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Complexity-reduction by first-order approximation of non-linear kinetics

M. Becka

Department of Statistics, University of Dortmund, D-44221 Dortmund, Germany

Abstract: Ecological, toxicological, and pharmacological research is often
concerned with the answer to the question of how a substance is processed within
a biological system. The exact knowledge of the corresponding kinetic pattern
forms the basis for a useful answer. In order to identify non-linear kinetics, a first-
order approximation method is proposed for complexity-reduction. A simulation
study is presented to investigate the error of the approximation in case of a simple
Michaelis-Menten kinetic process. The proposed method shows to give useful
results which allow to characterize the underlying kinetic pattern. Furthermore it
could be shown that in simulating kinetic processes the applied numerical
methods may perform with considerable numerical instabilities.

Key Words: Compartmental model, Dynamic process, First-order approximation,
Michaelis-Menten kinetic, Non-linear kinetic, Numerical integration

1. Introduction

A major part of ecological, toxicological, and pharmacological research is concerned with the

answer to the question of how a substance is processed within a biological system. With

qualitatively increasing technology, however, the required quality of the answers has been

increased in the last years as well, and will continue to increase.

Where risk assessment formerly has been based on incidences and animal results in

combination with haphazardly chosen safety factors, it becomes more and more

mechanistically based now. In carcinogenesis, for instance, models are considered, where on a

molecular basis DNA-damage by adducts after exposition to a substance and DNA-repair

mechanisms form concurrent dynamic systems, preceding a potential carcinogenic cascade

(Hoel et al. 1983). The development of a tumor then depends on the repair potential of the

species in contrast to the DNA-damage potential of the substance under view. The relevant
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mechanistic characteristics are investigated and modeled for the target species in order to get

access to more scientifically based threshold-values and low-dose extrapolations.

In the development process of new drugs, the detailed knowledge of their dynamic and kinetic

characteristics in different patient populations becomes economically more and more urgent.

New drugs will have to be optimally „designed“ regarding efficacy and adverse side effects in

the individual patient.

The above mentioned problems are naturally concerned with highly complex answers and

appropriate statistical tools have to be applied, respectively, to be established.

Characterizing processes of transport or transformation within dynamic systems in terms of

kinetics is not a trivial task. This problem was exemplified by a re-analysis of in vivo kinetic

data from Golka et al. (1989) using a two-compartment model and nonlinear regression. The

development and application of further statistical methods for this purpose offer a means to

account for the common discrepancies found in the different analyses of toxicokinetic models

(Becka et al.(1992), Csanády and Filser (1993), and Becka (1993)).

2. Compartment models and kinetic pattern

The flow of material in dynamic systems, as for example in biological units can be modeled

by compartments. The term „compartment” here usually means a possibly fictitious area

within the system detached from others by possibly fictitious boundaries where the material

under view is distributed homogeneously.

Using compartment-models, main interest is given to the amount of material being exchanged

between the compartments in the course of time resulting in special material profiles for each

compartment. There are many cases where the amount of material can not be observed in all

of the areas so that observations are often only available from a subset of compartments.

To investigate dynamic systems it is usually necessary to disturb the natural steady state of the

units, which is usually done by input of material in one or more of the compartments under

view. The input then may be continuous, however constant over time, or a bolus.
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A typical characteristic in the context of investigating kinetic patterns is that all information

have to be derived from observing dynamic processes over time. In contrast to the time-

dependency of an observed process, the kinetic pattern describes the law behind or, in other

words, the velocity of the process. Therefore, the first obligatory step is to extract the velocity

characteristics out of the observed course.

A closer look at the underlying data structure is necessary to reveal that the statistical

modeling process indeed is no trivial task. The interesting question is how a process works at

different concentrations of a substrate, whereas the observable data consist of the dynamic

reaction of this process to a single disturbance. To answer the first question then it is

necessary to analyze multiple different disturbances.

