject Classi�cations: 33C45; 62K05

Key words and phrases: orthogonal polynomials, Hankel matrix, canonical moments, trigono-

metric identity, D-optimal design, model robust designs, weak asymptotics, extremal problems
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1 Optimal designs for polynomial regression

1.1 Introduction to regression models

In the following section we give a careful explanation of the application of moment theory in

the construction of optimum designs for polynomial regression models. For a more general

description of optimum experimental designs we refer to the monographs of Fedorov (1972),

Silvey (1980) and Pukelsheim (1993). For the sake of brevity we will only mention the results

which are relevant for the discussion presented in this paper.

An important model in statistics is the univariate polynomial regression model of degree d 2 N

0

Y =

d

X

j=0

�

j

x

j

+ " = f(x)

T

� + " ; (1.1)

where � = (�

0

; �

1

; : : : ; �

d

)

T

is a vector of unknown parameters, f(x) = (1; x; : : : ; x

d

)

T

is the

vector of monomials up to the order d and " is a random error with mean E(") = 0 and variance

Var(") = �

2

> 0. The interpretation of the model (1.1) is that Y is the result of a measurement

at a point x 2 X which is the sum of the expectation, the deterministic mean e�ect f(x)

T

�,

and an additive error term ". Y is called the response at the point x 2 X . In general the

relationship between x and Y would have f(x)

T

� replaced by some arbitrary unknown function

g(x). For convenience this function g(x) is assumed to be a polynomial of degree d.

The set X of all possible points where observations are assumed to be located is the interval

[�1; 1] (if not stated otherwise) and is called the design space. The variance of the random

term " in (1.1) (which subsumes quite di�erent sources of error) is assumed to be independent

of the speci�c point x, where the response Y is observed. This assumption is referred to in

the literature as the homoscedastic assumption. The goal of the experiment is to estimate the

unknown parameters �

0

; : : : ; �

d

in the polynomial regression model, where n observations

Y

j

= f(x

j

)

T

� + "

j

(j = 1; : : : ; n) (1.2)

at experimental conditions x

1

; : : : ; x

n

2 X are available. The x

i

values are not necessarily

distinct, i.e. repeated observations at some x

i

are allowed, however all observations are assumed

to be uncorrelated, i.e.

E("

i

"

j

) =

(

�

2

if i = j

0 else.

(1.3)

If the di�erent responses and errors are collected in vectors Y = (Y

1

; : : : ; Y

n

)

T

and " =

("

1

; : : : ; "

n

)

T

, then (1.2) and (1.3) can be conveniently written in matrix form

Y = X� + " ;

where

X =

2

6

6

6

6

4

1 x

1

� � � x

d

1

1 x

2

� � � x

d

2

.

.

.

.

.

.

.

.

.

1 x

n

� � � x

d

n

3

7

7

7

7

5

2 R

n�(d+1)

3



denotes the n � (d + 1) design matrix . The expectation and the dispersion (matrix) of the

random vector Y are given by (note (1.3))

E(Y ) = X� D(Y ) = �

2

I

n

(1.4)

where I

n

denotes the n� n identity matrix.

For the estimation of the unknown parameters � from the observed data Y = (Y

1

; : : : ; Y

n

)

T

we

restrict our considerations to linear unbiased estimates for �, which are estimators of the form

^

�

L

= LY (1.5)

where L 2 R

(d+1)�n

is a given (d+ 1)� n matrix such that

E[

^

�] = LX� = � (1.6)

is satis�ed for all � 2 R

d+1

: Obviously the condtion (1.6) is equivalent to the condition that the

matrix L is a left inverse of the matrix X, that is LX = I

d+1

: Note that the dispersion matrix

of a linear estimator (1.5) is nonnegative de�nite, i.e.

D(

^

�

L

) = D(LY ) = �

2

LL

T

� 0;

and di�erent linear unbiased estimators (speci�ed by di�erent matrices) can be compared by a

partial ordering. To be precise we de�ne for symmetric matrices A, B 2 R

(d+1)�(d+1)

A � B if and only if A� B is nonngegative de�nite

A > B if and only if A� B is positive de�nite

(1.7)

The partial ordering de�ned on the set of symmetric matrices is called the Loewner ordering. It

is a well known fact in statistics that this dispersion matrix can be minimized (in the Loewner

ordering) with respect to all linear unbiased estimators

^

�

L

for �.

Theorem 1.1. For the linear model with moment assumptions (1.4) wtih rank (X) = d + 1,

the estimator

^

�

GM

= (X

T

X)

�1

X

T

Y (1.8)

is the best linear unbiased estimator (BLUE) with respect to the Loewner ordering; that is,

�

2

(X

T

X)

�1

= D(

^

�

GM

) � D(

^

�

L

) (1.9)

for all linear unbiased estimators

^

�

L

for the parameter �.

Proof. From (1.6) we obtain LX = I for any L with E[LY ] = �. Then, since,

((X

T

X)

�1

X

T

� L)((X

T

X)

�1

X

T

� L)

T

� 0

it follows that

(X

T

X)

�1

� LX(X

T

X)

�1

� (X

T

X)

�1

X

T

L

T

+ LL

T

� 0:
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Since LX = I we have

D(

^

�

L

) = �

2

LL

T

� �

2

(X

T

X)

�1

:

2

Theorem 1.1. is usually called the Gauss Markov Theorem and the estimator

^

�

GM

is called

the Gauss Markov estimator for the full parameter vector �. We point out here that optimal

linear estimators for linear combinations of the components of � are simply obtained by taking

the corresponding linear combinations of the components of the estimator

^

�

GM

. Note also that

^

�

GM

is the well known least squares estimator, which is obtained by minimzing the function

n

X

i=1

h

Y

i

�

d

X

j=0

�

j

x

j

i

i

2

with respect to the choice of the parameters �

0

; : : : ; �

d

.

1.2 Optimal designs for regression models

Note that Theorem 1.1 gives a lower bound for the smallest possible variance of an estimator

of the form LY , which is given by

�

2

(X

T

X)

�1

;

where the matrix on the right hand side is de�ned by

X

T

X = n

2

6

6

6

6

4

1 c

1

c

2

� � � c

d

c

1

c

2

c

3

� � � c

d+1

.

.

.

.

.

.

.

.

.

.

.

.

c

d

c

d+1

c

d+2

� � � c

2d

3

7

7

7

7

5

: (1.10)

and

c

j

=

1

n

n

X

i=1

x

j

i

; j = 0; : : : ; 2d:

Moreover the matrix X

T

X depends on the design points x

1

; : : : ; x

n

chosen by the experimenter

and a reasonable question is, if the matrix (X

T

X)

�1

can be further minimized (with respect

to the Loewner ordering) by an appropriate choice of the experimental conditions x

1

: : : ; x

n

.

Equivalently one could try to maximize X

T

X as a function of the design points x

1

: : : ; x

n

.

However it can be proved [see Pukelsheim (1993), Chapter 4] that such a minimization or

maximization is not possible except in the case d = 0 of a constant polynomial, which is of

course not interesting from a practical point of view. The reason for these diÆculties is that

the Loewner ordering on the set of symmetric matrices is not complete. Therefore it is common

practice to maximize real valued functionals of the matrix X

T

X, where the functionals have

a particular statistical meaning. These functions are usually called optimality criteria in the

literature and we recall the most commonly used criteria here for the sake of completeness.
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For a statistical interpretation of these criteria we refer to the books of Fedorov (1972), Silvey

(1980) and Pukelsheim (1993). The D-optimality criterion determines the points x

1

; : : : ; x

n

such that the determinant

jX

T

Xj �! max (1.11)

becomes maximal. Similary, the A- and E- optimality look for arrangements of the design

points such that

h

tr(X

T

X)

�1

i

�1

�! max

�

min

(X

T

X) �! max

are maximal, respectively, where �

min

(A) denotes the minimal eigenvalue of a symmetric matrix

A. For later purposes we �nally mention the D

1

-optimality criterion, which determines the

designs points x

1

; : : : ; x

n

such that

h

e

d

(X

T

X)

�1

e

d

i

�1

�! max (1.12)

is maximal, where e

d

= (0; : : : ; 0; 1) 2 R

d+1

denote the (d+1)th unit vector in R

d+1

. We begin

with a careful discussion of the D-optimality criterion and the particular example of the linear

and quadratic regression model.

Example 1.2. Consider the case d = 1 in (1.1), for which the polynomial regression model

reduces to the well known model of linear regression. The matrix X is given by

X =

2

6

6

6

6

4

1 x

1

1 x

2

.

.

.

.

.

.

1 x

n

3

7

7

7

7

5

2 R

n�2

;

which gives

X

T

X =

"

n

P

n

i=1

x

i

P

n

i=1

x

i

P

n

i=1

x

2

i

#

:

The Gauss Markov estimator for the parameters �

0

and �

1

is obtained from Theorem 1.1.

^

�

0

=

�

Y

n

�

^

�

1

�x

n

^

�

1

=

P

n

i=1

(x

i

� �x

n

)(Y

i

�

�

Y

n

)

P

n

i=1

(x

i

� �x

n

)

2

where

�

Y

n

=

1

n

P

n

i=1

Y

i

and �x

n

=

1

n

P

n

i=1

x

i

denote the mean of the observations and design

points, respectively. The covariance matrix is given by �

2

(X

T

X)

�1

and the D-criterion advises

the experimenter to choose observations at the points x

1

; : : : ; x

n

such that the determinant

jX

T

Xj = n

n

X

i=1

(x

i

� �x

n

)

2

6



is maximal. The D-optimal designs for the linear regression model have been determined by

Hofmann and Jung (1975). If the number of observations is an even number, say n = 2m, then

it is easy to see that the best choice for maximizing this determinant is to take half of the total

observations at each of the extreme points of the designs space X = [�1; 1], i.e.

x

1

= : : : = x

m

= �1

x

m+1

= : : : = x

2m

= 1:

If an odd number of observations, say n = 2m + 1 is available, the situation is slightly more

complicated, but it can be shown that the best allocation is to take m observations at one and

the other m + 1 observations at the other extreme point of the design space, i.e.

x

1

= : : : = x

m+1

= �1

x

m+2

= : : : = x

2m+1

= 1:

Thus for the D-optimality criterion and the linear regression model the determination of an

optimal design (in other words an allocation of the points x

1

; : : : ; x

n

such that the determinant

of the matrix X

T

X becomes maximal) is fairly simple. Note that the optimal designs are

unique subject to a reection at the origin.

We now consider the quadratic polynomial regression model, for which the situation is more

complicated. The matrix X is given by

X =

2

6

4

1 x

1

x

2

1

.

.

.

.

.

.

.

.

.

1 x

n

x

2

n

3

7

5

2 R

n�3

;

which yields

X

T

X =

2

6

4

n

P

n

i=1

x

i

P

n

i=1

x

2

i

P

n

i=1

x

i

P

n

i=1

x

2

i

P

n

i=1

x

3

i

P

n

i=1

x

2

i

P

n

i=1

x

3

i

P

n

i=1

x

4

i

3

7

5

:

An application of the Cauchy Binet formula shows that the determinant of this matrix is given

by

jX

T

Xj =

X

1�i<j<k�n

(x

k

� x

j

)

2

(x

k

� x

i

)

2

(x

j

� x

i

)

2

;

which has to be maximized with respect to the choice of the design points x

1

; : : : ; x

n

2 [�1; 1].

We will not give the explicit details of this maximization, but refer to the work of Ga�ke and

Kra�t (1982). For the solution of the optimization problem three cases have to be considered.

In all cases the optimum allocation is to take only observations at the points �1, 0 and 0 and

to allocate the observations at these points as equal as possible. More precisely, if n = 3m, we

use

x

1

= : : : = x

m

= �1

x

m+1

= : : : = x

2m

= 0

x

2m+1

= : : : = x

3m

= 1

7



for n = 3m+ 1 and n = 3m+ 2 the optimal allocations are given by

x

1

= : : : = x

m

= �1

x

m+1

= : : : = x

2m+1

= 0

x

2m+2

= : : : = x

3m+1

= 1

and

x

1

= : : : = x

m+1

= �1

x

m+2

= : : : = x

2m+1

= 0

x

2m+2

= : : : = x

3m+2

= 1

respectively. We �nally mention that the optimal designs are unique subject to a reection at

the origin.

We are now ready to formalize the illustrated optimization problems. To this end assume

that the distinct points among x

1

; : : : ; x

n

are the points x

1

; : : : ; x

l

(l � n) and let n

i

denote

the number of times the particular point x

i

occurs among x

1

; : : : ; x

n

(i = 1; : : : ; l). By this

procedure one obtains a probability measure �

(n)

on the design space X = [�1; 1] with �nite

support fx

1

; : : : ; x

l

g and mass n

i

=n at the point x

i

(i = 1; : : : ; l). We call any probability

measure with �nite support and masses which are multiples of 1=n an exact design for sample

size n and summarize the information of such a measure in the matrix

�

(n)

=

 

x

1

� � � x

l

n

1

n

� � �

n

l

n

!

:

The �rst row of this matrix gives the points in the design space X where observations have to

be taken and the second row tells the experimenter how many observations have to be taken

at these points.

