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Spectral estimation for psycho-physiological

data: Estimating lower-dimensional

representations in frequency space

�

Tillmann Krahnke

y

Axel Sche�ner Wolfgang Urfer

Abstract

Two di�erent estimation techniques for the spectrum of a nonsta-

tionary time series are compared empirically. Both of them are assum-

ing a time-dependent autoregressive (AR-) model for the data.

The �rst estimation technique used is the Frequency State Dependent

Model (FSDM-) technique (Schmitz and Urfer, 1997), a modi�cation

of the well known Kalman-�lter approach. The FSD-Model is based

on Priestleys SD-Models for the analysis of nonstationary time series

(e.g.,Priestley, 1988) .

An alternative approach for estimating AR-parameters of nonstation-

ary time series was proposed by Tsatsannis and Giannkis (1993). The

basic idea is to directly decompose the time-dependent autoregressive

parameters into their wavelet representation and to select suitable

wavelet coeÆcients for reconstruction.

In either case, Kitagawa's (1983) "instantaneous spectrum" is calcu-

lated to obtain the actual spectral estimates. Applied to empirical

data, both approaches lead to similar spectral estimates. However,

simulations show how crucial the selection of wavelet coeÆcients is

when applying the latter technique.
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1 Introduction

A helpful tool in the analysis of a continuous second order stationary pro-

cess X(t) is the so-called power spectrum. Following Parseval's theorem, the

spectrum gives an equivalent representation of the process in the frequency

domain. If the spectrum takes a high value at frequency !

0

, say, then X(t)

may be approximated by a complex exponential of in�nite length of the same

frequency. In fact, a superposition of several such exponentials tends to give

an increasingly good approximation of X(t).

Since complex exponentials are of in�nite length, they are only of very limited

use in the analysis of non-stationary time series. Therefore, some attempts

were made to de�ne time-dependent spectra giving insight in what frequen-

cies play a predominant role in a particular instance of time. Particularly,

the so-called instantaneous spectrum (Kitagawa, 1983) makes use of the AR-

parameter estimates at each singular point of time. See section 2 for details.

To apply this technique, it is important to �nd proper estimates of the time-

varying sequences of the autoregressive coeÆcients governing the observed

process. In the current paper, two di�erent techniques are applied. The �rst

method �ts the so-called Frequency State Dependent Model (FSDM) to the

data as it is decribed by Schmitz and Urfer (1997). This is a specially adapted

form of Priestley's State Dependent Models (e.g. Priestley, 1988) and goes

back to the well known Kalman �lter. It will be described in section 3. Section

4 presents an alternative method based on a direct wavelet decomposition

of the AR-parameters. This procedure was �rst described by Tsatsanis and

Giannakis (1993). A comment on the limitations of wavelets in the analysis

of nonstationary time series can be found in Priestley (1996). In his paper,

Priestley compares wavelet methods and time-dependent spectral analysis in

a mathematically more precise form.

A practical application of the Wavelet- and the FSDM-techniques to psy-

chophysiological data is described in section 5. Both methods seem to give

reasonable results. Yet, care has to be taken particularly when using wavelets,

as shown in section 6. There, a small simulation study is described. The paper

is ended by a summary of the �ndings and some concluding remarks.
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2 The Instantaneous Spectrum

For second order stationary time series it is customary to use the power

spectrum f

X

(!) as an equivalent representation of the underlying series. If

the time series can be assumed to be an autoregressive (AR-) process of order

p, it may be written as

x(t) =

p

X

i=1

x

t�p

a

p

+ �

t

(1)

for t 2 @, where � represents the error term with distribution N(0,�

2

�

). The

spectrum at frequency ! is then given by (e.g., Schlittgen and Streitberg,

1994)

f

X

(!) =

�

2

�

j1� a

1

e

i2!

� :::� a

p

e

i2!p

j

2

(2)

Here, i denotes the imaginary unit. For nonstationary processes, this moti-

vates the de�nition of the instantaneous spectrum (Kitagawa, 1983) for each

instance t, given by

f

X

(!; t) =

�

2

�

(t)

j1� a

t;1

e

i2!

� :::� a

t;p

e

i2!p

j

2

(3)

where now the a

t;j

are time dependent autoregressive parameters and the

variance �

2

X

(t) may also vary with time. For simplicity, constant variance

over time is assumed in our case. An important condition for the instanta-

neous spectrum to exist is that all roots of the corresponding characteristic

polynomial are larger than the unity in absolute value for all t.

The problem of �nding a time-dependent spectral representation of a nonsta-

tionary time series may now be solved by estimating the p sequences a

t;j

for

j=1,...,p and calculating the instantaneous spectrum for each t by applying

equation (3). The two methods presented in the following sections will be

used to do so.

