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Abstract

The paper presents an approach to the analysis of data that contains (multiple) struc-

tural changes in a linear regression setup. We implement various strategies which have

been suggested in the literature for testing against structural changes as well as a dynamic

programming algorithm for the dating of the breakpoints in the R statistical software pack-

age. Using historical data on Nile river discharges, road casualties in Great Britain and oil

prices in Germany it is shown that changes in the mean of a time series as well as in the

coefficients of a linear regression are easily matched with identifiable historical, political

or economic events.

Keywords: structural change, changepoint problem, segmented regressions, R, S, Bellman

principle.

1 Introduction

There is a huge literature, both in mathematical statistics and various applications, on testing

against changes in the coefficients of a linear regression model. The bibliography by Hackl

and Westlund (1989) lists more than 500 references, and at least as many more have since

appeared. Many classical tests such as the well-known Chow test assume that there is just

a single change under the alternative or that the timing and the type of change are known.

More recently, there has been a surge of interest in recovering the date of a shift if one has

occurred or in methods which allow for several shifts at once, see Bai (1997); Hawkins (2001);

Sullivan (2002); Bai and Perron (2002), among many others. The present paper summarizes
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this more recent work and shows how to apply these methods using the R system for statis-

tical computing, thereby a bit rebalancing this literature, which is rather long on theoretical

insights, but often rather short on information on how these theories can be applied.

This is what we do below. To illustrate our software, we use three data sets. The first one

is the Nile data from Cobb (1978) and later analyzed by Dümbgen (1991) and Balke (1993)

which exhibits a level shift associated with the opening of the (first) Aswan dam at the end of

the 19th century. The second data set is a time series of British road casualties analyzed by

Harvey and Durbin (1986) which exhibits two breaks, one associated with increasing petrol

prices in the wake of the first oil crisis, the second with the introduction of compulsory wearing

of seatbelts in the early 1980s. Our third example—an index of the oil prices in Germany—

was chosen in order to have a series with more than two breaks, in this case associated with

events such as the first oil crisis, the Iranian revolution, and the virtual breakup of OPEC in

1985.

2 Model and methods

2.1 The model

We consider the standard linear regression model

yi = x�
i βi + ui (i = 1, . . . , n), (1)

where at time i, yi is the observation of the dependent variable, xi is a k × 1 vector of

regressors, with the first component usually equal to unity, and βi is the k × 1 vector of

regression coefficients, which may vary over time. The interpretation of i as time is the most

common but not the only one: e.g., in changepoint analysis the observations are often ordered

by the size of a variable not included in xi.

This paper is concerned with testing the hypothesis that the regression coefficients remain

constant

H0 : βi = β0 (i = 1, . . . , n) (2)

against the alternative that they vary over time. In many applications it is reasonable to

assume that there are m breakpoints, where the coefficients shift from one stable regression

relationship to a different one. Thus, there are m + 1 segments in which the regression
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coefficients are constant, and the model (1) can be rewritten as

yi = x�
i βj + ui (i = ij−1 + 1, . . . , ij , j = 1, . . . , m + 1), (3)

where j is the segment index, Im,n = {i1, . . . , im} denotes the set of the breakpoints (Im,n is

also called m-partition), and by convention i0 = 0 and im+1 = n.

In practice, the breakpoints are rarely given exogenously but have to be estimated from the

data. This is what we do below. Our methodology is valid under fairly general assumptions

on regressors and disturbances, see e.g. Krämer, Ploberger, and Alt (1988) or Bai (1997).

Basically, they have to be such that a functional central limit theorem holds. This is for

example satisfied if {ui} is a martingale difference with ui independent of xi and the regressors

{xi} are (almost) stationary, which also allows for lagged dependent variables among the

regressors.

2.2 The tests

Two frameworks for testing for structural change can be distinguished: (i) F statistics (An-

drews 1993; Andrews and Ploberger 1994) that are designed for a specific alternative and (ii)

generalized fluctuation tests (Kuan and Hornik 1995) that do not assume a particular pattern

of deviation from the null hypothesis.