Example 1.3. Consider the quadratic regression model in Example 1.2 and assume that we

can take n = 17 observations. The design

�

(17)

=

 

�1 0 1

6

17

5

17

6

17

!

is the (exact) D-optimal design. On the other hand the design

�

(17)

=

 

�1 0 1

5

17

7

17

5

17

!

is also exact for sample size n = 17, but it is not D-optimal.

8



Example 1.4. Consider the D

1

-optimality criterion de�ned in (1.12) for the quadratic regres-

sion model. Using Cramers rule it is easy to see that the function in (1.12), which has to be

maximized with respect to the choice of the points x

1

; : : : ; x

n

2 [�1; 1] is given by

h

e

T

2

(X

T

X)

�1

e

2

i

�1

=

P

1�i<j<k�n

(x

k

� x

j

)

2

(x

k

� x

i

)

2

(x

j

� x

i

)

2

n

P

n

i=1

(x

i

� �x

n

)

2

The maximization of this expression is somewhat complicated and we only state the result

which is due to Kra�t and Schaefer (1995) in order to illustrate the diÆculty of this concept of

optimization. If n = 4p+ q, q 2 f0; 1; 3g and p � 1 (or p = 0 and q = 3) the D

1

-optimal design

�

�

(n)

is unique and given by

�

�

(4p)

=

 

�1 0 1

1

4

1

2

1

4

!

(n = 4p)

�

�

(4p+1)

=

0

@

�1 0 1

p

4p+1

2p+1

4p+1

p

4p+1

1

A

(n = 4p+ 1)

�

�

(4p+3)

=

0

@

�1 0 1

p+1

4p+3

2p+1

4p+3

p+1

4p+3

1

A

(n = 4p+ 3):

In the case n = 4p+2 the situation is substantially more complicated and there are two (exact)

optimal designs, namely

�

�

(4p+2)

=

 

�1 x

0

(p) 1

p

4p+2

2p+1

4p+2

p+1

4p+2

!

(n = 4p+ 2) (1.13)

and its reection at the point 0. Here x

0

(p) is the real root of the cubic polynomial

(2p+ 1)

2

x

3

� 3(2p+ 1)x

2

+ (20p

2

+ 20p+ 3)x� 2p� 1: (1.14)

With the notation of an exact design, the matrix X

T

X can be written as a Stieltjes integral

X

T

X =

n

X

j=1

f(x

j

)f

T

(x

j

) =

l

X

j=1

n

j

f(x

j

)f

T

(x

j

) = n

l

X

j=1

n

j

n

f(x

j

)f

T

(x

j

)

= n

Z

X

f(x)f

T

(x)d�

(n)

(x) = nM(�

(n)

); (1.15)

where f

T

(x) = (1; x; : : : ; x

d

) denotes the vector of monomials up to the order d and the last

equality de�nes the (d + 1) � (d + 1) matrix M(�

(n)

): Note that if c

i

=

R

X

x

i

d�

(n)

(x) denotes

the ith moment of the exact design �

(n)

, then the matrix

M(�

(n)

) = (c

i+j

)

d

i;j=0

9



is the Hankel matrix of the design �

(n)

. In general the maximization of a function of M(�

(n)

)

over the set of all exact designs is a highly nonlinear discrete optimization problem, which

can only be solved in rare circumstances similar to the examples presented above. For these

reasons the concept of optimization introduced so far has to be modi�ed appropriately. One

main diÆculty is that for a �xed sample size n the set of all exact designs for this sample size is

not convex. In the following we will slightly modify the de�nition of a design in order to make

the set of all designs convex.

De�nition 1.5. An approximate design is a probability measure on the design space X with

�nite support and an approximate design will usually be represented in the matrix form

� =

 

x

1

� � � x

l

w

1

� � � w

l

!

: (1.16)

The set of all approximate designs is denoted by � and the matrix

M(�) =

Z

X

f(x)f

T

(x)d�(x) =

l

X

j=1

w

j

f(x

j

)f

T

(x

j

) (1.17)

=

2

6

6

6

6

4

c

0

c

1

� � � c

d

c

1

c

2

� � � c

d+1

.

.

.

.

.

.

.

.

.

c

d

c

d+1

� � � c

2d

3

7

7

7

7

5

is called a moment matrix, information matrix or Hankel matrix, where c

i

=

R

X

x

i

d�(x) denotes

the ith moment of the design �.

Note that the support points of the design �; say x

1

; : : : ; x

l

; give the locations where observations

have to be taken and the masses w

1

; : : : ; w

l

give the proportions of the total observations

taken at the corresponding points. Obviously, an exact design for the sample size n is also

an approximate one but the converse is in general not true, because the weights in (1.16) are

not necessarily multiples of 1=n. Very often an approximate design is called a design for an

in�nite sample size, because it arises from the exact design of sample size n when n tends to

in�nity. However, for a �nite sample size n the numbers w

j

n are not necessarily integers and

an optimal approximate design has to be approximated by an exact design for sample size n

using appropriate rounding procedures.

Example 1.6. Consider the quadratic regression (d = 2) for the sample size n = 17. By the

above discussion the approximate design arises from the exact design if the sample size tends to

10



in�nity. Therefore observing the discussion in Example 1.2 the D-optimal approximate design

for the quadratic regression model on the interval [�1; 1] is given by

�

�

=

 

�1 0 1

1=3 1=3 1=3

!

(note that this is not the common way of determining optimal approximate designs, because

in general the exact designs are not known and the concept of optimal approximate designs is

introduced in order to deal with the discrete optimization problem). From the approximate

optimal design we get by an appropriate rounding procedure an exact design for the required

sample size, e.g.

~

�

(17)

=

 

�1 0 1

5

17

7

17

5

17

!

By the same Example 1.2 the D-optimal exact design for sample size 17 is

�

(17)

=

 

�1 0 1

6

17

5

17

6

17

!

The performance of the design obtained from an approximate design and a rounding procedure

with respect to the D-optimal exact design (for the given sample size) is usally measured in

terms of the D-eÆciency

 

jM(

~

�

(17)

)j

jM(�

(17)

)j

!

1=3

� 99; 07% ;

where 1=3 in the exponent corresponds to the number of unknown parameters in the quadratic

regression model. We note that the design obtained from the approximate design using a

rounding procedure is very eÆcient in the sense that the determinant of its information matrix

is close to the determinant of the information matrix of the D-optimal exact design.

Example 1.7. Consider the quadratic regression Example 1.3 where we are interested in

�nding the D

1

-optimal design, which maximizes

(e

2

T

M

�1

(�)e

2

)

�1

=

jM(�)j

c

2

� c

2

1

(1.18)

where e

2

= (0; 0; 1)

T

;

M(�) =

2

6

4

c

0

c

1

c

2

c

1

c

2

c

3

c

2

c

3

c

4

3

7

5

and c

j

=

R

1

�1

x

j

d�(x) denotes the jth moment of the design �. We will show in Example 3.2

(in a more general context) that the optimum approximate D

1

-optimal design is given by the

measure

�

�

=

 

�1 0 1

1

4

1

2

1

4

!

:

11



This means that the experimenter should take 1/4 of the observations at the points �1 and 1

and 1/2 of the observations at the point 0. If the sample size n is not a multiple of 4, a rounding

procedure is applied to produce an exact design for the sample size n. In order to compare

(exact) designs obtained by this procedure with the optimal exact designs �

�

(n)

of Example 1.4

we apply the following (simple) apportionment method. If n

0

is the closest integer to n=4 we

use the exact design

~

�

(n)

=

 

�1 0 1

n

0

n

1�

2n

0

n

n

0

n

!

as approximation of the optimal design �

�

(if there are two integers with the same distance to

n=4 we de�ne n

0

as the smaller one). Whenever n 6= 4p + 2 the design

~

�

(n)

coincides with the

optimal exact design �

�

(n)

of Example 1.4.

It is reasonable to compare the performance of the two designs �

�

(4p+2)

and

~

�

(4p+2)

by the ratio

r(

~

�

(4p+2)

; �

�

(4p+2)

) =

(e

2

T

M

�1

(

~

�

(4p+2)

)e

2

)

�1

(e

2

T

M

�1

(�

�

(4p+2)

)e

2

)

�1

:

The following table contains these ratios and the solution x

0

(p) of the equation (1.14) for

di�erent values of p

p 1 2 3 4 5

n 6 10 14 18 22

x

0

(p) 0.0707 0.0408 0.0289 0.0224 0.0183

r(

~

�

(4p+2)

; �

�

(4p+2)

) 0.9327 0.9759 0.9877 0.9925 0.9950

We note that there appear only minor di�erences between the exact design

~

�

(n)

(constructed

by an approximation to the optimal approximate design) and the optimum exact design �

�

(n)

(constructed by integer optimization). Thus the approximate design approach provides an

eÆcient solution of the exact design problem.

A general result in statistical design theory [see Pukelsheim and Rieder (1993)] shows that under

assumptions of di�erentiability the loss of eÆciency by using an exact design obtained from an

optimal approximate design by an appropriate rounding procedure is of order O(

1

n

2

), where n

denotes the sample size. Thus for reasonable sample sizes the concept of approximate designs

seems to be justi�ed in the sense that the application of an appropriate rounding procedure to

the optimal approximate design yields eÆcient designs for the given sample size. We will use

this concept thoughout the remaining part of this paper.

1.3 D-optimal approximate designs for polynomial regression

Comparing the formulas (1.15) and (1.17) it seems to be appropriate to call an approximate

design D-optimal if it maximizes the determinant

jM(�)j =

�

�

�

�

Z

1

�1

x

i+j

d�(x)

�

d

i;j=0

�

�

�

! max

�

(1.19)

12



in the class of all designs �. This problem was solved simultaneously by Guest (1958) and Hoel

(1958). Note that the optimization problem is now convex, which makes the optimization a

little easier. However, the maximization problem in (1.19) is still an in�nite dimensional one,

because we do not have any information regarding the number of the support of a D-optimal

approximate design (we only know that it has �nite support). The following result gives

a characterization of the D-optimal approximate design and is due to Kiefer and Wolfowitz

(1960). As a by-product it provides an upper bound for the number of support points of the

D-optimal approximate design in a polynomial regression model. As a consequence we are able

to reduce the in�nite dimensional optimization problem to a �nite dimensional one.

Theorem 1.8. equivalence Theorem for D-optimal designs) An approximate design �

�

is D-

optimal for the polynomial regression model if and only if the inequality

d(x; �

�

) = f

T

(x)M

�1

(�

�

)f(x) � d+ 1 (1.20)

holds for all x 2 [�1; 1]. Moreover, there is equality in (1.20) at all support points of the

D-optimal design �

�

.

Proof. For a concave function ( in other words an optimality criterion) � : � ! �(�) 2 R

on the set � of all approximate designs de�ne the Fr�echet derivative of � at the design �

1

in

direction of �

2

by

F

�

(�

1

; �

2

) = lim

"!0

+

1

"

f�((1� ")�

1

+ "�

2

)� �(�

1

)g:

Note that the limit exists, because the concavity of � implies that the expression

H

�

1

;�

2

(") =

1

"

f�((1� ")�

1

+ "�

2

)� �(�

1

)g

is decreasing with " > 0 . Now, if �

�

maximizes the function �; then we obviously have

�((1� ")�

�

+ "�)� �(�

�

) � 0 8 � 2 �;

which implies

F

�

(�

�

; �) � 0 8 � 2 �: (1.21)

On the other hand, if (1.21) is satsi�ed, it follows observing that H

�

1

;�

2

(") is decreasing with "

that

�(�)� �(�

�

) � F

�

(�

�

; �) � 0 8 � 2 �;

which means that �

�

maximizes �. In other words �

�

maximizes the function � if and only

if (1.21) holds. If we choose � = Æ

x

as a Dirac measure at the point x 2 [�1; 1], then the

optimality of �

�

implies that

F

�

(�

�

; Æ

x

) � 0 8 x 2 [�1; 1] (1.22)
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On the other hand observe that the Fr�echet derivative is linear with respect to convex combi-

nations of the second argument [see e.g. Silvey (1980)], i.e.

F

�

�

�

�

;

k

X

i=1

�

i

Æ

x

i

�

=

k

X

i=1

�

i

F

�

(�

�

; Æ

x

i

); 8 �

1

; : : : ; �

k

> 0;

k

X

i=1

�

i

= 1;

then we obtain from (1.22) the relation (1.21). This shows that (1.21) and (1.22) are equivalent,

and consequently a designs �

�

maximizes the function � if and only if the inequality (1.22)

holds. All what remains is the calculation of Fr�echet derivative for the D-optimality criterion.

