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Abstract. We consider a uni�ed description of classi�cation rules for nearly singu-

lar covariance matrices. When the covariance matrices of the groups or the pooled

covariance matrix become nearly singular, bayesian classi�cation rules become seri-

ously unstable. Several procedures have been proposed to tackle this problem, e.g.

SIMCA, and Regularized Discriminant Analysis. N�s and Indahl (1998) discovered

common properties for all of these procedures and proposed a uni�ed classi�er that

incorporates the functionality of them all. Since the uni�ed approach needs many

parameters, they also proposed an alternative classi�er with fewer parameters. We

implemented both classi�ers and compared them in a simulation study to the pro-

cedures RDA, LDA, and QDA. To enhance the comparability of our results we

based the simulation study on the study of Friedman (1989).

In the implementation, we used a combination of the Nelder-Mead Simplex-

algorithm and Simulated Annealing (Bohachevsky et al. (1986)) to optimize the

classi�cation error directly.
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1 Introduction

The classical approaches to discriminant analysis are based on estimates of

the inverse covariance matrices for each group (Quadratic Discriminant Anal-

ysis, QDA) or on a common inverse covariance matrix (Linear Discriminant

Analysis, LDA). The estimates of the covariance matrix can become badly

conditioned for several reasons. First of all the explanatory variables may

be multicollinear. Another situation encountered is an insuÆcient number of

observations per group, which leads to a similar problem. Since these prob-

lems are encountered in many studies, a wide variety of methods has been

developed to tackle this problem. There are mainly two typical approaches:

On the one hand dimension reduction techniques like Principal Component



Analysis (PCA), Partial Least Squares (PLS) or Minimal Error Rate Clas-

si�ers (MEC) (R�ohl et al. (2002)) are applied. On the other hand there are

methods which preserve the dimensionality but manipulate the covariance

matrix estimates, like MCA, SIMCA, DASCO or Regularized Discriminant

Analysis (RDA) (please refer to N�s and Indahl (1998) for these methods).

N�s and Indahl (1998) recognized that the latter methods could be described

in a uni�ed way.

In this paper we consider �rst the uni�ed description of N�s and Indahl

in section 2. Next we explain our approach for an implementation of the

method (section 3). We tested our algorithm in an extensive simulation study

and compared it to RDA, and the classical LDA and QDA (sections 4 and

5). Finally we conclude with some comments and suggestions for further

research.

2 Uni�ed Description

N�s and Indahl recognized three \conceptual dimensions" in which the dif-

ferent methods for manipulating the covariance matrix can be organized. We

reformulated these \dimensions" in the following way:

1. Manipulation of singular eigenvalues �

k

; k = 1; : : : ; d.

2. Shrinking of the group-speci�c covariance matrices S

j

; j = 1; : : : ; G,

towards the pooled covariance matrix S

p

.

3. Shrinking of the covariance matrices S

j

; j = 1; : : : ; G, towards the iden-

titiy matrix I

d

.

The �rst dimension yields the opportunity to replace some eigenvalues by

values which result in more stable inverses or reduce the typical bias in

eigenvalue-estimates. The aforementioned bias corresponds to the fact that

small eigenvalues are estimated too small and large eigenvalues too large.

The second dimension focuses on stabilizing the estimate by moving to-

wards an estimator which comprises more knowledge from the data, and is

therefore more stable.

Finally the third dimension tries to solve the multicollinearity problem

by reducing the inuence of covariances between the explanatory variables.

Formula 1 gives the complete form of the covariance estimator for the jth

group, which includes all regularisation possibilities.
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where (U

j

1

U

j

2

) is a partition of the d� d eigenvector matrix of the j-th group

covariance matrix, with U

j

1

corresponding to the large eigenvalues in the K-

dimensional diagonal matrix �

j

1

and U

j

2

corresponding to the d � K small

eigenvalues. The other parameters correspond to the di�erent regularisations

in the following way:
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� K 2 f0; : : : ; dg is the dimension of the space of high variability.

� Æ 2 [0; 1] models the shrinking towards the pooled covariance matrix.

� �

j

2 [0;1) models the shrinking towards the identity matrix.

� m manipulates the large eigenvalues similarly for all groups.

� �

j

2 [0;1) is the replacement for the small eigenvalues.

� c

j

2 [0;1) is an additional scaling factor.