In practice, it is often assumed that all kinetics of a dynamic system are of first-order which

means that the velocities of the participating processes are linear functions of the amount of

corresponding substrates. This assumption allows for a quite easy mathematical handling with

easy to obtain results. However, almost all biochemical processes are catalyzed or influenced

by enzymes or proteins where the velocity of a processes depends on the amount of substrate

in a non-linear way, the number of binding sites, the affinity, and so on. In this case the

acceleration of the process, i.e. the change of the velocity in connection with the amount of

substrate becomes of interest. Referring to a first-order process, the acceleration is a constant.

However, disturbing a special process in changing the amount of substrate in one

compartment may result in a high acceleration at low concentration of substrate until an

optimal condition is reached, followed by a decrease of acceleration with further increasing

concentration. Such characteristics may be due to occupied binding sites and queuing

symptoms.

The previously described situation reflects the well known saturable Michaelis-Menten-type

kinetics.

At low concentration of substrate, there also may be a phase of low acceleration due to few

binding sites and a low chance of complex-binding. This situation then reflects sigmoidal-type

kinetics.

3. Statistical modeling and reduction of complexity
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Let us investigate a dynamic system where one partial process consists of the amount of

material being transferred from one special compartment  i  to another compartment  j  in the

course of time. The combination of all the participating processes results in a material profile

for each compartment.

In order to investigate the dynamic characteristics, we will disturb the natural steady state of

this system by input of material in one or more compartments. Denoting �a  the amount of

input which may be continuous, however, constant over time, the transport reactions of the

dynamic system to this input are used to analyze the inherent processes.

Denoting ( )Y ti  the amount of material in compartment  i  at time  t , the transport from

compartment  i  to compartment  j  in the course of time is usually described by the

differential equation

( )( ) ( )dY t
dt

f Y ti
ij ij i= ω ,

where fij  denotes the functional description of a so-called kinetic process and ω ij  is a path-

dependent vector of unknown parameters. Furthermore, it is usually assumed that this kinetic

is a function of the amount of material ( )Y ti  present in compartment  i  at time  t .

If the dynamic system is modeled by, say, n  compartments, it will be assumed that the

corresponding compartment-model is kind of a regular one in so far that

1.) there is no compartment in the system where the concentration-time course simply

reflects those of another compartment in a linear way, in terms: there are no

compartments { }i j n, , ,...,∈ 1 2  with i j≠  and ) )Y t a b Y ti j( (= + ⋅  for all t ≥ 0  and

some constants a  and b ,

2.) each compartment in the system can receive material after some time, in

terms: )Y t ai ( , � > 0  for all { }i n∈ 1 2, ,...,  and time-lack τ  with 0 < ≤τ t , and

3.) the dynamic system monotonous responds to input of material, in terms: � � *a a<  implies

( ) ( )Y t a Y t ai i, ~ , ~ *≤  for all { }i n∈ 1 2, ,...,  and t ≥ 0 .

Regarding one special compartment  i , it will be additionally assumed that the change in the

amount of material ( )Y ti  at time  t  is due to the sum of the related kinetic processes, i.e.
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( )
( )( ) ( )( )dY t

dt
f Y t f Y ti

ij ij i
j
i j

n

ji ji j
j
i j

n

= − +
=
≠

=
≠

∑ ∑ω ω, ,
1 1

.

In practice, it is often assumed that all kinetics of a dynamic compartment-model are of first-

order which implies ( )( ) ( )f Y t k Y tij ij i ij iω , = ⋅  and

( )
( ) ( )dY t

dt
k Y t k Y ti

ij i
j
i j

n

ji j
j
i j

n

= − ⋅ + ⋅
=
≠

=
≠

∑ ∑
1 1

with constant rate parameters kij  for { }i j n, , ,...,∈ 1 2  with i j≠ . Usually the model then

yields a system of linear differential equations which can be solved numerically or analytically

for the corresponding material profiles ( )Y ti  , i n= 1 2, ,..., .