It actually turns out that the function � ! jM(�)j is not concave. However the function

�(�) = log jM(�)j is concave on the set of all approximate designs [see Fedorov (1972)] and

taking the logarithm does obviously not change the optimization problem. For this function

we obtain by a straightforward calculation for all x 2 [�1; 1]

F

�

(�

1

; Æ

x

) = tr(M(Æ

x

)M

�1

(�

1

))� (d+ 1)

= tr(f(x)f

T

(x)M

�1

(�

1

))� (d+ 1)

= f

T

(x)M

�1

(�

1

)f(x)� (d+ 1);

which completes the proof of the �rst part of Theorem 1.8. For the proof of the second assertion

regarding the support points of the D-optimal design, let �

�

=

P

k

i=1

�

i

Æ

x

i

denote the D-optimal

design. Then it is easy to see that

0 = F

�

(�

�

; �

�

) =

k

X

i=1

�

i

F

�

(�

�

; Æ

x

i

) � 0 ;

where the last inequality follows from the inequality (1.22). But this implies

F

�

(�

�

; Æ

x

i

) = 0 8 x

i

;

which is equivalent to the equation

f

T

(x

i

)M

�1

(�

�

)f(x

i

) = d+ 1

for all support points x

i

of the D-optimal design �

�

. 2

It is worthwhile to mention that the characterization of the optimal design given in the previous

theorem does neither depend on the particular regression model (here the polynomials) nor on

the speci�c optimality criterion (here the- D-optimality criterion). All what is required is

Fr�echet di�erentiablity of the (concave) function � and a few regularity assumptions on the

regression model. For more general characterizations avoiding di�erentiability assumptions for

the optimality criterion we refer to the monograph of Pukelsheim (1993). We will now illustrate

the application of Theorem 1.8 in the quadratic regression model.
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Example 1.9. Consider the quadratic regression model (d = 2) and the two designs

�

�

=

 

�1 0 1

1=3 1=3 1=3

!

; �

��

=

 

�1 0 1

1=4 1=2 1=4

!

: (1.23)

The corresponding moment matrices are given by

M(�

�

) =

0

B

@

1 0 2=3

0 2=3 0

2=3 0 2=3

1

C

A

; M(�

��

) =

0

B

@

1 0 1=2

0 1=2 0

1=2 0 1=2

1

C

A

;

and the functions d(�; �) are easily calculated as

d(x; �) =

3

2

(2� 3x

2

+ 3x

4

) ; d(x; �

��

) = 2� 2x

2

+ 4x

4

These functions are depicted in Figure 1. By Theorem 1.8 the design �

�

is in fact D-optimal and

the design �

��

is not D-optimal (we will show later that the design �

��

is in fact the D

1

-optimal

design, see Example 3.2 below).

-1 -0.5 0.5 1

2.5

3

3.5

4

Figure 1: The function d(x; �) de�ned in (1.20) in the quadratic regression model for the designs

�

�

and �

��

given in (1.23). The design is D-optimal if and only if the curve stays below the line

y � 3. Solid line: design �

�

; dashed line: design �

��

.

We now have all tools for determining the approximateD-optimal design for the general polyno-

mial regression model of degree d. Recall that for the general model the function d in Theorem

1.8 is given by

d(x; �) = (1; : : : ; x

d

)M

�1

(�)(1; : : : ; x

d

)

T

;

15



which is obviously a polynomial of degree 2d. By Theorem 1.8 a design �

�

is D-optimal for the

polynomial regression model of degree d on the interval [�1; 1] if and only if

� d(x; �

�

) � d+ 1 8 x 2 [�1; 1]

� d(x; �

�

) = d+ 1 8 x 2 supp(�

�

)

Moreover, the matrix M(�

�

) is positive de�nite and this implies that the leading coeÆcient of

the polynomial d(x; �

�

) is also positive. Now a careful counting of the zeros with corresponding

multiplicities shows that the D-optimal design has at most d + 1 support points and if its

support has d+1 points it must contain the extreme points of the design space, i.e. �1 and 1.

On the other hand we need at least d+1 support points in order to have a nonsingular matrix

M(�

�

), which implies

# supp(�

�

) = d+ 1

f�1; 1g � supp(�

�

):

Now let

�

�

=

 

x

0

: : : x

d

w

0

: : : w

d

!

; x

0

= �1; x

d

= 1

denote the D-optimal design and observe the representation

M(�

�

) =

Z

1

�1

f(x)f

T

(x)d�

�

(x)

=

2

6

6

6

6

4

1

P

i

w

i

x

i

: : :

P

i

w

i

x

d

i

P

i

w

i

x

i

P

i

w

i

x

2

i

: : :

P

i

w

i

x

d+1

i

.

.

.

.

.

.

.

.

.

.

.

.

P

i

w

i

x

d

i

P

i

w

i

x

d+1

i

: : :

P

i

w

i

x

2d

i

3

7

7

7

7

5

= X

T

WX;

where the matrices X 2 R

(d+1)�(d+1)

and W 2 R

(d+1)�(d+1)

are de�ned by

X

T

=

2

6

6

6

6

4

1 : : : 1

x

0

: : : x

d

.

.

.

.

.

.

.

.

.

x

d

0

: : : x

d

d

3

7

7

7

7

5

; W =

2

6

6

6

6

4

w

0

w

1

.

.

.

w

d

3

7

7

7

7

5

(all other entries in the matrix W are 0). A straightforward calculation shows that

jM(�

�

)j = jXj

2

jW j =

d

Y

i=0

w

i

Y

0�i<j�d

(x

i

� x

j

)

2

; (1.24)

and this expression has to be maximized with respect to the choice of the weights w

0

; : : : ; w

n

2

(0; 1) (subject to the constraint

P

d

j=0

w

j

= 1) and the support points�1 = x

0

< x

1

< : : : x

d�1

<
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x

d

= 1. A straightforward optimization with respect to the weights w

i

shows that these have

to be all equal, i.e.

w

i

=

1

d+ 1

i = 0; 1; : : : ; d:

The determination of the optimal support points x

1

; : : : ; x

d�1

is more complicated but can be

performed following the arguments given in Szeg�o (1959). Taking partial derivatives of the

logarithm we obtain from (1.24) the system of equations

0 =

@

@x

k

log

d�1

Y

i=1

(1� x

2

i

)

2

Y

1�i<j�d�1

(x

i

� x

j

)

2

(1.25)

=

X

i6=k

2

x

k

� x

i

�

4x

k

1� x

2

k

k = 1; : : : ; d� 1:

Let f(x) =

Q

d�1

j=1

(x � x

j

) denote the polynomial of degree d � 1, which vanishes precisely at

the points x

1

; : : : ; x

d�1

then it is easy to see that (1.25) gives

0 =

f

00

(x

k

)

f

0

(x

k

)

�

4x

k

1� x

2

k

k = 1; : : : ; d� 1 :

Because f is a polynomial of degree d � 1 these equations provide a di�erential equation for

the polynomial f; that is

(1� x

2

)f

00

(x)� 4xf

0

(x) + (d� 1)(d+ 2)f(x) = 0;

where the factor of f(x) is obtained by comparing leading coeÆcients. It is well known that

the only polynomial solution of this equation is given by the Jacobi polynomial

f(x) = P

(1;1)

d�1

(x)

which is proportional to the derivative of the Legendre polynomial P

0

d

(x) [see Szeg}o (1959)].

We summarize these results in the following Theorem.

Theorem 1.10. The D-optimal design for the polynomial regression model of degree d on the

interval [�1; 1] has equal masses at the roots of the polynomial

(1� x

2

)P

0

d

(x);

where P

d

denotes the dth Legendre polynomial orthogonal with respect to the Lebesgue measure

on the interval [�1; 1]:

2 Canonical moments: simple properties and �rst appli-

cations

In the previous section we used the equivalence theorem to reduce an in�nite dimensional

optimization problem to a �nite one. The solution of the resulting optimization problem could
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be characterized by a di�erential equation for a polynomial, which had the support points of

the D-optimal design as its roots. In this section we will use a more direct approach, which does

not require the reduction of the optimization to a �nite dimensional maximization problem.

Note that the information matrix in the polynomial regression model of degree d is given by

the Hankel matrix

M(�) =

2

6

6

6

6

4

c

0

c

1

� � � c

d

c

1

c

2

� � � c

d+1

.

.

.

.

.

.

.

.

.

c

d

c

d+1

� � � c

2d

3

7

7

7

7

5

;

where c

i

=

R

X

x

i

d�(x) is the ith moment of the design �. Moreover, because the interval under

consideration is compact, any design is determined by its moments. Thus formally any function

of the matrixM(�) de�ned on the set of all approximate designs � can be written as a function

on the moment space

M

2d

=

n

(c

1

; : : : ; c

2d

) j c

i

=

Z

X

x

i

d�(x) ; i = 1; : : : ; 2d; � 2 �

o

;

that is

�(M(�)) =

~

�(c

1

; : : : ; c

2d

) ; (2.1)

for an appropriate function

~

� :M

2d

! R: In other words, the determination of the D-optimal

design corresponds to a constrained non-linear 2d-dimensional maximization problem.

2.1 Canonical moments

The problem of characterizing the moment points in the moment space M

2d

is known as the

Hausdor� moment problem and can be solved by using the Hankel determinants

H

2m

=

�

�

�

�

�

�

�

c

0

� � � c

m

.

.

.

.

.

.

c

m

� � � c

2m

�

�

�

�

�

�

�

H

2m+1

=

�

�

�

�

�

�

�

c

0

� c

1

� � � c

m

� c

m+1

.

.

.

.

.

.

c

m

� c

m+1

� � � c

2m

� c

2m+1

�

�

�

�

�

�

�

(2.2)

H

2m+1

=

�

�

�

�

�

�

�

c

0

+ c

1

� � � c

m

+ c

m+1

.

.

.

.

.

.

c

m

+ c

m+1

� � � c

2m

+ c

2m+1

�

�

�

�

�

�

�

H

2m

=

�

�

�

�

�

�

�

c

0

� c

2

� � � c

m�1

� c

m+1

.

.

.

.

.

.

c

m�1

� c

m+1

� � � c

2m�2

� c

2m

�

�

�

�

�

�

�

(m = 0; : : : ; d): We will use the following characterization to de�ne a one to one mapping from

the moment spaceM

2d

onto the unit cube [0; 1]

2d

: For a proof of the following theorem we refer

to Shohat and Tamarkin (1943) or Dette and Studden (1997).

Theorem 2.1.

(i) (c

1

; : : : c

n

) 2 M

n

if and only if H

i

and H

i

are nonnegative for i = 1; : : : ; n.
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(ii) (c

1

; : : : c

n

) 2 IntM

n

if and only if H

i

and H

i

are positive for i = 1; : : : ; n.

For each sequence of moments c = (c

1

; c

2

; : : :) let

N = N(c) = minfn 2 N j (c

1

: : : c

n

) 2 @M

n

g (2.3)

denote the minimum integer such that (c

1

; : : : ; c

N

) is on the boundary of the Nth moment space

M

N

. If (c

1

; : : : ; c

n

) 2 IntM

n

for all n � 1, de�ne N(c) =1 while N(c) = 1 if c

1

2 @M

1

. Thus

(c

1

; : : : ; c

k

) 2 IntM

k

for k < N(c) and (c

1

; : : : ; c

N

) 2 @M

N

and, of course, (c

1

; : : : c

k

) 2 @M

k

for k � N + 1 (see the previous theorem). For a given sequence of moments c = (c

0

; c

1

; c

2

; : : :)

of a probability measure � on the interval [�1; 1] we now de�ne for each n 2 N

0

c

+

n+1

= max

n

Z

1

�1

x

n+1

d�(x)

�

�

�

� prob. measure with c

j

=

Z

1

�1

x

j

d�(x) 8j = 1; : : : ; n

o

(2.4)

c

+

n+1

= min

n

Z

1

�1

x

n+1

d�(x)

�

�

�

� prob. measure with c

j

=

Z

1

�1

x

j

d�(x) 8j = 1; : : : ; n

o

as the maximum and minimum of the (n+1)th moment over the set of all probability measures

� whose moments up to the order n coincide with the given moments (c

1

; : : : ; c

n

). The canonical

moment sequence is then de�ned for k � N(c) by

p

k

= p

k

(c) =

c

k

� c

�

k

c

+

k

� c

�

k

; (2.5)

where c

�

k

and c

+

k

are de�ned in (2.4). Note that the canonical moments vary in the interval

[0; 1]. Moreover, if N = N(c) < 1, then p

j

2 (0; 1), 1 � j < N and p

N

is either 0 or 1. It is

easy to see that this mapping is one to one [see Dette and Studden (1997)] and consequently

any probability measure on the interval [0; 1] is uniquely determined by its canonical moments.

We �nally mention that canonical moments were introduced in a series of papers by Skibinsky

(1967, 1968, 1969, 1976, 1986) and are also implicitly mentioned in the work of Karlin and

Shapeley (1953).

Example 2.2. We briey discuss the calculation of the �rst two canonical moments. For the

�rst canonical moment we observe that c

+

1

= 1, c

�

1

= �1 and obtain by de�nition (2.5) that

p

1

=

c

1

+ 1

2

:

The calculation of the second canonical moment is slightly more complicated. Note that c

1

2

IntM

1

if and only if c

1

2 (�1; 1). Because the variance of a random variable is nonnegative

and the second moment is bounded by 1 we have c

+

2

= 1 and c

�

2

= c

2

1

; which gives for c

1

2 (0; 1)

p

2

=

c

2

� c

2

1

1� c

2

1

:
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Conversely, we can express the second moment c

2

in terms of the �rst two canonical moments

p

1

; p

2

and obtain c

1

= 2p

1

� 1

c

2

= 4p

1

q

1

p

2

+ (2p

1

� 1)

2

; (2.6)

where q

1

= 1� p

1

.