F statistics test against a single-shift alternative of unknown timing, i.e., model (3) with

m = 1. Tests against this alternative are usually based on a sequence of F statistics for a

change at time i: the OLS residuals û(i) from a segmented regression, i.e., one regression for

each subsample, with breakpoint i, are compared to the residuals û from the unsegmented

model via

Fi =
û�û − û(i)�û(i)

û(i)�û(i)/(n − 2k)
. (4)

These F statistics are then computed for i = nh, . . . , n − nh (nh ≥ k) and H0 is rejected

if their supremum—or average or exp functional, see Andrews and Ploberger (1994)—is too

large.

In applications, nh = �nh� will be a trimming parameter that can be chosen by the practi-

tioner. In our examples below we use h = 0.1 or h = 0.15.

Bai and Perron (1998, 2002) extend this approach to F tests for 0 vs. � breaks and � vs. �+1

breaks respectively with arbitrary but fixed �.
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The generalized fluctuation test framework “includes formal significance tests but its philos-

ophy is basically that of data analysis as expounded by Tukey .... Essentially, the techniques

are designed to bring out departures from constancy in a graphic way instead of parametrizing

particular types of departure in advance and then developing formal significance tests intended

to have high power against these particular alternatives.” (Brown, Durbin, and Evans 1975,

pp. 149–150). More precisely, the model (1) is fitted to the data and an empirical process

is derived that captures the fluctuation either in residuals or in parameter estimates. Under

the null hypothesis these are governed by functional central limit theorems (see Kuan and

Hornik 1995) and therefore boundaries can be found that are crossed with fixed probability

α under the null hypothesis. Under the alternative the fluctuation in the process is in general

increased. Also, the trajectory of the process often sheds light on the type of deviation from

the null hypothesis such as the dating of the structual breaks.

As an example, consider the OLS-based CUSUM test introduced by Ploberger and Krämer

(1992) which is based on cumulated sums of standard OLS residuals

W 0
n(t) =

1
σ̂
√

n

�nt�∑

i=1

ûi (0 ≤ t ≤ 1). (5)

The limiting process for W 0
n(t) is the standard Brownian bridge W 0(t) = W (t)−tW (1), where

W (·) denotes standard Brownian motion; under a single-shift alternative the process should

have a peak around the breakpoint. Another test which is used below is the fluctuation or

recursive estimates (RE) test of Ploberger, Krämer, and Kontrus (1989), which compares

recursive estimates of the regression coefficients with the full sample estimates. If the re-

gression includes only an intercept, i.e., xi = 1, it is equivalent to the OLS-based CUSUM

test (5). Additional tests from this framework are the classical CUSUM test of Brown et al.

(1975) based on recursive residuals, the MOSUM tests (Chu, Hornik, and Kuan 1995a) and

the moving estimates (ME) test (Chu, Hornik, and Kuan 1995b).

2.3 Dating structural changes

Given an m-partition i1, . . . , im the least squares estimates for the βj can easily be obtained.

The resulting minimal residual sum of squares is given by

RSS(i1, . . . , im) =
m+1∑

j=1

rss(ij−1 + 1, ij), (6)
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where rss(ij−1 + 1, ij) is the usual minimal residual sum of squares in the jth segment. The

problem of dating structural changes is to find the breakpoints ı̂1, . . . , ı̂m that minimize the

objective function

(̂ı1, . . . , ı̂m) = argmin(i1,...,im)RSS(i1, . . . , im) (7)

over all partitions (i1, . . . , im) with ij − ij−1 ≥ nh ≥ k.