There are many cases where the amount of material can not be observed in all of the

compartments so that observations are only available from a subset of compartments. If these

observations still allow to identify all of the rate parameters, the rate constants may be

estimated by least squares using the solution of the system of linear differential equations,

however, accounting for heterogeneous and auto-correlated errors.

If the kinetics of one or more of the partial processes from compartment  i  to compartment  j

are not known exactly, it will be necessary to investigate different input values

� � �a a am1 2< < <�  to produce  m  different profiles ( )Y ti l, , l m= 1 2, , ,� , for characterizing

the kinetics as functions of the amount of material. The input into the system through one

single compartment may be continuous, however constant over time, or a bolus, as in the

above notation. The aim then is to characterize the corresponding kinetic relationships

( )f Yij ij iω , , i j≠ , first. Note that the required characterization does not depend on  t , which

is related to the duration of the special experiment. To eliminate the influence of experimental

time it is useful to look for a time-independent characterization of ( )Y ti l, . If only those

kinetics are taken into account where

( ) ( )
f Y t

f Y t
Y tij ij i l

ij ij i l

i l

* , ( ) :
, ( )
( ),

,

,

ω
ω

=

is monotone and continuous as a function of the concentration  Y  for i j≠  and t ≥ τ , the

concentration time-course ( )Y ti l,  may be characterized by the maximum value Yi ,max  which
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may be defined as the value at the beginning or the end of the experiment, if the local

maximum does not exist. This can be done because of the monotone relationships, where
~ ~a a1 2<  implies

( ) ( )Y t a Y t ai i, ~ , ~
1 2≤

and, consequently,

( ) ( )Y a Y ai i,max ,max
~ ~

1 2≤

yielding

( )( ) ( )( )f Y a f Y aij ij i ij ij i* , ~ * , ~
,max ,maxω ω1 2≤ .

Approximating, therefore,

( )f Y tij ij i l* , ( ),ω  by ( )( ) ( )f Y a f aij ij i l ij l* , ~ : * ~
,maxω =

a system with first-order kinetics can be used in a first step, where

( ) ( ) ( ) ( ) ( )dY t
dt

f a Y t f a Y ti
ij l i

j
i j

n

ji l j
j
i j

n

= − ⋅ + ⋅
=
≠

=
≠

∑ ∑* ~ * ~
1 1

for each experiment  l , l m= 1 2, , ,� . If the observed material profiles allow for identifying

the rate parameters of this first-order system, the so defined ( )f aij l* ~  will be estimated by a

simple least squares technique accounting for heterogeneous errors, yielding estimates

( )� * ~f aij l  for i j n, , , ,= 1 2 � , i j≠ and each experiment { }l m∈ 1 2, , ,� . This linear

approximation characteristically results in a systematic auto-correlated error-structure. If the

maximum concentrations ( )Y ai l,max
~  can not be observed directly for i n= 1 2, , ,� , they will

be replaced by estimates ( )� ~
,maxY ai l  calculated by using the estimated material profiles of the

first-order system.

In an explorative manner, the following step is to analyze the relationship between the

estimates ( )� * ~f aij l  and the corresponding maximum amounts of material ( )Y ai l,max
~  for

l m= 1 2, , ,� , and for all unknown kinetic processes ( )f Yij ij iω , , { }i j n, , , ,∈ 1 2 � , i j≠ ,

which may require appropriate standardization of the estimated rate parameters first. In the

case of a true first-order kinetic process with ( )( ) ( )f Y t k Y tij ij i l ij i lω , , ,= ⋅  this yields
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( )( )f Y t kij ij i l ij* , ,ω =  so that the ( )� * ~f aij l  should not depend on ( )Y ai l,max
~ , instead being

constant except some inter- and intra-experimental variability. This hypothesis can be tested

using, for example, a nonparametric test of independence of ( )� * ~f aij l  and ( )Y ai l,max
~  for

l m= 1 2, , ,� . If there is a certain structure of dependence, the corresponding shape may be

analyzed according to

( )[ ] ( )( )
( )E f a

f Y a
Y aij l

ij ij i l

i l

� * ~ , ~
~

,max

,max

=
ω

 , l m= 1 2, , ,� . (1)

Depending on the functional description of the kinetic process fij  and using the maximum

amounts of material ( )Y ai l,max
~ , the estimates ( )� * ~f aij l  in model (1) may not be assumed to

be unbiased.