2.2 Simple properties

The above de�nition provides a one-to-one map, say T , from the moment space

M =

n

(c

1

; c

2

: : :) j c

i

=

Z

X

x

i

d�(x) ; i = 1; 2; : : : ; � 2 �

o

onto a set S de�ned by

S =

�

1

[

k=0

S

k

�

[

S

1

; (2.7)

where

S

1

= f(p

1

; p

2

; : : :)j0 < p

i

< 1; for all i � 1g

and for k � 0

S

k

= f(p

1

; : : : ; p

k

; p

k+1

) j 0 < p

i

< 1; 1 � i � k; p

k+1

= 0 or 1g :

Any c 2 IntM corresponds to some point in S

1

; while for any sequence of canonical moments

p = (p

1

; p

2

; : : :) 2 S

1

the corresponding sequence c = (c

1

; c

2

; : : :) can be de�ned successively

from (2.5). Therefore it is evident that T maps IntM onto S

1

in a one-to-one manner. Simi-

larly, each (p

1

; : : : ; p

n

) is uniquely determined by (c

1

; c

2

; : : : ; c

n

). In the following we list a few

interesting properties of canonical moments. For a proof see Dette and Studden (1997).

Simple properties 2.3.

� the canonical are invariant under a linear transformation of the corresponding measure

and interval.

� the design � is symmetric if and only if p

2k�1

= 1=2 for k � 1 and 2k � 1 � N(c).

� p

k

= 0 if and only if c

k

= c

�

k

; p

k

= 1 if and only if c

k

= c

+

k

; in both cases (c

1

; : : : ; c

j

) 2

@M

j

for all j � k and the corresponding design � has �nite support.

� p

2d

= 1 if and only if #supp(�) = d+ 1 and f�1; 1g � supp(�)

� p

2d+2

= 0 if and only if #supp(�) = d+ 1 and supp(�) � (�1; 1)

� p

2d+1

= 1 if and only if #supp(�) = d+ 1 and 1 2 supp(�), �1 62 supp(�)

� p

2d+1

= 0 if and only if #supp(�) = d+ 1 and �1 2 supp(�), 1 62 supp(�)
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In general the problem of calculating the canonical moments of a given measure � is very com-

plicated if de�nition (2.5) is used directly. As more eÆcient method we present a representation

of the canonical moments in terms of Hankel determinants.

Theorem 2.4. For all 1 � n � N(c)

p

n

=

H

n

H

n�2

H

n�1

H

n�1

�

n

; q

n

= 1� p

n

=

H

n�2

H

n

H

n�1

H

n�1

�

n

;

where �

n

= 1 if n is even and � =

1

2

if n is odd.

Proof. We consider only the case n = 2d even and the representation of p

2d

: We show

c

2d

� c

�

2d

= H

2d

=H

2d�2

; c

+

2d

� c

2d

= H

2d

=H

2d�2

; (2.8)

which implies by the de�niton of p

2d

p

2d

=

H

2d

H

2d�2

H

2d

H

2d�2

+H

2d

H

2d�2

; (2.9)

where H

�1

= H

�1

= H

0

= H

0

= 1: The assertion now follows from the identity

H

2d�1

H

2d�1

= H

2d�2

H

2d

+H

2d�2

H

2d

;

where the proof of this identity is complicated and can be found in Dette and Studden (1997).

To obtain the expression for c

2d

� c

�

2d

in (2.8) we note again that H

2d

would be zero if we

replace c

2d

by c

�

2d

(note that (c

1

; : : : ; c

2d�1

; c

�

2d

) 2 @M

2d

which implies H

2d

= 0; by Theorem

2.1). Then writing c

2d

= c

�

2d

+ (c

2d

� c

�

2d

) for the last element in the determinant H

2d

gives

H

2d

= (c

2d

� c

�

2d

)H

2d�2

. The value of c

+

2d

� c

2d

in (2.8) is veri�ed in a similar manner. 2

Example 2.5. Let �

��

denote the Beta distribution on the interval (0; 1) with density

w

(�;�)

(x) =

1

B(� + 1; �+ 1)

x

�

(1� x)

�

0 < x < 1 (2.10)

where �; � > �1 and

B(p; q) =

Z

1

0

x

p�1

(1� x)

q�1

dx =

�(p)�(q)

�(p+ q)

(p; q > 0) (2.11)

denotes the Beta-integral and �(�) the Gamma function (see Johnson and Kotz, 1970). The

ordinary moment of �

��

are

c

j

=

B(� + 1 + j; � + 1)

B(� + 1; �+ 1)

=

�(� + j + 1)

�(� + 1)

�(� + � + 2)

�(� + � + 2 + j)

j � 1:
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The canonical moments of the Beta distribution on the interval [0; 1] were �rst determined by

Skibinsky (1969). This author showed that the canonical moments of the measure �

��

are given

by

p

2j

=

j

2j + 1 + � + �

p

2j�1

=

� + j

2j + � + �

j � 1 : (2.12)

An alternative approach using the hypergeometric series of Gauss (1813) can be found in

Dette and Studden (1997). Because canonical moments are invariant with respect to linear

transformations of the underlying interval, the Beta distribution on the interval [�1; 1] has the

same canonical moments.

Note that p

2j�1

= 1=2 if and only if � = � which means that �

��

is symmetric with respect

to the midpoint x = 1=2. Two special cases should be mentioned. For � = � = 0, �

��

is the

uniform distribution on the interval [0; 1] and the canonical moments are given by

p

2k

=

k

2k + 1

; p

2k�1

=

1

2

k � 1 :

For � = � = �1=2, �

��

gives the arc-sine distribution with canonical moments p

k

� 1=2 for all

k. This indicates that the arc-sine distribution with density

w

(�1=2;�1=2)

(x) =

1

�

p

x(1� x)

0 < x < 1

has moments in the center of the moment space. We mention once again that the uniform

and arc-sine distribution on the interval [�1; 1] have the same canonical moments as the corre-

sponding measures on the interval [0; 1]:

Example 2.6. The Binomial distribution �

B

is given by the mass distribution

b(x;N; p) =

�

N

x

�

p

x

(1� p)

N�x

x = 0; 1; : : : ; N

where p 2 (0; 1) and N 2 N . The ordinary moments of �

B

are somewhat complicated and are

given by

c

r

=

N

X

x=0

�

N

x

�

p

x

(1� p)

N�x

x

r

= N !

r

X

j=0

S(r; j)

(N � j)!

p

j

(r � 1)

where S(r; j) denote the Stirling numbers of the second kind de�ned by

S(r; j) =

1

j!

j

X

k=0

(�1)

j�k

 

j

k

!

k

r

(j � r)

(see Johnson, Kotz and Kemp, 1992). The canonical moments of the Binomial distribution

have a much simpler form and were obtained by Skibinsky (1969) as

p

2j�1

= p; p

2j

=

j

N

j = 1; 2; : : : ; N :
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They are calculated with reference to the interval [0; N ] or alternatively on [0; 1] by moving

the mass b(x;N; p) to x=N for x = 0; 1; : : : ; N . Note that the sequence of canonical moments

terminates at p

2N

= 1; which reects the fact that the Binomial distribution is supported on a

�nite number of points.

We �nally note that the canonical moments also appear in the sequence of orthogonal poly-

nomials with respect to the measures d�(x), (1 + x)d�(x), (1� x)d�(x) and (1� x

2

)d�(x) [see

Dette and Studden (1997)].

Theorem 2.7.

(i) The monic orthogonal polynomials on the interval [�1; 1] with respect to the measure d�(x)

satisfy the following recursion formula R

�1

(y) = 0, R

0

(y) = 1)

R

1

(y) = y + 1� 2p

1

;

R

m+1

(y) = (y + 1� 2q

m�1

p

2m

� 2q

2m

p

2m+1

)R

m

(y)

�4q

2m�2

p

2m�1

q

2m�1

p

2m

R

m�1

(y) m � 1

(ii) The monic orthogonal polynomials on the interval [�1; 1] with respect to the measure

(1� x

2

)d�(x) satisfy the following recursion formula S

�1

(y) = 0, S

0

(y) = 1,

S

m+1

(y) = (y + 1� 2p

2m+1

q

2m+2

� 2p

2m+2

q

2m+3

)S

m

(y)

�4p

2m

q

2m+1

p

2m+1

q

2m+2

S

m�1

(y) m � 0

Note that if the measure � is symmetric about zero then we have p

2i+1

= 1=2, i � 0. The

polynomials R

m

and S

m

orthogonal with respect to the measures d� and (1 � y

2

)d� are even

or odd functions according as m is even or odd. The corresponding recursion equations are

particularly simple and given by

R

0

(y) = 1; R

1

(y) = y;

R

m+1

(y) = yR

m

(y)� q

2m�2

p

2m

R

m�1

(y) m � 1

S

0

(y) = 1; S

1

(y) = y;

S

m+1

(y) = yS

m

(y)� p

2m

q

2m+2

S

m�1

(y) m � 1

2.3 Canonical moments and D-optimal approximate designs

The following result shows that the function

~

� in (2.1) has a surprisingly simple representation

in terms of canonical moments. This transfers the constrained optimization problem on the

space M

2d

to an elementary maximization problem on the unit cube [0; 1]

2d

:
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Theorem 2.8. If � is a design on the interval [�1; 1] with canonical moments p

1

; p

2

; : : :, then

jM

2d

(�)j = H

2d

=

�

�

�

�

�

�

�

�

�

�

c

0

c

1

� � � c

d

c

1

c

2

� � � c

d+1

.

.

.

.

.

.

.

.

.

c

d

c

d+1

� � � c

2d

�

�

�

�

�

�

�

�

�

�

= 2

d(d+1)

d

Y

j=1

(q

2j�2

p

2j�1

q

2j�1

p

2j

)

d�j+1

(q

j

= 1� p

j

; q

0

= 1).

Proof. The assertion follows from Theorem 2.4, which shows that

H

2d

H

2d�2

= p

2d

H

2d�1

H

2d�1

H

2d�2

�

H

2d�3

H

2d�2

H

2d�3

= 2q

2d�1

p

2d

H

2d�1

H

2d�3

= 4q

2d�2

p

2d�1

q

2d�1

p

2d

H

2d�2

H

2d�4

= : : : = 2

2d

d

Y

j=1

q

2j�2

p

2j�1

q

2j�1

p

2j

:

Observing H

0

= 1 and

H

2d

=

d

Y

j=1

H

2j

H

2j�2

we obtain the assertion of Theorem 2.8 by a straightforward calculation. 2

The maximization of the determinant of M(�) in terms of canonical moments is now straight-

forward. Observing that the canoncial moments vary independently in the interval [0; 1], we

obtain from Theorem 2.8 the following corollary by a direct calculation.

Corollary 2.9.The D-optimal design for the polynomial regression model of degree d has canon-

ical moments

p

2j�1

=

1

2

; p

2j

=

d� j + 1

2(d� j) + 1

; j = 1; 2; : : : ; d : (2.13)

Note that in principal Corollary 2.9 solves the D-optimal design problem by characterizing the

optimal design in terms of its canonical moments. However, for applications it is necessary to

know the support points and weights corresponding to the measure determined by the sequence

(2.13), because these give the locations where the observations are taken and the proportions of

the total observations to be taken at these locations. For the determination of these quantities
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we consider the Stieltjes transform of the measure � and its corresponding power series and

continued fraction expansion, i.e.

Z

1

�1

d�(x)

z � x

=

1

X

j=0

c

j

z

j+1

=

1

z + 1

�

2p

1

1

�

2q

1

p

2

z + 1

�

2q

2

p

3

1

� : : : (2.14)

The �rst equality follows from the theorem of dominated convergence and a series expansion of

the integrand on the left hand side. The second expression can be derived by the correspondence

between power series and continued fractions [see Wall (1948) or Perron (1954a,b)] and some

generalizations of Theorem 2.8 for the determinants H

2d�1

, H

2d�1

and H

2d

. An alternative

proof can be found in Dette and Studden (1997). The continued fraction in (2.14) converges

uniformly on compact sets K � C with positive distance from the interval [�1; 1]. However, in

the case p

2d

= 1 which is of interest here, the Stieltjes transform is in fact a rational function

H(z) =

Z

1

�1

d�(x)

z � x

=

1

z + 1

�

2p

1

1

�

2q

1

p

2

z + 1

�

2q

2

p

3

1

� : : : �

2q

2d�1

p

2d

z + 1

(2.15)

=

1

z + 1

�

1

1

�

p

2

z + 1

�

q

2

1

� : : : �

2q

2d�2

1

�

p

2d

z + 1

=

A

d

(z)

B

d+1

(z)

;

where the second equality is derived under the assumption of symmetry (i.e. p

2i�1

=

1

2

for all

i = 1; : : : ; d) and A

d

and B

d+1

are polynomials of degree d and d+1, respectively. Consequently

we obtain for the support and the weights of the D-optimal design

supp(�) = f z 2 C j B

d+1

(z) = 0 g;

(2.16)

�(x) = lim

z!x

H(z)(z � x) =

A

d

(x)

B

0

d+1

(x)

8x 2 supp(�);

and all what remains is the calculation of the polynomials A

d

and B

d+1

. For that purpose we

use the represenation of the partial numerators and denominators of a continued fraction

b

0

+

a

1

b

1

+

a

2

b

2

+ : : :+

a

n

b

n

=

A

n

B

n

(2.17)

in terms of continuants de�ned by

A

n

= K

 

a

1

: : : a

n

b

0

b

1

: : : b

n

!

:=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

b

0

�1 0 � � � 0 0

a

1

b

1

�1 � � � 0 0

0 a

2

b

2

� � � 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 � � � b

n�1

�1

0 0 0 � � � a

n

b

n

�

�

�

�

�

�

�

�

�

�

�

�

�

�
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B

n

= K

 

a

2

: : : a

n

b

1

b

2

: : : b

n

!

