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Abstract: Intelligent alarm systems are needed for adequate bedside decision sup-

port in critical care. Clinical information systems acquire physiological variables online

in short time intervals. To identify complications as well as therapeutic e�ects proce-

dures for rapid classi�cation of the current state of the patient have to be developed.

Detection of characteristic patterns in the data can be accomplished by statistical time

series analysis. In view of the high dimension of the data statistical methods for di-

mension reduction should be used in advance. We discuss the potential of statistical

techniques for online monitoring.

1 Introduction

In intensive care, today clinical information systems (CIS) acquire and store all phys-

iological and device parameters online every minute. Currently a physician can be

confronted with more than 200 variables of the critically ill patient during a typical

morning round. However, even an experienced physician is not able to develop a sys-

tematic response to any problem involving more than seven variables (Miller, 1956) nor

is he able to judge the degree of relatedness between more than two variables (Jennings

et al., 1982). Thus electronic bedside decision support o�ers huge potential bene�t.

On the other hand, the technological progress achieved in the electronic patient record

during the last ten years (Imho�, 1993) bears new challenges for statistical methodol-

ogy. Techniques of statistical data analysis have to be automated and adapted to the

online-monitoring context.

Existing alarm systems based on �xed thresholds produce a large number of false

alarms due to measurement artefacts or patient movements (O'Carrol, 1986). Usually

changes of a variable with time are more important than a single pathological value

at the time of observation. Hence, the online detection of qualitative patterns such as

outliers, level changes or trends in physiological variables is important for assessing the

patient's state. Qualitative data abstraction has been developed using deviations of the

measurements from the target range (Miksch et al., 1996), so-called trend templates

(Haimowitz and Kohane, 1996), or robust adaptive control charts (Daumer, 2000).

However, they do not consider temporal correlations or they demand prede�nition



2 STATISTICAL TIME SERIES ANALYSIS 2

of expected behaviour, which is hard to specify in advance because of the irregular

patterns found in critical care.

Statistical time series modelling has been proven useful for retrospective analysis

of physiologic variables. It leads to interpretable descriptions of complex underlying

dynamics, provides forecasts, gives con�dence bounds and allows the assessment of

the clinical e�ects of therapeutic interventions (Hill and Endresen, 1978, Gordon and

Smith, 1990, Hepworth et al., 1994, Imho� et al., 1997). For pattern detection in single

variables, techniques such as multiprocess models, dynamic linear models, ARIMA-

models, and phase space models have already been applied.

Pattern detection in multivariate time series of several physiologic variables is much

more diÆcult than in univariate series. Furthermore, in high dimensions the compu-

tational e�ort can exceed any available computational power (Huber, 1999). This

problem becomes even more severe in the online monitoring context where fast and

robust algorithms are needed. The demand for robustness against disturbances like

sequences of patchy outliers arises because of their negative e�ects on correct pattern

classi�cation. In consequence, reliable procedures for analysing multivariate physiologic

time series have to be developed and validated with real data. Statistical methods like

graphical models, sliced inverse regression, principal component analysis and factor

analysis can be applied for dimension reduction.

In the following we discuss statistical methods for time series analysis and for dimen-

sion reduction. We explore how they can be combined for achieving suitable bedside

decision support and report our experiences w.r.t. analysing the hemodynamic sys-

tem, i.e. variables such as blood pressures, heart rate, pulse, blood temperature and

pulsoximetry.

2 Statistical Time Series Analysis

Subsequent measurements of the same variable typically show autocorrelated behaviour,

i.e., subsequent observations are often positively related. Statistical methods for time

series allow to consider such autocorrelations in the data analysis. Particularly we

aim at the online detection of patterns such as level changes, artefacts and trends in

physiologic time series. The reliable distinction between these patterns is diÆcult since

often combinations of several patterns occur (see Figure 1).