Based on a two-compartmental model and assuming first-order kinetics, this approach using

the acceleration information was applied to investigate the kinetic processes of propylene

inhaled by Sprague-Dawley rats (Becka and Urfer, 1996).
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4. First-order approximation of a Michaelis-Menten kinetic process - a simulation study

4.1 Systematic error and quality of a first-order approximation

To characterize the systematic error and the quality of a first-order approximation, a one-

dimensional dynamic Michaelis-Menten type process was simulated (Figure 1) and analyzed

assuming a first-order kinetic (Figure 2).
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Figure 1: Concentration-time curve based on a Michaelis-Menten kinetic with vmax=600 units/time unit,

km=1100 units, and an initial concentration of 10000 units.
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Figure 2: Concentration-time curve of Figure 1 on a logarithmic scale (solid line) with the first-order

approximation (dotted line).
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Figure 3: Michaelis-Menten kinetic with vmax=600 units/time unit, km=1100 units (solid line), and exact first-

order approximations based on maximum concentrations of 1100 and 10000 units (dashed lines).
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Figure 3 shows a Michaelis-Menten kinetic and an exact linear approximation, i.e. a least-

squares approximations based on discrete points of the Michaelis-Menten curve itself up to

1100 units, respectively, 10000 units concentration. Since the linear approximation of the

observed logarithmized concentration-time curve (Figure 2) is based on completely different

data, the resulting approximation must not necessarily be the same.

Since the velocity of a Michaelis-Menten process is described by

( ) ( )f y
v y
k ym

=
⋅

+
max

we have the acceleration

( )
( )

( )df y
dy

v k
k y

f ym

m

=
⋅

+
=

•max
2 .

If we are asking for the concentration at which the acceleration of the process is c we get

( )
( )

f y c v k
k y

c y v k
c

km

m

m
m

•
= ⇔

⋅
+

= ⇔ =
⋅

−max max
2

Since we have ( )0 < ≤
•
f y v

km

max  we may choose the constant c so that c v
km

= ⋅ϑ max  with

0 1< ≤ϑ . We then get

y v k
c

k v k
v
k

k k k km
m

m

m

m
m

m m=
⋅

− =
⋅

⋅
− = − = −

⎛
⎝
⎜

⎞
⎠
⎟ ⋅max max

maxϑ ϑ ϑ

2 1 1 .

In order to characterize the curvature of the kinetic we may ask at which concentration the

actual acceleration of the process is 1/4 of the maximum acceleration in the origin, i.e. 
v
km

max .

If there is a strong curvature the corresponding concentration would be much smaller than if

the kinetic would be quite flat.

According to the formulas derived before, the point at which the actual acceleration of the

process is 1/4 of the maximum acceleration in the origin is given with concentration km

independent from the maximum velocity of the process vmax .
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We may consider how much the initial concentration of the process deviates from this point in

terms of y km0 . From Figure 3 we may expect that the quality of the approximation increases

as y km0  decreases.

Another remarkable feature of the first-order approximation is the resulting systematic error-

pattern as depicted in Figure 4.
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Figure 4: Residuals of first-order approximation on original scale (estimated minus observed).
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4.2 Numerical Solution of the Differential Equation and Processing of the Data

All calculations were performed using SAS, version 6.12 TS level 0020, on an Intel 200 MHz

MMX workstation under Window NT, version 4.0.