:=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

b

1

�1 0 � � � 0 0

a

2

b

2

�1 � � � 0 0

0 a

3

b

3

� � � 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 � � � b

n�1

�1

0 0 0 � � � a

n

b

n

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

For the polynomial B

d+1

in the denominator of (2.15) we therefore obtain

B

d+1

= K

 

�1 �p

2

�q

2

: : : �q

2d�2

�p

2d

z + 1 1 z + 1 1 : : : 1 z + 1

!

= (z

2

� 1)K

 

�q

2

�p

2

�q

4

: : : �q

2d�2

�p

2d�2

1 z + 1 1 z + 1 : : : 1 z + 1

!

= (z

2

� 1)Q

d�1

(z);

where the last line de�nes the polynomial Q

d�1

and the second identity follows by a tedious

calcluation of the corresponding determinants and an induction argument [see Dette and Stud-

den (1997), Section 2.5]. An expansion of the last determinant now give a recursive relation

for the polynomals Q

j

(z), i.e. Q

0

(z) = 1, Q

1

(z) = z and

Q

j+1

(z) = zQ

j

(z)� q

2d�2j

p

2d�2j�2

Q

j�1

(z)

= zQ

j

(z)�

j(j + 2)

(2j + 1)(2j + 3)

Q

j�1

(z) ;

where we used the representation in Corollary 2.9 for the canonical moments of the D-optimal

design. Comparing this recursion with the recursive relation for the monic Jacobi polynomials

^

P

(1;1)

j

(z) [see Chihara (1978)]we obtain that

Q

d�1

(z) =

^

P

(1;1)

d�1

(z) :

A similar calculation shows for the polynomial A

d

in the numerator

A

d

(z) =

^

P

(0;0)

d

(z) ;

where

^

P

(0;0)

d

(z) is the monic version of the Jacobi polynomial P

(0;0)

d

(z) on the interval [0; 1]

(in other words the monic version of the Legendre polynomial P

d

). Observing that

^

P

(1;1)

d�1

(z) is

proportional to the derivative of P

d

we obtain for the support points of the D-optimal design

supp(�) = f z j (z

2

� 1)P

0

d

(z) = 0 g
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and for the weights at the support points x

0

; : : : ; x

d

�(x

j

) =

A

d

(x)

d

dz

B

0

d+1

(z)j

z=x

j

=

^

P

(0;0)

d

(x

j

)

(z

2

� 1)

^

P

(1;1)

d�1

(z)j

z=x

j

=

^

P

(0;0)

d

(x

j

)

(d+ 1)

^

P

(0;0)

d

(z)j

z=x

j

=

1

d+ 1

j = 0; : : : ; d

where the third identity follows from a standard identity for the Jacobi polynomials [see e.g.

Szeg�o (1959)]. Note that this provides an alternative proof of Theorem 1.10 based on the theory

of canonical moments.

2.4 Asymptotic distribution of zeros of orthogonal polynomials

A further application of the theory of canonical moments consists in the maximization of

generalized Hankel determinants, which are determinants of matrices of the form

M

(�;�)

(�) =

h

Z

1

�1

(1� x)

�+1

(1 + x)

�+1

x

i+j

d�(x)

i

d�1

i;j=0

; (2.18)

where �; � > �1 are given constants. In the statistical context this corresponds to the covari-

ance matrix in a polynomial regression model with an heteroscedastic error structure, where

the variance at the point x is proportional to (1� x)

���1

(1+ x)

���1

[see Fedorov (1972)]. The

following theorem was proved by Studden (1982) using an extension of the theory described in

the previous section.

Theorem 2.10. The canonical moments of the design maximizing the determinant of the

matrix M

(�;�)

(�) de�ned in (2.18) are given by

p

�

2j

=

d� j

2(d� j) + 1 + � + �

j = 1; : : : ; d

(2.19)

p

�

2j�1

=

� + d� j + 1

2(d� j) + 2 + � + �

j = 1; : : : ; d

and the corresponding design �

�

d

satis�es

supp(�

�

d

) = fx j P

(�;�)

d

(x) = 0g

�

�

d

(x) =

1

d

8 x 2 supp(�

�

)

where P

(�;�)

d

(x) denotes the dth Jacobi polynomial on the interval [�1; 1].

Note that the solution of the maximization problem for the determinant of the matrix in (2.18)

yields to a uniform distribution on the zeros of the dth Jacobi polynomial P

(�;�)

d

(x). The
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asymptotic behviour of this distribution with increasing degree has been of some interest in

approximation theory [see e.g. Van Assche (1987), Gawronski (1993), Bosbach and Gawronski

(1998), Faldey and Gawronski (1995), Dette and Studden (1992, 1995), Dette (1995c), Kuijlaars

and Van Assche (1999)]. In the next theorem we state a typical result in this area and present

an elmentary proof based on the theory of canonical moments. For a motivation note that for

d!1 the canonical moments de�ned in (2.19) satisfy

lim

d!1

p

�

j

=

1

2

; 8j 2 N :

By Example 2.5 the measure on the interval [�1; 1] corresponding to the limit sequence of

canonical moments is the arc-sine distribution with densitiy

1

�

1

p

1� x

2

I

(�1;1)

(x):

Because this distribution is determined by its moments and the mapping between canonical

and ordinary moments is one to one and continuous, it follows that the uniform distribution

on the roots of the Jaobi polynomials converges weakly to the arc-sine distribution, that is

lim

d!1

N

(�;�)

d

(x) := lim

d!1

1

d

n

z � x j P

(�;�)

d

(x)

o

=

1

�

Z

x

�1

dt

p

1� t

2

for all x 2 [�1; 1]. The following result generalizes this statement to Jacobi polynomials with

parameters �

d

; �

d

depnding on the degree d of the polynomial.

Theorem 2.11. Assume that

d!1 ; lim

d!1

�

d

d

! a ; lim

d!1

�

d

d

! b;

where a; b � 0, then

lim

d!1

N

(�

d

;�

d

)

d

(x) := lim

d!1

1

d

n

z � x j P

(�

d

;�

d

)

d

(z) = 0

o

=

2 + a+ b

2�

Z

x

r

1

p

(r

2

� t)(t� r

1

)

1� t

2

dt;

where

r

1;2

=

b

2

� a

2

� 4

p

(a+ 1)(b+ 1)(a+ b + 1)

(2 + a + b)

2

Proof. By the preceding discussion the canonical moments of the uniform distribution on the

set

fz j P

(�

d

;�

d

)

d

(z) = 0g
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satisfy

lim

d!1

p

�

2i

= lim

d!1

d� i

2(d� i) + �

d

+ �

d

+ 1

=

1

2 + a+ b

= h

(2.20)

lim

d!1

p

�

2i�1

= lim

d!1

�

d

+ d� i+ 1

2(d� i) + 2 + 2

d

+ �

d

=

b + 1

2 + a + b

= g

The identi�cation of the corresponding measure is a little complicated. To be precise consider

at �rst the measure �

g;h

on the interval [�1; 1] corresponding to the sequence

p

4j�2

= g 2 (0; 1) j 2 IN

p

4j

= h 2 (0; 1) j 2 IN

p

2j�1

= 1=2 j 2 IN

(2.21)

The continued fraction expansion of the Stieltjes transform

S(z; �

g;h

) =

Z

1

�1

d�

g;h

(x)

z � x

is obtained by an even contraction [see Perron (1954a)] from (2.14) and is given by

S(z; �

g;h

) =

1

z

�

g

z

�

(1� g)h

z

�

(1� h)g

z

�

(1� g)h

z

� : : :

=

z

z

2

� g

�

g(1� g)h

z

2

� �

�

�

z

2

� �

�

�

z

2

� �

� : : :

where second identity follows from a further even contraction [see Perron (1954a)] and the

constants � and � are de�ned by

� = g(1� h) + h(1� g)

� = g(1� g)h(1� h)

(2.22)

We �nd that

H(z) =

1

z

2

� �

�

�

z

2

� �

�

�

z

2

� �

� : : :

=

1=2

p

�

(z

2

� �)=2

p

�

�

1=4

(z

2

� �)=2

p

�

�

1=4

(z

2

� �)=2

p

�

� : : :

=

1

p

�

 

z

2

� �

2

p

�

�

s

(z

2

� �)

2

4�

� 1

!

;

where the branch of the square root is de�ned by

�

�

�

�

�

z

2

� �

2

p

�

�

s

(z

2

� �)

2

4�

� 1

�

�

�

�

�

< 1 : (2.23)
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Thus it follows that

S(z; �

g;h

) =

z

z

2

� g � g(1� g)hH(z)

(2.24)

=

1

2h

(1� 2h)z

2

+ (h� g)�

p

(z

2

� �)

2

� 4�

z(1� z

2

)

;

where the branch of the square root is de�ned by (2.23). For the identi�cation of the corre-

sponding probability measure we use the inversion formula for the Stieltjes transfom [see e.g.

Dette and Studden (1997), Chapter 3].

Because S(z; �

g;h

) can be extended from the lower half plane to a continuous function in a

neighborhood of any u

0

2 (�1; 1) n f0g it follows that the absolute continuous part of �

g;h

is

given by

1

2�h

p

4�� (x

2

� �)

2

jxj(1� x

2

)

I

�

jx

2

� �j < 2

p

�

	

; (2.25)

where � = g(1�h)+h(1�g), � = g(1�g)h(1�h). Jumps of �

g;h

are only possible at the poles

of S(z; �

g;h

). We investigate the situation at z = 0, the other cases are treated similarly. If

g = h it is straightforward to show that S(z; �

g;h

) has in fact no pole at z = 0 and consequently

�

g;h

(f0g) = 0 in this case. Observing the de�nition of � and � in (2.22) we see that h 6= g if

and only if �

2

> 4�. For z = �iv and suÆciently small v this determines the sign of the square

root in (2.23) to satisfy R(

p

:::) < 0. Now Theorem 3.6.5 in Dette and Studden (1997) yields

�

g;h

(f0g) = lim

v!0

Im Sfv S(�iv; �

g;h

)g

= lim

v!0

Im

n

(2h� 1)v

2

+ (h� g) +

p

(v

2

+ �)

2

� 4�

�i2h(1 + v

2

)

o

=

h� g + jh� gj

2h

=

�

(h� g)=h if h > g

0 if h < g

Similary, it can be shown that in the case g + h > 1 the measure �

g;h

has additional masses

(g + h � 1)=2 at the points �1 and 1. Now note that for the speci�c choice in (2.20) we have

h � g and g + h � 1. Consequently, there is in fact only an absolute continuous part of �

g;h

given by (2.25). In other words, the measure �

g;h

corresponding to the sequence

1

2

; g;

1

2

; h;

1

2

; g;

1

2

; : : :

on the interval [�1; 1] is absolute continuous with density given in (2.25). By Theorem 1.3.5

in Dette and Studden (1997) the measure

~

�

g;h

corresponding to the sequence in (2.20) on the

interval [0; 1] is related to �

g;h

by

~

�

g;h

([0; x]) = �

g;h

([�

p

x;

p

x]). Therefore the density of

~

�

g;h

is

given by

h(x) =

1

2h�

p

4�� (x� �)

2

x(1� x)

Ifjx� �j < 2

p

�g : (2.26)
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Because all zeros of P

(�

n

;�

n

)

n

(x) are located in the interval (�1; 1) the limit distribution � satis�es

supp(�)� (�1; 1). Now � is induced through

~

�

g;h

by the linear transformation y = 2x� 1 and

the assertion follows by transforming the density in (2.26) onto the interval [�1; 1]

d�

dx

=

1

2

h(

y + 1

2

) =

1

2h�

p

16�� (y + 1� 2�)

2

(1� y

2

)

Ifjy + 1� 2�j < 4

p

�g ;

and observing that 2� � 1� 4

p

� = r

1;2

. 2

3 Discrimination designs and extremal problems for poly-

nomials

3.1 Discrimination designs

So far it has been assumed that the linear model (1.1) is known by the experimenter. As

pointed out by Anderson (1962), Atkinson and Cox (1974) or Spruill (1990) there are many

applications, where precise knowledge about the form of the regression function is not available

and the analysis of the data is performed in two steps. In the �rst step the data is used

to identify an appropriate regression model and the second step might consist of performing

some statistical analysis in the determined model. For example, if a cubic regression model

is assumed by the experimenter, the results of the experiments will typically be used to test

whether a quadratic model would be more appropriate. In this case \good" designs have to

address at least three di�erent tasks: 1) the problem of testing the hypothesis H

0

: �

3

= 0 for

the \highest" coeÆcient in the cubic model, 2) the problem of estimating the parameters in

the full cubic polynomial if the test rejects the hypothesis H

0

, 3) the problem of estimating the

parameters in the reduced quadratic regression model if the test does not reject the hypothesis

H

0

. In this section we illustrate the application of canonical moments in this �eld and discuss

further applications of our approach in approximation theory. We assume that the main interest

of the experimenter is the identi�cation of the degree of the underlying polynomial regression

and an optimal design for this task has to be constructed. Optimal designs for this problem

are called optimal discrimination designs. Because the degree of the polynomial regression is

only known to be less or equal than d we have to use a further index in our notation, namely

the degree l 2 f1; : : : ; dg for the polynomial model under consideration. To be precise let

h

l

(x) =

l

X

i=1

�

li

x

i

= �

T

l

f

l

(x) l = 1; : : : d

denote a polynomial regression model of degree l, where f

l

(x) = (1; x; : : : ; x

l

)

T

denotes the

vector of monomials up to the order l and �

l

= (�

l0

; : : : ; �

ll

)

T

2 R

l+1

is the vector of unknown

parameters in the polynomial model of degree l = 1; : : : ; d. It can be shown [see Pukelsheim

(1993) or Dette and Studden (1997)] that a \good" choice of a design for model discrimination

should make the quantities

Æ

2

l

(�) = (e

T

l

M

�1

l

(�)e

l

)

�1

=

jM

l

(�)j

jM

l�1

(�)j

(l = 1; : : : ; d)
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as large as possible, where e

l

= (0; : : : ; 0; 1)

T

2 R

l+1

is the (l + 1)th unit vector and

M

l

(�) =

Z

1

�1

f

l

(x)f

l

(x)

T

d�(x) = (c

i+j

)

l

i;j=0

(3.1)

denotes the moment matrix of the design � in the polynomial regression of degree l. As expected,

a simultaneous maximization of these quantities is impossible and we have to restrict ourselves

again to the maximization of real valued functions of these quantities [see Dette (1994, 1995c].