2.1 Dynamic Linear Models

In one of the �rst attempts to apply statistical time series analysis to online monitoring

data, Smith and West (1983) used a multiprocess dynamic linear model to monitor

patients after renal transplantation. In dynamic linear models (DLMs) (West and

Harrison, 1989) the observation X

t

at time t is considered as a linear transformation

of an unobservable vector of state parameters. These states are assumed to change

dynamically in time according to a simple regression model. The linear growth model
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Figure 1: Patterns of change in univariate physiologic time series. Combinations of

several patterns, which usually occur in practice, may cause problems for any identi�-

cation rule
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is very appealing for describing hemodynamic variables. Here, �

t

is the unknown pro-

cess level and �

t

is the unknown slope at time t. In the multiprocess version used by

Smith and West di�erent variances of the random observation error �

t

and the random

change in evolution Æ

t;j

at time t are assumed for describing the steady state, outliers,

level changes and trends. For pattern classi�cation they calculated the posterior prob-

abilities of these states in a Bayesian framework using a multiprocess Kalman �lter. In

related work time series from anaesthesia were analysed (Daumer and Falk, 1998).

Routine application of these models has not been practiced yet because of their

very strong sensitivity against misspezi�cation of the hyperparameters and their insen-

sitivity against moderate level shifts.

The computational e�ort can signi�cantly be reduced by using a single-process

model. Pattern detection can be accomplished by assessing the in
uence of recent

observations on the parameter estimates. This can be done via in
uence statistics

(Cook, 1977) which compare estimates of the state parameters calculated with and

without the most recent observations. When an outlier occurs the current level is

supposed to be far from the current observation, while for a level change and a trend

the recent observations should have a large in
uence on the estimate of the level and

slope parameter respectively.

While this technique was successfully applied for retrospective analysis (Pe~na, 1990,

De Jong and Penzer, 1998), online detection of patterns by in
uence statistics has diÆ-

culties with little variability during the estimation period, with level changes occuring

stepwise and with patterns of outliers in short time lags. Little variability during the

estimation period causes the detection of outliers and level changes to be too sensi-
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tive subsequently. Stepwise level changes are hard to detect since the smoothed level

parameter adjusts step by step, so that the in
uence statistics do not have signi�cant

values at any time. Several close outliers may either mask each other or be mistaken

for a level change. Nevertheless, all kind of patterns in hemodynamic time series could

correctly be identi�ed in most cases (Gather et al., 2000a).

2.2 ARMA Models

An autoregressive moving average (ARMA(p; q)) model (Box et al., 1994) for a time

series formally resembles a multiple regression, where the observation X

t

is assumed

to be a linear transform of p past observations X

t�1

; : : : ; X

t�p

and q unobserved past

shocks �

t�1

; : : : ; �
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are unknown weights. The unobserved shocks �

t

are as-

sumed to form a sequence of uncorrelated variables from a �xed distribution with

mean zero and time invariant variance. This model describes the autocorrelations

within a time series in a tractable way and results in simple computational formulas

for parameter estimation, prediction and con�dence intervals for predictions.

Pattern detection can be accomplished by comparing the incoming observations to

con�dence intervals for the predictions (PI). Time series segments can be classi�ed

into the several patterns according to the number of values outside the PI. Following

medical reasoning we can classify observations as outliers if less than 5 consecutive

observations are outside the PI, while a level change can be identi�ed by 5 or more

consecutive observations outside the PI (Imho� et al., 2000).

In practice, a suitable model order has to be determined �rst. This can be done

by analysing a preliminary estimation period of, say, 60 minutes. Either one could use

the autocorrelation and partial autocorrelation function of these observations, or model

selection criteria such as the Akaike information criterion (De Gooijer et al., 1985) could

be used to specify a suitable model order for this estimation period. However, this is

time-consuming and needs some statistical experience. Moreover, in practice sampling

variation makes this task diÆcult, particularly in the online monitoring context where

estimation intervals have to be rather short. Hence, an extensive model selection

process is not possible in online monitoring and has to be avoided.