Obtaining the global minimizers in (7) by an extensive grid search would be of order O(nm)

and computationally burdensome for m > 2 (and any reasonable sample size n). Therefore,

many hierarchical algorithms have been proposed that do recursive partitioning or joining

of subsamples, see e.g. Bai (1997) or Sullivan (2002), but these will not necessarily find the

global minimizers. These can be found much easier by a dynamic programming approach that

is of order O(n2) for any number of changes m. Hawkins (2001) discusses this for changepoint

problems in a maximum likelihood framework; Bai and Perron (2002) present a version of

that algorithm for pure and partial structural change models in an OLS regression context,

which we adopt here. The basic idea is that of Bellman’s principle: the optimal segmentation

satisfies the recursion

RSS(Im,n) = min
mnh≤i≤n−nh

[RSS(Im−1,i) + rss(i + 1, n)]. (8)

Therefore it suffices to know for each point i the “optimal previous partner” if i was the

last breakpoint in an m-partition. This can be derived from a triangular matrix of rss(i, j)

with j − i ≥ nh, the computation of which is again made easier by the recursive relation

rss(i, j) = rss(i, j − 1) + r(i, j)2, where r(i, j) is the recursive residual at time j of a sample

starting at i (Brown et al. 1975). For more details on this dynamic programming algorithm

see Bai and Perron (2002).

3 Software

We have incorporated all tests described above in the package strucchange in the R sys-

tem1 for statistical computing, the GNU implementation of the S language. The pack-

age can be downloaded from the Comprehensive R Archive Network (CRAN) at http:

//cran.R-project.org/ and is described in detail in Zeileis, Leisch, Hornik, and Kleiber
1http://www.R-project.org/
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(2002). Here we show how to use this package to test against and to date structural changes

with unknown timing and multiplicity.

For instance, the empirical fluctuation processes from the generalized fluctuation test frame-

work can be obtained via the function

efp(formula, data, type, ...)

where formula defines the regression model (1) to be tested, e.g., y ~ x. This is a version

of the notation introduced by Wilkinson and Rogers (1973), as adapted for S (Chambers

and Hastie 1992). The argument data is a data frame that might contain the variables y

and x and the argument type specifies the type of fluctuation process that should be fitted,

e.g., "OLS-CUSUM" to fit the OLS-based CUSUM process from (5). The empirical fluctuation

process object returned by efp can then be plotted together with its boundaries using the

function plot and the corresponding significance test can be carried out with the function

sctest (structural change test).

Similarly, a sequence of F statistics can be computed with

Fstats(formula, data, cov.type, from = 0.15, ...)

where from specifies the trimming parameter h. The cov.type argument allows to calculate

the F statistics based on heteroskedasticity robust covariance matrix estimates (the default

is spherical errors). The returned object can again be plotted together with its boundaries,

and formal significance tests for the supF , aveF and expF tests can be performed.

If there is evidence for structural changes in the regression relationship these can be dated

with the function

breakpoints(formula, data, breaks, h = 0.15, ...)

which implements the dynamic programming algorithm described above. In particular, it

computes the triangular rss(i, j) matrix. The parameter breaks is the number of breakpoints

m, the default being the largest number allowed by the trimming parameter h. From the

object returned by this function any other number of breakpoints m can be extracted (as it

contains the triangular rss(i, j) matrix) by another application of the function breakpoints

to this object. This will be described in more detail in the applications below.
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4 Applications

4.1 The Nile data

First, we apply the above methods to a time series of the annual flow of the river Nile at Aswan

from 1871 to 1970 (Cobb 1978; Dümbgen 1991; Balke 1993). It measures annual discharge at

Aswan in 108 m3 and is depicted in Figure 1.
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Figure 1: The Nile data

We test whether the mean of the annual flow changes over time, i.e., we fit a constant to

the data. In the S language this is written as Nile ~ 1, where Nile is a time series object

containing the data. To check for structural changes in this model we first use the OLS-based

CUSUM process from (5). The code below shows how to fit this fluctuation process and to

produce the plot shown in Figure 2; it gives the process together with its boundaries at a 5%

significance level.

The process has a peak around 1900 which exceeds the boundaries and hence indicates a clear

structural shift at that time. The obvious reason is the Aswan dam that was built in 1898.

The same conclusion emerges from tests based on F statistics, as shown in Figure 3. The

code below computes the F statistics and sets up a plot of the resulting process together with

the boundaries corresponding to a supF test at the 5% significance level.