As a �rst function we consider the geometric mean of Æ

2

1

; : : : ; Æ

2

d

de�ned by

	

�

(�) =

d

Y

l=1

�

Æ

2

l

(�)

�

�

l

=

d

Y

l=1

�

jM

l

(�)j

jM

l�1

(�)j

�

�

l

; (3.2)

where �

1

; : : : ; �

d

are given nonnegative weights with

P

d

j=1

�

j

= 1. A design �

�

is called a

optimal discriminating design with respect to the the prior � = (�

1

; : : : ; �

d

) if and only if �

�

maximizes the weighted geometric mean de�ned in (3.2). Note that the weight �

l

reects the

experimenter's belief about the adequacy of the polynomial of degree l. The optimal design

maximizing the function in (3.2) can be easily characterized in terms of its canonical moments.

Theorem 3.1. The optimal discriminating design with respect to the prior � = (�

1

; : : : ; �

d

)

(�

d

> 0) is uniquely determined by its canonical moments

p

2i

=

�

i

�

i

+ �

i+1

i = 1; : : : ; d� 1 ; p

2d

= 1

p

2i�1

=

1

2

i = 1; : : : ; d

where �

i

=

P

d

l=i

�

l

, i = 1; : : : ; d.

Proof. By de�nition of the criterion 	

�

we have to maximize the function in (3.2) which

reduces by Theorem 2.8 to

	

�

(�) = C

d

Y

l=1

l

Y

j=1

(q

2j�2

p

2j�1

q

2j�1

p

2j

)

�

l

= C

d

Y

j=1

d

Y

l=j

(q

2j�2

p

2j�1

q

2j�1

p

2j

)

�

l

= C

d

Y

j=1

(q

2j�1

p

2j�1

)

�

j

d�1

Y

j=1

q

�

j+1

2j

p

�

j

2j

p

�

d

2d

;

where p

1

; p

2

; : : : denote the canonical moments of the design � (q

0

= 1) and the constant C does

not depend on the design �. The assertion now follows by a straightforward maximization of

this function in terms of the canonical moments. 2

32



Example 3.2. Consider the uniform prior �

l

= 1=d (l = 1; : : : ; d), then it is easy to see that

the criterion (3.2) reduces to the D-optimality criterion

	

�

(�) = jM

d

(�)j

1

d

and Theorem 3.1 gives the canoncial moments of the D-optimal design derived in Section 2 [see

formula (2.13)]. As a further application consider the prior �

1

= : : : = �

d�1

= 0, �

d

= 1, which

corresponds to a discrimination between a polynomial of degree d� 1 and d. In this case the

criterion (3.2) reduces to the D

1

-optimality criterion

	

�

(�) =

jM

d

(�)j

jM

d�1

(�)j

and we obtain from Theorem 3.1 by a straightforward calculation that the optimal canonical

moments are given by

p

i

=

1

2

; i = 1; : : : ; 2d� 1 ; p

2d

= 1 :

It can be shown by similar techniques as illustrated in Chapter 2 [see e.g. Studden (1980a)]

that the design �

�

corresponding to this sequence is supported at

f x j (x

2

� 1)T

0

d

(x) = 0 g =

n

cos(

j�

d

) j j = 0; : : : ; d

o

with masses given by

�

�

�

cos(

j�

d

)

�

=

(

1

d

if 1 � j � d� 1

1

2d

if j = 0; d

It is interesting to note that there exists a converse of Theorem 3.1, which shows that any

symmetric design maximizes a function of the form (3.2). Although on the �rst glance this

result is not too helpful from a statistical point of view, it will be a very useful tool for deriving

new identities for orthogonal polynomials in the next section. The proof is a straightforward

application of Theorem 3.1, solving for the corresponding weights.

Theorem 3.3. Let � denote a symmetric design on the interval [�1; 1] with canonical moments

p

j

2 (0; 1) for all 1 � j � 2d � 1 and p

2d

= 1, then � maximizes the function 	

�

de�ned in

(3.2), where the weights �

1

; : : : ; �

d

are given by

�

l

=

l�1

Y

j=1

q

2j

p

2j

(1�

q

2l

p

2l

) l = 1; : : : ; d : (3.3)

Note that the weights in (3.3) can become negative and in this case there is no statistical

interpretation of the criterion 	

�

. Consider for example the class of polynomial models up
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to degree 5 on the interval [�1; 1] and the distribution �

B

with masses proportional to 1 :

5 : 10 : 10 : 5 : 1 at the points �1, �3=5, �1=5, 1=5, 3=5 and 1, respectively. This is the

Binomial distribution with parameters p = 1=2 and n = 5 transformed to the interval [�1; 1].

By Example 2.6 it follows that the canonical moments of even order of �

B

are given by p

2i

= i=5

(i = 1; : : : ; 5) while the canonical moments of odd order are 1=2. By Theorem 3.3 the design

�

B

maximizes the function 	

�

in (3.2) where the vector of weights is given by

� = (�3;�2; 2; 3; 1);

which does not de�ne a prior on the class of polynomials up to degree 5.

3.2 Identities for orthogonal polynomials

Throughout this section we assume that the weights in the criterion (3.2) are arbitrary (not

necessarily nonnegative) numbers with sum 1 and �

d

6= 0. In this case the function 	

�

is not

necessarily concave. But nevertheless we can give a necessary condition for a design maximizing

the function 	

�

; which is of similar structure as the equivalence theorem for the D-optimality

criterion stated in Theorem 1.8.

Lemma 3.4. If the design �

�

maximizes the function 	

�

(�) in (3.2) over the class of all

probability measures on the interval [�1; 1], then the inequality

d

X

l=1

�

l

�

e

T

l

M

�1

l

(�

�

)f

l

(x)

�

2

e

T

l

M

�1

l

(�

�

)e

l

� 1 (3.4)

holds for all x 2 [�1; 1] with equality for the support points of �

�

.

Proof. For a probability measure � on the interval [�1; 1] with jM

d

(�)j 6= 0 de�ne

� (�) = log	

�

(�) = �

m

X

l=1

�

l

log e

T

l

M

�1

l

(�)e

l

:

Let

F

�

(�; �) =

d

d�

� ((1� �)� + ��) j

�=0+

(3.5)

denote the Frech�et derivative of the function � at � in the direction of �. For a matrix A = (a

ij

)

we de�ne its derivative by di�erentiating the elements, that is

@

@t

A =

�

@

@t

a

ij

�

ij

;

then it follows for a nonsingular square matrix

@

@t

A

�1

= � A

�1

@

@t

A A

�1

:
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This implies that for l = 1; : : : ; d

d

d�

log

h

e

T

l

f(1� �)M

l

(�) + �M

l

(�)g

�1

e

l

i

�

�

�

�=0+

= 1 �

e

T

l

M

�1

l

(�)M

l

(�)M

�1

l

(�)e

l

e

T

l

M

�1

l

(�)e

l

and consequently the directional derivative of � at � in the direction of � is given by

F

�

(�; �) = � 1 +

m

X

l=1

�

l

e

T

l

M

�1

l

(�)M

l

(�)M

�1

l

(�)e

l

e

T

l

M

�1

l

(�)e

l

: (3.6)

If �

�

maximizes 	

�

or equivalently �, then F

�

(�

�

; �) � 0 for all �. If � = �

x

concentrates mass

one at x 2 [�1; 1], then

0 � F

�

(�

�

; �

x

) = � 1 +

d

X

l=1

�

l

�

e

T

l

M

�1

l

(�

�

)f

l

(x)

�

2

e

T

l

M

�

l

(�

�

)e

l

; (3.7)

which is equivalent to (3.4). Moreover, integrating this inequality with respect to the measure

d�

�

(x) gives

Z

1

�1

F

�

(�

�

; �

x

) d�

�

(x) = 0

and shows that F

�

(�

�

; �

x

) vanishes on the support of the design �

�

. This proves the second

assertion of the Lemma. 2

It is worthwhile to demonstrate at this point how concavity is used in the proof of the converse

of Lemma 3.4. Integrating (3.4) and observing (3.6) and (3.7) it follows that

F

�

(�

�

; �) � 0

for all probability measures � on the interval [�1; 1]. Now the concavity of the function �

implies that

� (�)� � (�

�

) � F

�

(�

�

; �) � 0

[see the proof of Theorem 1.8] proving that �

�

maximizes � (or equivalently 	

�

). A suÆcient

condition for the concavity of � is that all weights �

l

in the function 	

�

are nonnegative.

Lemma 3.5. Let � denote a measure on the interval [�1; 1] such that jM

d

(�)j 6= 0. The

polynomials

P

l

(x; �) =

�

e

T

l

M

�1

l

(�)e

l

�

�1=2

e

T

l

M

�1

l

(�)f

l

(x) l = 0; : : : ; d (3.8)

are orthonormal with respect to the measure d�(x):
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Proof. Obviously, the function

^

P

d

(x) = e

T

d

M

�1

d

(�)f

d

(x) de�nes a polynomial of degree d and

the identity

Z

1

�1

^

P

d

(x)f

T

d

(x)d�(x) = e

T

d

M

�1

d

(�)

Z

1

�1

f

d

(x)f

T

d

(x)d�(x) = e

T

d

shows that

^

P

d

(x) is the dth orthogonal polynomial with respect to the measure d�(x) with

L

2

-norm e

T

d

M

�1

(�)e

d

: 2

Theorem 3.6. Let �

�

denote a symmetric probability measure on the interval [�1; 1], with

canonical moments of even order p

2

; : : : ; p

2d

> 0. The orthonormal polynomials fP

j

(x; �

�

)g

d

j=0

and fQ

j

(x; �

�

)g

d�1

j=0

with respect to the measures d�

�

(x) and (1� x

2

)d�

�

(x) satisfy the identity

d

X

l=1

�

�

l

P

2

l

(x; �

�

) = 1� (1� x

2

)Æ

�

d�1

Q

2

d�1

(x; �

�

); (3.9)

where the constants �

�

l

and Æ

�

l

are de�ned by

�

�

l

=

l�1

Y

j=1

q

2j

p

2j

�

1�

q

2l

p

2l

�

l = 1; : : : ; d� 1

(3.10)

�

�

d

=

d�1

Y

j=1

q

2j

p

2j

p

2d

; Æ

�

d�1

=

d�1

Y

j=1

q

2j

p

2j

q

2d

:

Proof. Let

�

� denote the symmetric probability measure with the same canonical moments

�p

j

= p

j

as �

�

up to the order 2d � 1 and �p

2d

= 1. It follows from Theorem 2.8 and the proof

of Lemma 3.5 that the L

2

-norm of the monic orthogonal polynomials R

d

(x; �

�

) with respect to

the measure d�

�

(x) is given by

(e

T

d

M

�1

d

(�

�

)e

d

)

�1

=

H

2d

H

2d�2

=

Z

1

�1

R

2

d

(x; �

�

)d�

�

(x)

(3.11)

= 2

2d

d

Y

j=1

q

2j�2

p

2j�1

q

2j�1

p

2j

=

d

Y

j=1

q

2j�2

p

2j

:

A similar identity yields for the L

2

-norm of the monic orthogonal polynomial S

d

(x; �

�

) with

respect to the measure (1� x

2

)d�

�

(x)

H

2d

H

2d�2

=

Z

1

�1

S

2

d�1

(x; �

�

)(1� x

2

)d�

�

(x)

(3.12)

= 2

2d

d

Y

j=1

p

2j�2

q

2j�1

p

2j�1

q

2j

=

d

Y

j=1

p

2j�2

q

2j
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[see Dette and Studden, Remark 2.3.7]. Observing (3.11) and Theorem 2.7 we obtain for the

orthonormal polynomials with respect to the measures

�

� and �

�

satisfy

P

l

(x;

�

�) = P

l

(x; �

�

) l = 1; : : : ; d� 1

(3.13)

P

d

(x;

�

�) =

p

p

2d

P

d

(x; �

�

):