Online application of ARMA models can be simpli�ed signi�cantly by using the

same model order for all patients. Analysis of hemodynamic time series provided

evidence that autoregressive models (AR(p), i.e. ARMA(p,q)-models with q = 0) of

order two may be suitable to describe the autocorrelations within the data in most

cases (Lambert et al., 1995, Imho� et al., 1996, 1997), while choosing higher model

orders results in minor di�erences only (Imho� et al., 2000). Therefore, choosing an

overparameterized autoregressive model could be suitable.

Adaptive control limits corresponding to the current state of the patient can be

achieved by moving a time window through the data for estimation. Prediction intervals

for the incoming observations are calculated using the parameter estimates from the

observations measured within the last hour for instance. If the incoming observation
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Figure 2: Two-dimensional phase space vectors from a time series

lies within the prediction interval, then the time window is moved one step ahead,

otherwise the incoming observation is replaced by its prediction.

Trend detection cannot appropriately be achieved in an online manner by AR-

models, while both outliers and level shifts can be detected reliably. The level chosen

for the PI has to be adjusted in case of very high or low variability during the estimation

period.

2.3 Phase Space Models

In phase space models the dynamical information of a time series x

1

; : : : ; x

N

is trans-

formed into a geometric information in an m-dimensional Euclidean space. For this

purpose the phase space vectors

~x

t
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t
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)

0
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m

are constructed, wherem can be chosen similarly to the order of an AR-model (Bauer et

al., 1999a). Figure 2 visualizes the transformation of a time series into a 2-dimensional

space.

In the steady state the phase space vectors arising from a linear Gaussian process

form an m-dimensional elliptic cloud. A control ellipsoid can be estimated using clas-

sical or robust estimators of the mean and the autocovariances of a time series. The

position of the phase space vectors w.r.t. this control ellipsoid gives information about

their deviation from the steady state. If all observations are inside the estimated ellip-

soid, it can be said that the patient is in a steady state. Disturbances can be detected

by the movement of the a�ected vectors in the phase space outside the control ellipsoid

(Bauer et al., 1999b).

In this way, outliers and level shifts can reliably be detected. A trend, however, can

only be detected by looking at the shape of the vector ellipsoid, which is a relatively

insensitive method for the detection of slight trends. For achieving adaptive control

limits corresponding to the current state moving window techniques can be applied as

described above.

3 Dimension Reduction

In critical care a multitude of variables is measured in the course of time. Figure 3

shows a nine-dimensional time series consisting of the heart rate, the pulse, the central
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Figure 3: Multivariate time series representing the hemodynamic system of a patient

measured during about four hours. Some patterns of change occur simultaneously in

several variables, while others seem to occur in distinct variables in short time lags or

in a single variable only

venous, the arterial, and the pulmonary arterial pressures of a patient measured during

about four hours.

For the reason of interpretability we should reduce the dimension of the data on

which decisions are based. This can be achieved either by selecting a subset of the

most important variables or by searching for combinations of the observed variables

which contain as much information as possible.

3.1 Graphical Models

In clinical practice physicians �rst select a subset of the monitored variables to get a

manageable number of variables. For instance, they neglect the arterial diastolic pres-

sure and the arterial systolic pressure and restrict attention to arterial mean pressure

since it is closely related to the other arterial pressures.

Graphical models (Cox and Wermuth, 1996) allow to investigate the associations

in multivariate data by statistical analysis. Dahlhaus (2000) extended this concept

recently to multivariate time series by means of correlation analysis in the frequency

domain, where time series are considered as combinations of waves with di�erent har-

monic periodicities. This allows to assess the linear, possibly time-lagged relationships

between the variables.

The practical value of this new technique for medical data analysis could already

be appraised in a clinical study (Gather et al., 2000). Known associations within

the hemodynamic system could reliably be reidenti�ed by graphical models calculated

for critically ill patients. Separate analysis of di�erent clinical states even resulted in

characterisations of the states by distinct association structures.
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3.2 Sliced Inverse Regression

Sliced inverse regression (SIR) (Li, 1991) is a powerful statistical instrument for di-

mension reduction in linear regression. Starting from a regression problem with d

covariables a subspace of dimension k < d is calculated which is suÆcient to describe

the relationships between the dependent variable and the covariables.