Given an initial concentration of y0  units the chosen Michaelis-Menten kinetic process

defined by

( ) ( )
( )

dy t
dt

v y t
k y tm

= −
⋅

+
max

was integrated using Adams-Bashforth’s 4-step method with controlled step-width starting

with an initial step of 10-9 and keeping the local error of discretization between 10-8 and 10-6,

respectively, with different constant step-widths in the range of 10-2 up to 10-5. For calculating

the starting values, the classical Runge-Kutta method of order 4 and step-width

10-9 was applied. The differential equation was integrated unless 99.9% of the initial amount

had been eliminated. From the resulting concentration-time curve 20 equidistant data-points

were selected and used to fit the first-order approximation with knowledge of the actual initial

concentration.

11015 parameter-combinations were investigated, where the maximum velocity vmax and the

Michaelis-Menten constant km ranged from 1 to 1000 units per time unit, respectively units.

For each parameter-combination the initial concentrations 10, 100, 1000, and 10000 units

were considered. Only those runs where analyzed further where the numerical integration took

more than 1000 steps so that in total 41035 runs were investigated.
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Figure 5: Relation of root-MSE and y0/km (95.8% of all runs with controlled step-width).

All simulations revealed considerable numerical instabilities in the tails, i.e. yielded higher or

lower concentration values in the tails than actually would be present. This deficiency became

obvious in the subsequent data-processing. Figure 5 shows the root mean squared error of the

linear approximation (logarithmized concentration scale) in relation to the ratio y km0  up to a

value of 100. The two curves actually reveal two different instability processes. With smaller

constant step-widths this deficiency could not be corrected and the pattern remained the same,

however, the number of obviously different instability processes increased. Also applying the

classical Runge-Kutta method of order 4 could not improve this instability characteristics.
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Step-Width Vmax

Duration of
Process

(Time Units)

No. of
Integration

Steps

Root-MSE of
First-Order

Approximation

Estimated
Velocity
Constant

Estimated Initial
Concentration

Controlled 41 27.92 479 0.990 -0.167 1461.3

10-2 41 27.91 2794 0.979 -0.165 1422.9

10-3 41 27.90 28000 0.977 -0.165 1416.6

10-4 41 27.90 280000 0.977 -0.165 1416.4

Controlled 61 18.76 483 0.571 -0.193 773.2

10-2 61 18.76 1879 0.980 -0.246 1425.8

10-3 61 18.75 19000 0.977 -0.245 1417.7

10-4 61 18.76 190000 0.977 -0.245 1416.5

Table 1: Numerical instability in integrating a Michaelis-Menten equation with km=21 units and initial
concentration of 1000 units applying step-width control.

4.3 Results

The analyzed data were considered to be non-normally distributed with systematic error-

structure defined by the instability processes of the numerical integration. The estimated

(negative) first-order velocity constants ( )� *f y0  were compared with ( )− +v k ym omax  (see for

formula 1 of section 3) using their differences

( )D =  � * maxf y v
k ym

0
0

+
−

and their ratios

( ) ( ) ( )
R

f y
v

k y

f y k y
v

m

m= =
� * � *

max max

0

0

0 0

−
−

−
⋅ −

.

Since the Michaelis-Menten kinetic is strict monotonous increasing in  y  and because we are

using all concentration data ≤ y0  for calculations we have
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( )� * maxf y v
k ym

0
0

≤ −
−

.

The results are given in Tables 2 and 3.

y0 STEP-WIDTH N MEAN SD MIN Q25 MEDIAN Q75 MAX

10 0.00001 1250 -0.352 1.981 -20.312 -0.0200 -0.0029 -0.0009 -0.0003
10 0.0001 3600 -0.175 1.020 -15.539 -0.0215 -0.0040 -0.0013 -0.0000
10 0.001 300 -0.016 0.092 -1.195 -0.0020 -0.0004 -0.0001 -0.0000
10 0.01 1804 -0.006 0.010 -0.280 -0.0070 -0.0045 -0.0021 -0.0000