Now Theorem 3.3 shows that the probability measure

�

� maximizes the function 	

�

in (3.2) for

the weights � = (�

1

; : : : ; �

d

) given by

�

l

=

l�1

Y

j=1

�q

2j

�p

2j

�

1�

�q

2l

�p

2l

�

=

8

<

:

�

�

l

if 1 � l � d� 1

1

p

2d

�

�

d

if l = d:

(3.14)

Here the last equality is a consequence of the de�nition (3.10) and the fact that the canonical

moments of the measure �

�

and

�

� up to the order 2d� 1 are identical. By Lemma 3.4 and 3.5

it therefore follows for the orthonormal polynomials P

n

(x;

�

�) with respect to the measure d

�

�(x)

1 �

d

X

l=1

�

l

�

e

T

l

M

�1

l

(

�

�)f

l

(x)

�

2

e

T

l

M

�1

l

(

�

�)e

l

=

d

X

l=1

�

l

P

2

l

(x;

�

�) =

d

X

l=1

�

�

l

P

2

l

(x; �

�

)

whenever x 2 [�1; 1]. Here we have used (3.13) and (3.14) in the last equality. Moreover,

the second part of Lemma 3.4 shows that there is equality on the support of the measure

�

� which contains d + 1 points including �1 and 1 (note that �p

2d

= 1 and recall the simple

properties in 2.3). In can be shown [see Dette and Studden (1997), Theorem 2.2.3, transferred

to the interval [�1; 1]] that these support points are given by the zeros of the polynomial

(x

2

� 1)

�

S

2

d�1

(x;

�

�) where

�

S

d�1

(x;

�

�) is the (d� 1)th monic orthogonal polynomial with respect

to the measure (1 � x

2

)d

�

�(x). By Theorem 2.7

�

S

d�1

(x;

�

�) is proportional to the (d � 1)th

orthonormal polynomial Q

d�1

(x; �

�

) with respect to the measure (1� x

2

)d�

�

(x): Therefore the

polynomials

P

d

l=1

�

�

l

P

2

l

(x; �

�

)� 1 and (x

2

� 1)Q

2

d�1

(x; �

�

) are of degree 2d, nonpositive on the

interval [�1; 1] and equal to 0 at the d+1 support points of

�

�. Counting zeros with multiplicities

shows that the polynomials must be proportional and a comparison of the leading coeÆcients

shows

d

X

l=1

�

�

l

P

2

l

(x; �

�

)� 1 =

�

d�1

Y

j=1

p

�2

2j

�

x

2d

+ : : :

= Æ

�

d�1

(x

2

� 1)Q

2

d�1

(x; �

�

)

where we used (3.11) and (3.12) in both equalities. This is equivalent to (3.9) and proves the

assertion. 2

Note that Theorem 3.6 provides an identity for the sum of squares of orthogonal polynomials

with respect to an arbitrary (symmetric) measure on the interval [�1; 1]. For further more
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general identities of this type for polynomials orthogonal with respect to a not necessarily

symmetric measure on a compact interval we refer to Dette (1993). In the remaining part of

this section we illustrate the identity of Theorem 3.6 in two examples.

Example 3.7. Let �

T

denote the arc-sine distribution on the interval [�1; 1] which has canon-

ical moments p

j

= 1=2 (j 2 R) [see Example 2.5]. The orthonormal polynomials Q

d�1

(x; �

T

)

with respect to the measure (1�x

2

)d�

T

(x) =

p

1� x

2

dx=� are proportional to the Chebyshev

polynomials of the second kind U

d�1

(x). From (3.12) it follows that the leading coeÆcient is

p

22

d�1

which shows that

Q

d�1

(x; �

T

) =

p

2U

d�1

(x):

Similarly (3.11) shows that the orthonormal polynomials with respect to the arc-sine measure

are given by

P

d

(x; �

T

) =

p

2T

d

(x) :

Now �

�

l

= 0 (l = 1; : : : ; d� 1); �

�

d

= Æ

�

d�1

= 1=2 and (3.9) reduces to the well known \trigono-

metric identity"

(1� x

2

)U

2

d�1

(x) + T

2

d

(x) = 1

for the Chebyshev polynomial of the �rst and second kind.

Example 3.8. Let �

(�)

denote the probability measure on the interval [�1; 1] with density

c

�

(1� x

2

)

��1=2

� > �

1

2

; � 6= 0 : (3.15)

The constant in (3.15) is given by

c

�

=

�(2�+ 1)

2

2�

[�(� + 1=2)]

2

=

�(� + 1)

p

��(� + 1=2)

;

which can be obtained from Example 2.5 (and a transformation to the interval [�1; 1]) and

the duplication formula for the Gamma function. The orthonormal polynomials with respect

to the measure d�

(�)

(x) are proportional to the ultraspherical polynomials C

(�)

m

(x) [see Szeg�o

(1959)]. The constant of proportionality can be obtained from the coeÆcient of x

m

in C

(�)

m

(x):

It follows from Example 2.5 that the canonical moments of the measure �

(�)

are given by

p

(�)

2i

=

i

2(i+ �)

p

2i�1

=

1

2

(i 2 N): (3.16)

If

^

C

(�)

m

(x) denotes the monic version of C

(�)

m

(x), this gives the representation [see (3.11)]

P

2

l

(x; �

(�)

) =

l

Y

j=1

�

q

(�)

2j�2

p

(�)

2j

�

�1

h

^

C

(�)

l

(x)

i

2

= 2

2l

�(2�)�(l + 1 + �)�(l + �)

�(l + 1)�(l + 2�)�(�)�(�+ 1)

h

^

C

(�)

l

(x)

i

2

(3.17)

=

�(2�)�(l + 1)(l + �)

��(l + 2�)

h

C

(�)

l

(x)

i

2

;
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where the last equality follows from the duplication formula for the Gamma function and the

fact that the leading coeÆcient of the polynomial C

(�)

l

(x) is given by

2

l

�(l + �)

�(�)�(l + 1)

:

Similarly, the polynomial Q

d�1

(x; �

(�)

) orthonormal with respect to the measure

(1� x

2

)d�

(�)

(x) = c

�

(1� x

2

)

�+1=2

dx

is proportional to C

(�+1)

d�1

(x) and given by

Q

2

d�1

(x; �

(�)

) =

2�(d)�(2�+ 1)(d+ �)

�(d+ 2�+ 1)

h

C

(�+1)

d�1

(x)

i

2

:

Finally, the constants �

�

l

and Æ

�

m�1

in (3.10) can be calculated as

�

�

l

=

8

>

>

<

>

>

:

�

�(l + 2�)

�(l + 1)�(2�)

l = 1; : : : ; d� 1

d�(d+ 2�)

2(d+ �)�(d)�(2�+ 1)

l = d

and

Æ

�

d�1

=

�(d+ 2�+ 1)

2(d+ �)�(d)�(2�+ 1)

:

Consequently we obtain from (3.9) the following identity for the sum of squares of ultraspherical

polynomials

�

d

2�

C

(�)

d

(x)

�

2

�

d�1

X

l=0

l + �

�

h

C

(�)

l

(x)

i

2

= (x

2

� 1)

h

C

(�+1)

d�1

(x)

i

2

; (3.18)

which has a nice application in mathematical physics (see Dehesa, Van Assche and Yanez

(1997)).

3.3 Maximin discrimination designs

In this Section we go back to the statistical problem of determining optimal discrimination

designs for the degree of a polynomial regression. In Section 3.1 we used a geometric mean

to discriminate between competing designs and in Section 3.2 we related the design problem

to identities for orthogonal polynomials. In the present section we concentrate on a di�erent

criterion, which relates the design problem to a nonlinear extremal problem for polynomials

[see the following section]. More precisely, we consider the function

	(�) = min

�

2

2l�2

jM

l

(�)j

jM

l�1

(�)j

�

�

�

l = 1; : : : ; d

�

(3.19)

39



and call a design maximizing 	 a maximin-optimal discrimination design. The factors 2

2l�2

in

(3.19) are introduced because the determinants

jM

l

(�)j

jM

l�1

(�)j

(3.20)

are of quite di�erent order for di�erent values of the index l. Observing Example 3.2 we see that

the design maximizing the ratio in (3.20) has canonical moments p

i

= 1=2, (i = 1; : : : ; 2l � 1),

p

2l

= 1 and we obtain from Theorem 2.8 that

sup

�

jM

l

(�)j

jM

l�1

(�)j

= 2

�2l+2

:

This means that we standardized each term in (3.19) by the maximum value obtainable by

maximzing jM

l

(�)j=jM

l�1

(�)j seperately.

Theorem 3.9. For a design � with jM

d

(�)j 6= 0 de�ne

N (�) =

n

j 2 f1; : : : ; dg

�

�

�

2

2j�2

jM

j

(�)j

jM

j�1

(�)j

= 	(�)

o

: (3.21)

A design �

�

is a maximin-optimal discriminating design if and only if jM

d

(�

�

)j 6= 0 and for any

l 2 N (�

�

) there exist a nonnegative number �

l

such that

X

l2N (�

�

)

�

l

= 1 (3.22)

and such that the inequality

X

l2N (�

�

)

�

l

(e

T

l

M

�1

l

(�

�

)f

l

(x))

2

e

T

l

M

�1

l

(�

�

)e

l

� 1 (3.23)

holds for all x 2 [�1; 1]. Moreover there is equality in (3.23) for all support points of the

maximin-optimal discriminating design.

Note that this result provides a similar characterization of the the optimal design as given for

the D-optimality criterion in Theorem 1.8 or in Lemma 3.4 for the geometric mean. However,

there is an important di�erence which should be pointed out here. While Theorem 1.8 and

Lemma 3.4 are directly applicable to check the optimality of a given design, this is not possbile

for Theorem 3.9. The reason is that it is not clear how to choose the weight �

l

(except in the

case where #N (�

�

) = 1) for a given design �

�

. These quantities appear because of the non-

di�erentiablity of the criterion (3.19) and represent certain subgradients of a concave function.

For the same reason a proof of Theorem 3.9 is based on general arguments of convex analysis

[see Pukelsheim (1993)] and is not given here [see Dette (1995) or Dette and Studden (1997) for

more details]. Nevertheless this result provides one of the main tools in identifying the design

maximizing the function 	 in (3.19).
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Theorem 3.10. The design �

�

maximizing the function 	(�) in (3.19) is uniquely determined

and has canonical moments

p

2j�1

=

1

2

j = 1; : : : ; d

(3.24)

p

2j

=

d� j + 2

2(d� j) + 2

j = 1; : : : ; d :

Moreover, the support points of �

�

are obtained as the roots of the polynomial

(x

2

� 1)U

0

d

(x)

and the weights are given by

�

�

(x) =

8

>

>

>

<

>

>

>

:

1

d+ 2

if U

0

d

(x) = 0

3

2

1

d+ 2

if x = �1

Proof. Assume that �

�

has the canonical moments as speci�ed in Theorem 3.10. Observing

Theorem 2.8 it then straightforward to show that

jM

l

(�

�

)j

jM

l�1

(�

�

)j

� 2

2l�2

=

jM

d

(�

�

)j

jM

d�1

(�)j

2

2d�2

for all l = 1; : : : ; d. By de�nition of the set N (�

�

) in (3.21) this implies

N (�

�

) = f1; : : : ; dg :

For the application of Theorem 3.9 we have to identify the weights �

l

and we will use Theorem

3.3 for this purpose. This result shows that �

�

also maximizes a geometric mean

	

�

�

(�) =

d

Y

l=1

�

jM

l

(�)j

jM

l�1

(�)j

�

�

�

l

if the weights �

�

l

are choosen appropriately, that is

�

�

l

=

l�1

Y

j=1

q

2j

p

2j

�

1�

q

2l

p

2l

�

=

2

d(d+ 1)

(d� l + 1) (3.25)

(l = 1; : : : ; d); where the last equality follows from the represenation for the canonical moments

(of even order) of the design �

�

; i.e.

p

2l

=

d� l + 2

2(d� l) + 2

; l = 1; : : : ; d:
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Now Lemma 3.4 shows that the inequality

d

X

l=1

�

�

l

(e

T

l

M

�1

l

(�

�

)f

l

(x))

2

e

T

l

M

�1

l

(�

�

)e

l

� 1 (3.26)

holds for all x 2 [�1; 1]. Moreover, from (3.25) it is easy to see that

P

d

l=1

�

�

l

= 1 and that

�

�

l

� 0 for all l = 1; : : : ; d. Oberving N (�

�

) = f1; : : : ; dg it therefore follows that we can use

the weights �

l

= �

�

l

in Theorem 3.9 and obtain from (3.26)

X

l2N (�

�

)

�

l

(e

T

l

M

�1

l

(�

�

)f

l

(x))

2

e

T

l

M

�1

l

(�

�

)e

l

� 1

for all x 2 [�1; 1]. From Theorem 3.9 it therefore follows that �

�

de�ned by the canoncial

moments in (3.24) maximzes the function

	(�) = min

n

jM

l

(�)j

jM

l�1

(�)j

2

2l�2

j l = 1; : : : ; d

o

;

which proves the �rst assertion of Theorem 3.10. The representation of the support points and

weights is now obtained by similar arguments as given in Section 2.3 and therefore omitted. 2

Example 3.11. In this example we discuss the problem of constructing a maximin optimal

discriminating design for the discrimination between a linear, quadratic and cubic polynomial

regression model. Thus we have d = 3

U

0

3

(x) = (8x

3

� 4x)

0

= 24x

2

� 4

and we obtain from Theorem 3.9 for the maximin optimal discriminating design

�

�

=

 

�1 �1=

p

6 1=

p

6 1

0:3 0:2 0:2 0:3

!