SIR can be applied to multivariate time series from intensive care regressing each

variable on the others. This allows to calculate the minimal number k of linear combi-

nations of the other variables which is needed to substitute the dependent variable. If

k is large a variable has to be considered as important.

When SIR is applied to multivariate time series one should take the dynamical

structure of the data into account. This can be done rather easily when we augment

the observation space with time lagged measurements.

In most cases the inclusion of lagged observations allowed a large dimension reduc-

tion. Furthermore, we obtained di�erent values of k for di�erent clinical states. These

�ndings con�rm the results derived with graphical models.

3.3 Principal Component Analysis

While graphical models and SIR analyse the associations between a single variable and

the remaining ones, principal component analysis aims at �nding a parsimonious joint

description for all variables. Those directions (principal components) within the data

space are searched for, which contribute most to the variability in the data. Principal

component analysis consists of a stepwise search for the direction which explains most

of the variability among all directions which are uncorrelated to the previous ones.

First applications of principal component analysis to the hemodynamic system

showed, that the �rst three principal components capture almost all variability. Pat-

terns found in the hemodynamic variables were also visible in the principal components.

Thus, the number of variables and the computational e�ort could signi�cantly be re-

duced by concentrating on the principal components.

The series of the �rst principal components corresponding to the nine-dimensional

time series shown in Figure 3 are provided in Figure 4. The series has been di�erenced

since our phase space procedure for pattern detection is based on the di�erenced series.

The important structural changes in the original series are still obvious in the series of

the di�erenced principal components.

3.4 Factor Analysis

Factor analysis aims just like principal component analysis at the reduction of the

dimension of multivariate data by searching suitable linear combinations of the vari-

ables. However, factor analysis assumes that there are a few, say q, latent variables

(factors) which actually drive the series and cause the correlations between the observ-

able variables. For achieving good interpretability the factors found in the analysis can

be rotated in the q-dimensional space.

In view of the good results obtained for three principal components, one can try

to describe the hemodynamic system with three latent factors. When the factors are
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Figure 4: Time series of the three principal components of a nine-dimensional time

series representing the hemodynamic system. The important patterns of change in the

original series are also obvious in the series of the principal components

calculated for the whole series they are interpretable by pathophysiologic knowledge.

Moreover, we found factors not to vary considerably between patients. However, when

factors are determined from short estimation periods, the factors may vary markedly.

This would present a serious problem for any automatic analysis based on the time

series of extracted factors.

4 Conclusion

Patterns in univariate physiological time series can be identi�ed using models from

statistical time series analysis with corresponding detection rules. AR-models and

phase space models reliably detect outliers and level changes, but both approaches

have problems with trend patterns. For AR-models sometimes manual adjustment of

the con�dence level is necessary. DLMs allow online trend detection, but they are not

as reliable as the other approaches. Hence, a combination of the procedures might give

the best results.

All approaches to monitoring of univariate series were found to be more sensitive

than clinically relevant. This could be overcome by using an automatically adjusted

level. This has already been included into the phase space procedure and has lead to

signi�cant improvements. For DLMs robust Kalman �lter procedures, which are less

sensitive against outliers, might improve the classi�cation.

Statistical methods for dimension reduction o�er large potential for the joint moni-

toring of several variables. Graphical models and SIR explore the associations between

the variables and facilitate the choice of a suitable subset of the variables. Principal

component and factor analysis result in a set of linear combinations of the variables

which could be monitored. Factor analysis could be more suitable than principal com-
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ponent analysis for online monitoring since the results are better interpretable for

physicians. However, both approaches su�er from the problem that in any dynamic

system both the factors and the principal components may vary over time.

Methods for automatic online analysis of physiological variables give an option for

a more reliable evaluation of the individual treatment. Statistical methods could be

employed to construct intelligent alarm systems, which are more reliable than simple

threshold alarms. Adequate bedside decision support could be achieved by combining

the statistical techniques proposed here with methods of arti�cial intelligence (Morik

et al., 2000).
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