Thus all mentioned directions of regularisation can be achieved with this

estimator. A great problem are the additional 3+2G parameters which have

to be derived from the data to use this estimator. When a covariance estimate

for LDA is to be regularized, the pooled covariance matrix is used instead of

the group covariance matrices. Thus the group indices j and parameter Æ are

omitted in formula 1, and the eigenvalue-decomposition is applied directly to

the pooled covariance matrix.

To avoid the large number of parameters of the uni�ed approach, N�s and

Indahl proposed an alternative estimator by omitting the parameters c

j

; �

j

and by not using a group-speci�c choice of �:
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This parameter reduction leads mainly to the loss of the possibility of regu-

larization in the third of our dimensions, the shrinking towards the identity

matrix. Furthermore the group-speci�c manipulation of the small eigenvalues

is lost.

In our simulations (see section 4) we compare these two approaches which

will be called Uni�ed Regularized Classi�cation method (URC), or Alter-

native Regularized Classi�cation method (ARC), resp., to standard LDA

and QDA, and as a further competitor we chose Regularized Discriminant

Analysis (Friedman (1989)), since RDA especially shrinks towards the iden-

tity matrix and so it is of great interest to compare the performance of the

alternative estimator to RDA. RDA regularizes in dimensions 2 and 3 and

actually has two paramters Æ;  steering the shrinkage. The �rst step is the

shrinkage towards the pooled covariance matrix:

^

�

j

(Æ) = ÆS

j

+ (1� Æ)S

p

;

and the second step is towards a weighted identity matrix:

^

�

j

(Æ; ) = (1� )

^

�

j

(Æ) +



d

tr(

^

�

j

(Æ))I

d

; j = 1; : : : ; G

The uni�ed estimate equals the RDA estimate, if

K = d; c

j

= 1� ; m = 1; �

j

=

tr(ÆS

j

+ (1� Æ)S

p

)

d(1� )Æ

:

Before the simulation study will be described, we point out some impor-

tant issues about the implementation.
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3 Algorithm

Since there is no analytical way to estimate the regularization parameters, an

optimization has to be performed. We chose as objective for this optimiza-

tion the minimization of the mean prediction error rate, which is calculated

by splitting the observations into equally sized training and test sets four

times and predicting the classes of the test data. As optimization algorithm

we chose the Nelder-Mead-Simplex Algorithm which is able to cope with

a higher dimensional search space and does not need derivatives or other

information of the functional form of the objective. We also tested a combi-

nation of Nelder-Mead with Simulated Annealing to overcome possible local

minima. The standard version of this algorithm makes the assumption of an

unrestricted parameter space, which is not true in our case. So the di�erent

restrictions on the parameters had to be implemented to ensure the selection

of valid parameter values. Furthermore the parameter K is an integer which

has to be optimized separately or appropriately included in the optimization

process.

The restrictions were implemented �rst by testing the validity of each

new parameter vector. If one parameter is outside its respective boundaries,

it is set to the nearer bound of the parameter space. For example, if Æ, which

stands for the convex combination of the group covariance with the pooled

covariance, becomes greater than 1 by expansion of the simplex, it is set to 1.

In a second step we tested whether smooth transformations of the pa-

rameters into the admissable region might lead to better results. For the

parameter Æ a sigmoidal function of the form f(x) =

1

1 + e

�x

is used, for the

other parameters we used the exponential function as transformation.

The greatest diÆculty was the inclusion of the parameter K into the

optimization. The �rst approach was to select a range of interest for K and

optimize for each K and then select the set of parameters with the best

estimated error rate. But this approach is very time consuming so a second

approach was tested. In this second approach the search for an optimal K is

included into each optimization step by testing three subsequent values of K

lieing next to the best value of K found so far. If nothing else is speci�ed,

the starting value is chosen by calculating the mean of the eigenvalues over

the groups and choosing the number of large eigenvalues which contribute at

least 75% to the sum of all mean eigenvalues.

Finally we implemented our own version of RDA by using the algorithm

with the sigmoidal transformation described above to optimize the parame-

ters Æ and .