:

3.4 Extremal problems for polynomials

In this section we discuss some extensions of an extremal property of the Chebyshev polynomials

of the �rst kind [see Chebyshev (1959)]. More precisely we consider the problem

min

a

0

;:::;a

d�1

sup

x2[�1;1]

�

�

�

x

d

�

d�1

X

j=0

a

j

x

j

�

�

�

(3.27)

of best approximation of the power x

d

by a (real) polynomial of degree d � 1. It is well

known (see Natanson (1955) or Rivlin (1990)) that the minimum value in (3.27) is given by
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1=2

d�1

and the \best" polynomial x

d

�

P

d�1

j=0

a

j

x

j

is given by 1=2

d�1

T

d

(x) where T

d

(x) is the

Chebyshev polynomial of the �rst kind. We will present a new proof of this result, which

was proposed by Studden (1980b) and is based on a game theoretic argument. The main

idea is to relate the extremal problem to the D

1

-optimal design problem which can be solved

with canonical moments [see Example 3.2]. This duality allows the treatment of more general

extremal problems. With the notation of the previous sections (3.27) can be rewritten as

(a 2 R

d+1

)

inf

ja

T

e

d

j

2

=1

sup

x2[�1;1]

(a

T

f

d

(x))

2

= inf

ja

T

e

d

j

2

=1

sup

�

Z

1

�1

(a

T

f

d

(x))

2

d�(x)

= inf

ja

T

e

d

j

2

=1

sup

�

a

T

M

d

(�)a

= sup

�

inf

ja

T

e

d

j

2

=1

a

T

M

d

(�)a (3.28)

= sup

�

inf

a2R

d+1

a

T

M

d

(�)a

(a

T

e

d

)

2

(3.29)

= sup

�

(e

T

d

M

�1

d

(�)e

d

)

�1

(3.30)

= sup

�

jM

d

(�)j

jM

d�1

(�)j

:

with the convention that (e

T

d

M

�1

d

(�)e

d

)

�1

is zero if M

d

(�) is singular. Here the equality in

(3.28) follows from a game theoretic argument and the fact that the kernel w(a; �) = a

T

M

d

(�)a

is convex in a and concave (even linear) in �. Note that the calculation of the supremum in

(3.29) can be restricted to the set of designs with nonsingular moment matrix of order 2d and

that the equality between (3.29) and (3.30) is a consequence of Cauchy's inequality

(a

T

e

d

)

2

� a

T

M(�)a � e

T

d

M

�1

(�)e

d

: (3.31)

Now (3.30) is the D

1

-optimal design problem in a polynomial regression of degree d which was

solved in Example 3.2. If �

D

1

d

denotes the D

1

-optimal design and

P

d

(x) = â

T

f

d

(x) ; (â

T

e

d

)

2

= 1 (3.32)

is a optimal solution of (3.27), then there must be equality in (3.31), i.e.

â = cM

�1

(�

D

1

d

)e

d

; (3.33)

where the constant c is determined by (â

T

e

d

)

2

= 1. Combining (3.32), (3.33) with Lemma 3.5 it

follows that P

d

(x) is the dth monic orthogonal polynomial with respect to the measure d�

D

1

d

(x)

(up to the sign). Now the canonical moments of �

D

1

d

up to the order 2d�1 are 1/2 and coincide

with the canonical moment of the arc-sine distribution. Therefore Theorem 2.7 shows that

P

d

(x) is the dth monic orthogonal polynomial with respect to the arc-sine measure, i.e.

P

d

(x) =

1

2

d�1

T

d

(x) ;
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which determines the solution of the extremal problem (3.27).

In the remaining part of this article we discuss a more general extremal problem which cannot

be solved by the \classical" methods of approximation theory. To be precise let I = fi

1

; : : : ; i

n

g

denote a subset of f1; : : : ; dg containing d and de�ne

P

I

:=

n

(P

j

)

j2I

j P

j

2 IP

j

; j 2 I; sup

x2[�1;1]

X

j2I

P

2

j

(x) � 1

o

as the set of all polynomials of degree i

1

; : : : ; i

n

such that the sup-norm of the sum of squares

is bounded by 1 on the interval [�1; 1]. In the following m

l

(P

l

) denotes the leading coeÆcient

of the polynomial P

l

2 IP

l

. We are interested in the (nonlinear) extremal problem

(P

I

) max

n

X

l2I

�

l

m

2

l

(P

l

) j (P

l

)

l2I

2 P

I

o

where � = (�

i

1

; : : : ; �

i

n

) denotes a vector of positive weights with sum 1. Note that for I = fdg

the extremal problem (P

I

) reduces to the problem of maximizing the highest coeÆcient among

all polynomials of (precise) degree d with sup-norm bounded by 1. This is an alternative for-

mulation of the \classical" Chebyshev approximation problem (3.27). Throughout this section

the orthogonal polynomials with leading coeÆcient 1 corresponding to a probability measure

will be denoted by R

j

(x; �) and their (squared) L

2

-norm by

k

j

(�) =

Z

1

�1

R

2

j

(x; �)d�(x) =

jM

j

(�)j

jM

j�1

(�)j

= (e

T

j

M

�1

j

(�)e

j

)

�1

: (3.34)

The main step for solving the extremal problem (P

I

) is the following duality which is the

analogue in the game theoretic argument in (3.28). A proof is based on Fenchel's duality

theorem in convex analysis and can be found in Dette (1995b) or Dette and Studden (1997).

Theorem 3.12. If � := f� 2 � j jM

d

(�)j > 0g denotes the set of all probability measures with

nonsingular Hankel matrix M

d

(�), then the following duality holds

(P

I

) max

n

X

l2I

�

l

m

2

l

(P

l

) j (P

j

)

j2I

2 P

I

o

= min

�2�

max

j2I

f�

j

k

�1

j

(�)g (D

I

)

and solutions of (P

I

) and (D

I

) exist.

Moreover, let �

�

be a solution of the problem (D

I

),

M(�

�

) = fj 2 I j �

�1

j

k

j

(�

�

) = min

i2I

�

�1

i

k

i

(�

�

)g;

and

p

1=k

j

(�

�

)R

j

(x; �

�

) denote the jth orthonormal polynomial with respect to the measure

d�

�

(x). Then there exist constants �

j

� 0 with sum 1 satisfying

�

j

= 0 if j 2 I nM(�

�

) (3.35)
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X

j2I

�

j

k

�1

j

(�

�

)R

2

j

(x; �

�

) � 1 for all x 2 [�1; 1] : (3.36)

With this choice f

p

�

j

=k

j

(�

�

)R

j

(x; �

�

)g

j2I

is a solution of the extremal problem (P

I

).

Note that the dual problem (D

I

) contains as a special case the optimization problem considered

in (3.19) (n = d, �

j

= 2

�2j+2

, j = 1; : : : ; n). While from a statistical point of view the main

interest are the support points and weights of the solution �

�

of (D

I

) Theorem 3.12 shows

that the orthogonal polynomials with respect to the optimal design d�

�

(x) are needed for the

solution of the extremal problem (P

I

). These polynomials can be calculated by the recurrence

relations given in Theorem 2.7 and the L

2

-norm is given

k

d

(�

�

) =

Z

1

�1

R

2

d

(x; �

�

)d�

�

(x) = 2

2d

d

Y

j=1

q

�

2j�2

p

�

2j�1

q

�

2j�1

p

�

2j

; (3.37)

where p

�

1

; p

�

2

; : : : denote the canonical moments of the optimal design �

�

. The following result

speci�es these canonical moments in explicit form.

Theorem 3.13. The solution �

�

of the dual problem (D

I

) is uniquely determined by its canon-

ical moments (p

�

1

; : : : ; p

�

2d

) where p

�

2j�1

= 1=2 (j = 1; : : : ; d), p

�

2d

= 1, p

�

2(d�j)

= 1=2 if d� j 62 I

and

p

�

2(d�j)

= max

n

1�

�

d

�

d�j

d�1

Y

i=d�j+1

(q

�

2i

p

�

2i

)

�1

;

1

2

o

: (3.38)

if d� j 2 I.

Proof. The result can be proved by similar arguments as given in the proof of Theorem 3.10.

We provide an alternative proof, which is directly based on the duality result of Theorem 3.12

and uses the identities for orthogonal polynomials derived in Section 3.2. For d� j 2 I let



d�j

= 1� �

d

=�

d�j

d�1

Y

i=d�j+1

(q

�

2i

p

�

2i

)

�1

(

d

= 1);

then it is easy to see (observing (3.37) and (3.38)) that for d� j 2 I



d�j

�

1

2

if and only if �

�1

d

k

d

(�

�

) = �

�1

d�j

k

d�j

(�

�

)



d�j

<

1

2

if and only if �

�1

d

k

d

(�

�

) < �

�1

d�j

k

d�j

(�

�

)

Consequently, we have for the set M(�

�

) in Theorem 3.12

d 2 M(�

�

) = fj 2 I j 

j

�

1

2

g (3.39)

p

�

2j

=

1

2

if j =2 M(�

�

): (3.40)
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In the following de�ne weights �

1

; : : : ; �

d

by

�

j

=

j�1

Y

i=1

q

�

2i

p

�

2i

�

1�

q

�

2j

p

�

2j

�

: (3.41)

These have sum 1 and are nonnegative, by the de�nition of p

�

2j

in (3.38). Additionally we

have by (3.40) �

j

= 0 whenever j 62 M(�

�

). From (3.37) it follows that the polynomials

k

�1=2

l

(�

�

)R

l

(x; �

�

) are orthonormal with respect to the measure d�

�

(x) and Theorem 3.6 shows

(note that p

�

2d

= 1)

d

X

j=1

�

j

k

�1

j

(�

�

)R

2

j

(x; �

�

) =

X

j2M(�

�

)

�

j

k

�1

j

(�

�

)R

2

j

(x; �

�

) � 1 (3.42)

for all x 2 [�1; 1]. In other words

fR

�

j

(x)g

j2I

:=

�

q

�

j

=k

j

(�

�

)R

j

(x; �

�

)

�

j2I

2 P

I

(3.43)

and by the de�nition of M(�

�

) and

P

j2M(�

�

)

�

j

= 1 it follows

X

j2I

�

j

m

2

j

(R

�

j

) =

X

j2M(�

�

)

�

j

m

2

j

(R

�

j

) =

�

d

k

d

(�

�

)

= maxf�

j

k

�1

j

(�

�

) j j 2 Ig :

Therefore we have equality in Theorem 3.12 for fR

�

j

g

j2I

2 P

I

, �

�

2 � and the assertion of the

theorem follows. 2

Example 3.14. We will conclude with two examples illustrating the application of Theorem

3.12 and 3.13. Consider at �rst the weights �

1

= : : : = �

d

=

1

d

, then the problem is to maximize

d

X

l=1

m

2

l

(P

l

)

subject to the constaints

d

X

l=1

P

2

l

(x) � 1 8 x 2 [�1; 1] : (3.44)

In this case we have from Theorem 3.13 p

�

i

= 1=2 for all i = 1; : : : ; 2d � 1, p

�

2d

= 1, the

corresponding optimal design is the D

1

-optimal design (see Example 3.2) and

M(�

�

) = fdg:

>From Theorem 3.12 and the proof of Theorem 3.13 we obtain for the extremal polynomials

P

l

(x) = 0 ; l = 1; : : : ; d� 1 ; P

d

(x) = T

d

(x) :
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On the other hand, if �

l

= 2

�2l+2

, l = 1; : : : ; d we are maximizing

d

X

l=1

2

�2l+2

m

2

l

(P

l

)

subject to the constrained (3.44) and the dual problem is the maximin discrimination design

problem discussed in Section 3.3. Thus the canonical moments of the solution �

�

of the corre-

sponding dual problem �

�

can either be obtained from Theorem 3.9 or 3.13 and are given by

(3.24). Consequently we have

M(�

�

) = f1; : : : ; dg

and all polynomials are needed for the solution of the extremal problem. From Theorem 2.7 we

obtain for the monic orthogonal polynomials with respect to the measure d�

�

(x) the recursive

relation R

1

(x; �

�

) = x,

R

2

(x; �

�

) = x

2

�

d+ 1

2d

R

l+1

(x; �

�

) = xR

l
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�

) �

1

4

R

l�1

(x; �

�

) ; l = 1; : : : ; d� 1

and R

l

(x; �

�

) can be identi�ed as a di�erence of a Chebyshev polynomial of the �rst and second

kind [see Chihara (1978), Chapter VI - 13], that is

R

l

(x; �

�

) = 2

1�l

h

T

l

(x)�

1

d

U

l�2

(x)

i

; l = 1; : : : ; d :

Finally, we obtain from (3.24) and (3.41) and a straightforward calculation

�

l

=

2(d� l + 1)

d(d+ 1)

; l = 1; : : : ; d

k

l

(�

�

) =

�

1

4

�

l�1

d+ 1

2d

and Theorem 3.12 yields for the corresponding extremal polynomials

P

l

(x) =

2

p

d� l + 1

d+ 1

h

T

l

(x)�

1

d

U

l�2

(x)

i

; l = 1; : : : ; d :
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