From this sequence of F statistics the optimal breakpoint for a 2-segment partition can be

obtained as it is equivalent to maximize the F statistics (4) or to minimize the residual sum
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R> ocus.nile <- efp(Nile ~ 1, type = "OLS-CUSUM")

R> plot(ocus.nile)

OLS−based CUSUM test
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Figure 2: OLS-based CUSUM process for the Nile data

of squares (7). This breakpoint estimate can easily be obtained by breakpoints(fs.nile).

Although a 2-segment model seems quite intuitive for these data we also compare it to models

with additional breakpoints. The following command computes arbitrary m-segment models

R> fs.nile <- Fstats(Nile ~ 1)

R> plot(fs.nile)
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Figure 3: F statistics for the Nile data
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based on the rss(i, j) triangular matrix (with the default trimming of h = 0.15):

R> bp.nile <- breakpoints(Nile ~ 1)
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Figure 4: BIC for models with m breakpoints

A summary of this object reports the breakpoints for m+1-segment models with m = 0, . . . , 5

(the maximum possible with h = 0.15) as well as the associated RSS and BIC. Such infor-

mation criteria are often used for model selection, which in this case means selection of the

number m of breakpoints. Bai and Perron (2002) argue that the AIC usually overestimates

the number of breaks but that the BIC is a suitable selection procedure in many situations.

For the Nile data, Figure 4 shows that the BIC selects a model with m = 1 breakpoint, which

confirms the results of the previous tests. The breakpoint for this model is observation 28 –

or equivalently the year 1898 – and can be extracted by

R> bp1 <- breakpoints(bp.nile, breaks = 1)

To summarize our results we fit two linear models to the data. The first model fm0 is the

model under the null hypothesis without any breaks and fm1 is the estimated 2-segment

model. The factor nile.fac is a suitable coding of the partition implied by the estimated

breakpoint.

R> fm0.nile <- lm(Nile ~ 1)

R> coef(fm0.nile)
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(Intercept)

919.35

R> nile.fac <- breakfactor(bp1)

R> fm1.nile <- lm(Nile ~ nile.fac - 1)

R> coef(fm1.nile)

nile.facsegment1 nile.facsegment2

1097.7500 849.9722

The results can also be visualized as in Figure 5, which shows the fitted model for m = 0, 1.

Time

N
ile

1880 1900 1920 1940 1960

60
0

80
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Figure 5: Fitted models for the Nile data

4.2 The seatbelt data

This section analyzes a monthly time series (from 1969(1) to 1984(12)) of the number of car

drivers in Great Britain killed or seriously injured in traffic accidents (Harvey and Durbin

1986). An appropriate model for analyzing this time series in a least squares framework

is to take the logarithm of the data and regress it on its lagged values at lag 1 and 12.

This corresponds to a multiplicative SARIMA(1, 0, 0)(1, 0, 0)12 model fitted by OLS. Another

possibility would be to take first differences instead of logs which leads to very similar results,

with slightly inferior fits.
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Figure 6: The seatbelt data

The log-transformed series is depicted in Figure 6.

To test for structural changes we use the fluctuation test (RE test) and F statistics with a

trimming parameter of h = 0.1. Both processes are fitted and plotted in the code given below

and the results are shown in Figure 7.

Both processes show significant departures from the null at a 5% level, indicating at least

one break in the data. But both processes have two clear peaks, the first in 1973(10) and

the second in 1982(12) and 1983(1) respectively, and favour a model with m = 2 breaks. To

date the structural changes in this regression model we again estimate the breakpoints, with

a trimming parameter of h = 0.1 and a maximum of m = 5 breaks.

R> bp.seat <- breakpoints(y ~ ylag1 + ylag12, data = seatbelt, h = 0.1,

+ breaks = 5)

The BIC as shown in Figure 8 for the models with m = 0, . . . , 5 breakpoints would choose a

model without any breaks, even though all the structural change tests above indicate at least

one break. This might be caused by the fact that lagged regressors are included in which case

the BIC might perform badly as pointed out by Bai and Perron (2002).