4 Simulation Study

Two test data sets are constructed as described in the study of Friedman

(1989) to make our results comparable to the �ndings there. In all settings
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Friedman considered three groups in the data. Here we restrict ourselves

to two settings from this study, namely Setting 1 where the mean vectors

are �

1

= 0; �

2

= (3; 0; : : : ; 0)

T

; �

3

= (0; 3; 0; : : : ; 0)

T

and covariance �

j

=

diag(1; : : : ; 1) and Setting 4, where the eigenvalues of the covariance matrices

are equal and determined by e

i

= (9(i � 1)=(d � 1) + 1)

2

; i = 1; : : : ; d the

means are �

1

= 0; �

2

= (2:5

p

e

i

=d

d�i

d=2�1

)

d

i=1

; �

3

=

�

(�1)

i

�

2i

�

d

i=1

. So in the

latter situation the mean di�erences are concentrated in the high-variance

subspace, which makes it diÆcult for RDA.

As a further test data set we constructed extremely multicollinear data

by simulating a one-dimensional normal variable which is projected into a six

dimensional space and adding noise of di�erent magnitude for each dimension.

The space of high variability consists of three dimensions. Again we de�ned

three di�erent group distributions. We considered three di�erent situations

of this type:

1. Equal covariance structure with di�erent spreads, mean di�erences in

high variance space.

2. Di�erent covariance structures with highest spread in orthogonal direc-

tions, mean di�erences in high variance space.

3. Covariance structures as in 2., but higher total variance, and mean dif-

ferences in low variance subspace.

For all situations described above 100 replications were sampled and eval-

uated. Like Friedman we trained the procedures on samples of size 40 for the

settings taken from his study, which were randomly distributed into the three

groups, but used equal priors of 1=3 in all procedures. For the multicollinear

data sets we used training samples of size 100. The test data sets consisted

each of 100 observations. We applied LDA and QDA as implemented in the

MASS library (Venables and Ripley (1999)) for R and our new routines named

URC and ARC are implemented in R (Ihaka and Gentleman (1996)) as well.

We applied ARC with and without simulated annealing. Beside the results

for our implementation of RDA we report the results from the orginal paper

by Friedman.

5 Results of the Simulation

Tables 1 and 2 give an overview of the results for the two settings from

Friedman. The \# no results" lines give the number of test sets where singular

covariance matrices appeared in QDA. It is obvious, that the N�s procedures

can not compete with RDA. But they are better than QDA in all situations

and the uni�ed approach is equally good or even better than LDA.

The results give rise to the question, why the results of URC and ARC

are so similar to LDA. A possible explanation are high values of the shrinkage

parameter towards the pooled covariance. Figure 1 shows indeed, that Æ is

nearer to 1 in dimensions d = 20 and d = 40 and with d = 6 and d = 10 the
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median still lies above 0:5. Therefore, it is not surprising, that the uni�ed

approach can not be more e�ective than LDA, since with a high Æ the e�ect

of most of the other parameters is diminished.

Number of variables

6 10 20 40

Friedman RDA 0.11 (0.03) 0.12 (0.04) 0.16 (0.05) 0.19 (0.05)

Æ 0.77 (0.037) 0.79 (0.035) 0.75 (0.037) 0.78 (0.034)

 0.74 (0.034) 0.72 (0.032) 0.74 (0.028) 0.80 (0.022)

own RDA 0.12 (0.04) 0.13 (0.04) 0.16 (0.05) 0.20 (0.05)

RDA with Sim. Ann. 0.11 (0.04) 0.13 (0.04) 0.15 (0.05) 0.19 (0.04)

LDA 0.13 (0.04) 0.16 (0.05) 0.26 (0.06) 0.48 (0.08)

QDA 0.25 (0.07) 0.46 (0.08) - (-) - (-)

# no result 2 53 100 100

URC 0.13 (0.04) 0.17 (0.07) 0.30 (0.16) 0.39 (0.13)

Trafo'-URC 0.16 (0.10) 0.21 (0.14) 0.27 (0.17) 0.49 (0.15)

ARC 0.12 (0.03) 0.16 (0.04) 0.26 (0.07) - (-)

Trafo'-ARC 0.13 (0.04) 0.17 (0.07) 0.26 (0.07) - (-)

ARC + SimAnn. 0.14 (0.06) 0.16 (0.04) 0.26 (0.08) - (-)

Table 1. Means of prediction error rates from Setting 1 by Friedman; the numbers

in parantheses are the standard deviations; Trafo'-*RC means that transformations

have been used to build in the restrictions on the parameters

A second possible question is if ARC or URC favour parameter settings

similar to RDA in these Settings 1 and 4. This would mean that parameters

c

j

and �

j

; j 2 f1; : : : ; Gg, would behave like the outer convex combination in

RDA realized by . This is not the case as can be seen from Figure 2, where

the realized values are depicted in the boxplot on the left hand side of each

column and on the right hand side the corresponding values for equivalence

to RDA are shown. The latter values are calculated from the values realized

in our own implementation of RDA. Obviously �

1

is estimated too low for

an equal e�ect as in RDA and c

1

is estimated too high.