100 0.00001 1250 -0.356 1.418 -14.286 -0.0946 -0.0188 -0.0062 -0.0022
100 0.0001 3600 -0.320 0.986 -10.931 -0.1359 -0.0292 -0.0096 -0.0002
100 0.001 300 -0.030 0.089 -0.841 -0.0125 -0.0027 -0.0010 -0.0001
100 0.01 1849 -0.047 0.041 -0.418 -0.0615 -0.0398 -0.0188 -0.0000
100 controlled 3324 -0.309 0.752 -7.345 -0.2158 -0.0717 -0.0122 -0.0001

1000 0.00001 1250 -0.016 0.011 -0.057 -0.0221 -0.0124 -0.0076 -0.0038
1000 0.0001 3600 -0.084 0.170 -1.221 -0.0759 -0.0310 -0.0098 -0.0004
1000 0.001 300 -0.006 0.012 -0.091 -0.0062 -0.0026 -0.0011 -0.0003
1000 0.01 2305 -0.189 0.118 -0.482 -0.2827 -0.1860 -0.0892 -0.0001
1000 controlled 3142 -0.383 0.452 -2.533 -0.5469 -0.2419 -0.0250 -0.0004

10000 0.00001 1250 -0.000 0.000 -0.001 -0.0004 -0.0003 -0.0003 -0.0002
10000 0.0001 3600 -0.001 0.001 -0.003 -0.0017 -0.0008 -0.0003 -0.0000
10000 0.001 300 -0.000 0.000 -0.000 -0.0002 -0.0001 -0.0000 -0.0000
10000 0.01 5150 -0.151 0.089 -0.316 -0.2268 -0.1504 -0.0741 -0.0000
10000 controlled 2861 -0.103 0.093 -0.315 -0.1841 -0.0869 -0.0062 -0.0002

Overall 41035 -0.167 0.664 -20.312 -0.1437 -0.0252 -0.0029 -0.0000

Table 2: Difference D between estimated first-order velocity constants ( )� *f y0  and ( )− +v k ym omax .

In 1166 cases (2.8%) the absolute difference D  showed to be ≥1 and in 7735 cases (18.9%)

the absolute difference was ≥0.2.
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y0 STEP-WIDTH N MEAN SD MIN Q25 MEDIAN Q75 MAX

10 0.00001 1250 1.028 0.096 1.001 1.0014 1.0032 1.0112 1.7966
10 0.0001 3600 1.038 0.097 1.001 1.0050 1.0098 1.0270 1.7969
10 0.001 300 1.038 0.097 1.002 1.0049 1.0096 1.0269 1.7968
10 0.01 1804 1.020 0.077 1.004 1.0102 1.0125 1.0180 4.0840

100 0.00001 1250 1.121 0.348 1.006 1.0116 1.0241 1.0705 4.0817
100 0.0001 3600 1.264 0.489 1.006 1.0440 1.0836 1.2262 4.0831
100 0.001 300 1.266 0.496 1.015 1.0428 1.0816 1.2230 4.0830
100 0.01 1849 1.176 0.194 1.034 1.1011 1.1248 1.1759 4.0202
100 controlled 3324 1.264 0.237 1.088 1.1169 1.1694 1.3041 2.4648

1000 0.00001 1250 1.046 0.021 1.019 1.0289 1.0407 1.0598 1.1100
1000 0.0001 3600 1.368 0.509 1.020 1.1165 1.2126 1.3857 4.2748
1000 0.001 300 1.318 0.411 1.051 1.1196 1.1956 1.3418 4.1085
1000 0.01 2305 2.287 0.609 1.133 1.8975 2.0888 2.4890 4.2837
1000 controlled 3142 2.473 0.588 1.780 1.9826 2.2854 2.8356 4.0921

10000 0.00001 1250 1.008 0.001 1.006 1.0074 1.0079 1.0085 1.0100
10000 0.0001 3600 1.041 0.021 1.007 1.0233 1.0408 1.0592 1.0861
10000 0.001 300 1.038 0.016 1.017 1.0195 1.0379 1.0553 1.0646
10000 0.01 5150 4.096 0.449 1.043 4.1001 4.1942 4.2567 4.2886
10000 controlled 2861 3.922 0.320 3.057 3.7230 4.0830 4.2301 4.2858

Overall 41035 1.881 1.203 1.001 1.0320 1.1430 2.4102 4.2886

Table 3: Ratio R of estimated first-order velocity constants ( )� *f y0  and ( )− +v k ym omax .