Due to the two peaks in the recursive estimates process and the sequence of F statistics

respectively we decide in favour of a model with two breakpoints:

R> bp2 <- breakpoints(bp.seat, breaks = 2)
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R> re.seat <- efp(y ~ ylag1 + ylag12, data = seatbelt, type = "fluctuation")

R> plot(re.seat)

R> fs.seat <- Fstats(y ~ ylag1 + ylag12, data = seatbelt, from = 0.1)

R> plot(fs.seat, main = "supF test")

Fluctuation test (recursive estimates test)
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Figure 7: Structural change tests for the seatbelt data
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Figure 8: BIC for models with m breakpoints
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The optimal breakpoints are then 1973(10)—associated with petrol rationing and the intro-

duction of lower speed limits during the first oil crisis, see also the time series of oil prices

in the following subsection—and 1983(1)— a level shift associated with the seat belt law

introduced in the UK on 1983-01-31 (see Harvey and Durbin 1986, for further details).

The fitted dependent variable with the two breaks can be seen in Figure 9.
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Figure 9: Fitted model for the seatbelt data

4.3 The oil price data

This section considers a quarterly index of import prices of petroleum products – hereafter

referred to as the oil price data – from 1960(1) to 1994(4) (base year: 1991). The data was

obtained from the Statistisches Bundesamt Deutschland (Federal Statistical Office, Germany)

and is given in Figure 10 (in logs).

Since there are obvious shifts in the mean, all structural change tests are highly significant.

We therefore omit all details and directly proceed to estimating the breakpoints (with the

default trimming of h = 0.15).

R> bp.oil <- breakpoints(log(OilPrice) ~ 1)

Again, a summary of this object would give information about the estimated breakpoints and

the associated RSS and BIC of partitions with m = 0, . . . , 5 breakpoints. For illustration,

13



Time

lo
g(

O
il 

P
ric

e)

1960 1965 1970 1975 1980 1985 1990 1995

3.
5

4.
0

4.
5

5.
0

5.
5

Figure 10: The oil price data

Figure 11 depicts the BIC, which is almost identical for 3 and 4 breaks. Hence, we first extract

the segmentation with 3 breaks

R> bp3 <- breakpoints(bp.oil, breaks = 3)
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Figure 11: BIC for models with m breakpoints

and then we use the OLS-based CUSUM for checking for additional breaks in the mean.

The CUSUM process in Figure 12 exhibits various peaks, the highest of which is in 1964, but

none of these seems to be too extreme. So we stick to the model with 3 breakpoints which

are 1973(3), 1979(1) and 1985(4). The fitted model is shown in Figure 13.
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R> ocus.oil <- efp(log(OilPrice) ~ breakfactor(bp3), type = "OLS-CUSUM")

R> plot(ocus.oil)

OLS−based CUSUM test
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Figure 12: OLS-based CUSUM process for the oil price data
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Figure 13: Fitted model for the oil price data
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The period 1973(3), for quarterly data, is essentially the same breakpoint as 1973(10) for

the monthly seatbelt data, which corresponds to the Arab oil embargo after the Yom Kippur

war. 1979(1) marks the start of the Iranian revolution followed by the war between Iran and

Iraq. The break in 1985(1) is, in hindsight, a joint product of various minor events such as a

worldwide slowdown of demand, the entering of Great Britain, Norway and Mexiko as major

suppliers in international oil markets, and internal quarrels in the OPEC cartel, which led

Saudi Arabia to increase its production and to abandon its role as the “residual supplier”

which had until then softened all shocks in demand.

5 Outlook and summary

We have shown how recent methodological advances in testing against and dating multiple

structural changes can be applied to “real” data. These methods are implemented in the

R package strucchange: it allows for visualization and graphical analysis of empirical fluc-

tuation processes and sequences of F statistics which often convey information about the

presence and location of breakpoints in the data. In addition, it provides formal significance

tests and a dynamic programming algorithm for computing breakpoint estimates that are

global minimizers of the residual sum of squares. Although our empirical results are rather

encouraging, they should not conceal that the difficulties with BIC-based model selection for

one of our data sets suggest that the problem of determining the number of breakpoints in

changepoint analysis deserves further study. This is currently under investigation.
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