The parameters �

j

; j 2 f1; : : : ; Gg show an interesting behaviour: They

are similar to the constant weight of the identity matrix in RDA,

1

d

tr(S

j

(Æ)).

We approximate the trace by the sum of the true eigenvalues of the covariance

matrices, and plot these points as horizontal lines into the boxplots of the

results from URC for �

1

, which is taken as an example because the other

�

j

; j = 2; 3, do not di�er much. This shows, that URC does select values for

�

j

as optimal, which are near to a value considered sensible from a theoretical

point of view.
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Number of variables

6 10 20 40

Friedman RDA 0.06 (0.03) 0.05 (0.02) 0.14 (0.04) 0.18 (0.05)

Æ 0.92 (0.024) 0.86 (0.030) 0.72 (0.038) 0.76 (0.036)

 0.71 (0.036) 0.66 (0.036) 0.70 (0.029) 0.79 (0.023)

own RDA 0.06 (0.02) 0.10 (0.03) 0.14 (0.04) 0.16 (0.04)

RDA with Sim. Ann. 0.06 (0.03) 0.10 (0.03) 0.14 (0.04) 0.17 (0.05)

LDA 0.07 (0.03) 0.13 (0.04) 0.23 (0.06) 0.48 (0.08)

QDA 0.18 (0.08) 0.41 (0.10) - (-) - (-)

# no result 0 56 100 100

URC 0.07 (0.04) 0.13 (0.07) 0.24 (0.15) 0.33 (0.12)

Trafo'-URC 0.16 (0.10) 0.21 (0.14) 0.27 (0.17) 0.49 (0.15)

ARC 0.12 (0.12) 0.29 (0.21) 0.31 (0.20) 0.44 (0.17)

Trafo'-ARC 0.08 (0.07) 0.13 (0.06) 0.26 (0.09) - (-)

ARC + Sim. Ann. 0.07 (0.03) 0.14 (0.05) 0.27 (0.06) - (-)

Table 2. Means of prediction error rates from Setting 4 by Friedman; the numbers

in parantheses are the standard deviations Trafo'-*RC means, that transformations

have been used to built in the restrictions on the parameters

Number of variables

6 10 20 40

1 URC 51 / 83 (90) 55 / 92 (88) 95 / 133 (79) 300 / 249 (23)

Trafo'-URC 47 / 87 (85) 58 / 96 (86) 90 / 147 (70) 300 / 220 (39)

ARC 0 / 0 (100) 0 / 0 (100) 184 / 160 (72) 0 / 40 (0)

Trafo'-ARC 0 / 0 (100) 0 / 0 (100) 152 / 129 (87) 0 / 28 (0)

4 URC 46 / 79 (89) 65 / 102 (85) 83 / 121 (83) 300 / 252 (22)

Trafo'-URC 48 / 81 (90) 70 / 83 (96) 89 / 130 (81) 300 / 218 (43)

ARC 0 / 0 (100) 0 / 0 (100) 102 / 109 (72) 0 / 33 (0)

Trafo'-ARC 0 / 0 (100) 0 / 0 (100) 105 / 107 (79) 0 / 36 (0)

Table 3. Means/medians of iterations for the di�erent procedures and % successful

optimizations in parentheses;\success"=convergence within 300 iterations
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Fig. 1. Shrinkage parameter Æ in the Friedman settings for URC
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and �

1

in the Friedman settings for URC, depicted in the

boxplots on the left hand side of each column; the right hand sides give the values

of these parameters for eqivalence to RDA
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ARC did not optimize very much in most cases. As can be seen from

Figure 3(a) and Table 3 it stops in most cases after the starting step. This

means, that all error rates in the start simplex were equal. This was the reason

to test whether simulated annealing could help to overcome this minimum.