In 18511 cases (45.1%) the relative difference R showed to be ≥20%. Of these 7295 (17.8%)

had an absolute difference of ≥0.2 and 1139 (2.8%) an absolute difference of ≥1.
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5. Discussion and outlook

Due to the observed numerical instabilities, simulations of kinetic processes using numerical

integration have to be applied very carefully with regard to used procedures and the kinetic

processes under view. Simulating complete concentration-time courses using numerical

methods seem to be no useful tool for analysis purposes since the simulated concentration-

time curve may not necessarily represent the actual course very well.

Analyzing complete concentration-time courses for a single kinetic process as presented in

this simulation mainly refer to re-analyses of historical data, where kinetic experiments were

performed for many reasons and where the data were analyzed more or less under the

assumption of first-order kinetics.

In this situation the presented approach showed to work quite well, although for the

simulations the underlying error-distribution (i.e. the numerical instability) was not exactly

identified. Only about 3% of the 41035 simulations yielded critical results where a „non-

critical“ result was defined as an absolute deviation of <1 from the expected value in addition

to a relative deviation of <20%. It may be assumed that under approximate normally

distributed errors the presented procedure would yield even better results. Analyzing a single

non-linear kinetic process, the described approach is based on easy to perform calculations.

In experiments purely designed to identify single kinetic processes, concentration-time

courses would not be observed until the system returns to its steady-state. Since the

concentration changes over time the velocity of the process will also change, if the underlying

kinetics are not of first-order. The most important dynamic characteristics concerned with the

disturbance of the system may, therefore, be seen in a short time window after the system was

disturbed.

However, analyzing the inherent kinetic processes of dynamic systems simultaneously will

always require to investigate complete concentration-time courses in order to reach maximum

velocities in all involved compartments. How the proposed procedure works in this situation

remains to be elucidated.

Studies and experiments designed for kinetic in vivo assessments are usually based on

collections of individual subjects. One or more interesting response variables are measured at



18

several selected times leading to so-called time-dependent response curves. The selected

individual subjects are assumed to be a representative sample of a population of individuals,

all of whose responses are related to time in a basically similar way but with some variation

from individual to individual. It is important to consider the measurement process on the

individual response curves and also to take into account the variation of these individual

response curves around a mean population curve.

The measured data structure is determined by the number  k  of individuals sampled from the

population and the number ni  of observations made on individual  i ( i=1,2, ... ,k ) . The

observed response of the  i-th individual at time  tij  will be denoted by yij ( i=1,2, ... ,k ;

j=1,2,... ,ni ) .

We assume that the relationship between the response yij  and the time of measurement  tij
takes the form

y f t e i k j nij i ij ij i= + = =( , ) , ,..., , ,...,θ , ; ,1 2 1 2

where f  describes the expected value of the response at the different times  tij  for a given

parameter vector  θi  of individual  i  and  eij  is a zero-mean measurement error assumed

independent from observation to observation with constant variance.

For a sample of individuals from the same population the same form of functional relationship

f  is expected. The parameter vector  θi  which determines the precise shape of the curve for

each individual is assumed to vary across the population in the manner of a random sample.

Several statistical methods have been proposed for the inference of kinetic parameters in

models that combine individual and population components, however, there is only sparse

literature regarding the identification of the underlying functional relationship itself.

Whatever procedure is followed up to now, a substantial amount of diagnostic and cross

validating checking has to be performed to investigate the appropriateness of the choice of

response curves, error variance forms, distributional assumptions, and approximations

invoked in the inference procedure. The presented approach using a first-order approximation

may help to reduce the complexity for this purpose.
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