This was not the case as can be seen from Figure 3 (b), where the �rst 100

steps are due to the simulated annealing. So we will not discuss ARC in

further detail here.
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Fig. 3. Iterations for ARC,(a) in the upper row using the restriction, in the lower

row using the transformation for the parameters, (b) with simulated annealing

The test of the transformations to implement the restrictions on the pa-

rameter space did not improve the results as we had hoped for. The results,

where an improvement was encountered could as well be due to chance of a

good choice of starting values in ARC, because even in this changed proce-

dure it did select in most cases just one arbitrary setting from the starting

simplex, as can be seen from Table 3.
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The reason for the diÆculties to �nd an optimal set of parameters can

be due to the small number of 40 observations in the learning sets, because

this means that di�erent parameter settings will not lead to a change in the

estimated error rate.

Finally let us consider our example of truly multi-collinear data. As in the

Friedmann-settings our methods are not able to �nd better classi�cations

than RDA, or LDA, QDA, respectively. It seems that di�erent parameter

settings in ARC do not change the misclassi�cation rate signi�cantly. All in

all the situations seem to be handled by all procedures similarly.

Setting

1 2 3

LDA 0.25 (0.04) 0.23 (0.04) 0.29 (0.05)

QDA 0.27 (0.05) 0.13 (0.03) 0.33 (0.05)

URC 0.26 (0.06) 0.20 (0.05) 0.54 (0.13)

Trafo'-URC 0.26 (0.06) 0.20 (0.06) 0.50 (0.13)

ARC 0.24 (0.04) 0.23 (0.04) 0.29 (0.04)

Trafo'-ARC 0.25 (0.04) 0.24 (0.05) 0.28 (0.04)

RDA 0.26 (0.04) 0.17 (0.06) 0.35 (0.10)

RDA with Sim. Ann. 0.25 (0.05) 0.15 (0.05) 0.30 (0.05)

Table 4. Means of prediction error rates from simulations with highly collinear

data; the numbers in parantheses are the standard deviations Trafo'-*RC means,

that transformations have been used to built in the restrictions on the parameters

Again ARC gains good results without any optimization (cp. Table 5),

which is rather surprising. One possible interpretation could be, that any

shrinkage towards the pooled covariance matrix can improve matters.

Setting

1 2 3

URC 72 / 86 (96) 83 / 127 (80) 80 / 118 (84)

Trafo'-URC 71 / 107 (90) 73 / 107 (87) 66 / 107 (86)

ARC 0 / 0 (100) 0 / 0 (27) 0 / 0 (100)

Trafo'-ARC 0 / 0 (100) 0 / 0 (22) 0 / 0 (100)

Table 5. Means/medians of iterations for successful optimizations for collinear

data; \success"=convergence within 300 iterations
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6 Conclusion

We implemented the uni�ed estimator and the proposed alternative estimator

from N�s and Indahl with an enhanced Nelder Mead Simplex algorithm.

The problems of restrictions on the parameter space and an integer valued

parameter were solved.

In the test situation, which we took from Friedman (1989), it turned out

that the procedures tend to regularize in direction of the pooled covariance

matrix and therefore behave similar to LDA. Even though the number of

unknown parameters is quite high, URC is quite stable in the test setting

and chooses parameters which can be compared to theoretical selections of

these parameter values.

ARC turned out to be questionable in this implementation, because it

returned in most cases some arbitrary values for its parameters. But even

these arbitrary parameters seem to improve the error rate compared to QDA

in most cases. In the highly collinear data sets it is even better than RDA. In

the Diploma-thesis of Pouwels (2001) a slightly di�erent implementation of

ARC proved to be better in most cases, but had severe drawbacks in terms

of computation time.

For future work on this implementation it is of interest whether a di�er-

ent optimization procedure could improve the selection of the parameters.

Another idea would be to introduce a linkage between especially the �'s and

Æ to ensure that an e�ect of � is not canceled out directly by a high Æ. Fur-

thermore, one could estimate

1

d

tr(S

j

) and replace �

j

by

1

d

tr(S

j

(Æ))�

�

j

and

and start with normally distributed �

�

j

. Thereby the search algorithm could

be enabled to move towards similar values as RDA.

Computations

All computations were carried out on Athlon 1800+ personal computers un-

der Linux using R. A package for R including ARC and URC is available

from www.statistik.uni-dortmund.de/leute.html?name=wtheis en. The median

of the run-times of URC was 11 minutes, for ARC 10 seconds.
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