3 The Frequency State Dependent Model

A well known approach for estimating nonstationary time series is given

by the Kalman �lter algorithm (Kalman, 1960). Schmitz and Urfer (1997)



3 THE FREQUENCY STATE DEPENDENT MODEL 4

suggest a special form of this algorithm called Frequency State Dependent

(FSD-) Model. In order to obtain an interpretable spectral estimate, they

allow only for slowly varying AR-parameters. This is achieved by modelling

the a

t;j

together with their gradients �

t;j;k

in a recursive state space model,

leading to a dependence structure of the form

a

t+1;j

= a

t;j

+

p

X

k=1

�

t;j;k

(a

t;k

� a

t�1;k

) (4)

where k 2 1; :::; p. In detail, Schmitz et al. obtain the following �ltering

algorithm:

System equation:

z

t+1

= A

t+1;t

z

t

+B

t

�

t+1

(5)

where

A

t+1;t

=

�

I

p

I

p


4�

0

t;p

0

p

2

�p

I

p

2

�

(6)

(
 denotes the Kronecker-product)

B

t
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�

0

p

0

p�p

2

0

p

2

�p

I

p

2

�

(7)

4�

t;p

= [�

t;1

; :::; �

t;p

]

0

(8)

with �

t;i

= a(t; i)�a(t�1; i); 1 � i � p, and �

t;p

= [a

t;1

; :::; a

t;p

]

0

. Furthermore,

�

t

� N(0; q

2

� I) for all t 2 @ and

z

t

= [a

t;1

; :::; a

t;p

; �

t;1;1

; :::; �

t;1;p

; :::; �
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; �

t;p;p

]

0

: (9)

Observation equation:

x

t

= C

t

z

t

+ �

t

(10)

or more explicitly,

x

t

= [x
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with �

t

� N(0; r

2

) for all t 2 @. The variances of the �

t

and �

t

are assumed

to be independent.

As it is usual for �lters of the Kalman type, it is necessary to provide initial

values for the vectors z

0

, �

0;�;�

as well as the variances q

2

and r

2

. A common

procedure is to estimate z

0

from baseline data assumed to be stationary. The

gradients are taken to be 0 at the beginning.

As shown by Kitagawa, it is not necessary to provide estimates for both the

variances q

2

and r

2

. It rather is suÆcient to maximize a trade-o� parameter

�

2

= q

2

=r

2

(Schmitz, 1995). Unfortunately, this has to be done numerically,

leading to a considerable amount of computations.

The properties of the FSDM-�lter are examined closely by Schmitz (1995).

The author shows that important properties of the Kalman-�lter estimates

are preserved by the FSDM-approach. Particularly, if the initial starting val-

ues are normally distributed, the FSDM-�lter is a linear and stable �lter that

gives optimal estimates in the conditional mean, mode and median sense.

4 The Wavelet Approach

An alternative way of determining autoregressive coeÆcients has been pro-

posed by Tsatsanis und Giannakis (1993). They use wavelet techniques for

time-dependent estimation of p = 2 AR-coeÆcients in a simple linear model

setting.

The basic idea underlying the wavelet approach is to represent a (determin-

istic) function a(t) using a (orthonormal) wavelet basis based on a mother

wavelet  (t), leading to the form

a(t) =

1

X

m=�1

1

X

n=�1

w

m;n

 

m;n

(t); (12)

where  

m;n

(t) are the usual translated and dilated versions of  (t) and

w

m;n

=

Z

1

�1

a(t) 

m;n

(t)dt (13)

are the corresponding wavelet coeÆcients. The w

m;n

may be calculated from

the �nite number of equispaced observations x(t); t = 1; :::; n by a lowpass-

highpass �lter algorithm (Mallat, 1989). The corresponding �lters may be
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combined in an orthogonal matrix W , leading to the linear model represen-

tation

w = Wx (14)

where w is the vector of the n wavelet coeÆcients w

m;n

and x contains the

data.

In the stochastic autoregressive setting, the data x(t) follow equation (1). If

the p sequences of AR-coeÆcients are interpreted as deterministic functions

of time, each of them can be transformed into its wavelet representation, i.e.

into n coe�ecients w

j

m;n

(t) for j = 1; :::; p. Obviously, not all of the w

j

m;n

(t)

are then estimable from n data points.

For this reason, the following procedure is applied: Given the order p of the

AR-Process, all p functions a

j

(t); j = 1; :::; p are treated equally by assigning

not more than n=p wavelet coeÆcients to them. Assuming some smoothness

in the a

j

(t) as it is done by the FSDM-approach, it seems reasonable to

leave out complete sets of wavelet coeÆcients representing high frequencies.

This amounts to a lowpass �ltering of the a

j

(t).

Allthough the deletion of complete frequency bands gives reasonable results

for the empirical data analysed here, it turns out that deleting complete

frequency bands may as well lead to a complete breakdown of the spectral

estimates in other situations. After describing the the application to empirical

data in the following section, more details on this will be given in section 6.

5 Application to psychophysiological data

The two methods described above were applied to psychophysiological data

of 5 hypertonic patients from a larger panel. In an experiment an attempt

was made to simulate psycho-motorical stress by asking the participants

to redraw lines graved into a metal plate. The task was not to touch the

surrounding metal with the given pen (Comparable to study B in Schmitz,

1995). The heart rate data were measured in beat-to-beat-intervals. At the

beginning, a baseline measurement of approximately 5 minutes was taken to

evaluate the persons heart rate while being in calm state. Then, phases of

stress and 2-minute breaks alternated over a period of about 15 minutes.
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For statistical analysis, the beat-to-beat data were transformed to aequidis-

tant "heart rate/min" at each second, using a Lagrange interpolation of order

5 (Mulder,1985). The linear trend was removed calculating the simple linear

di�erence. Finally, the data were smoothed with a median �lter of length 5.

Earlier studies (Mulder, 1985) suggested that the predominant frequencies

in heart rate data can be found in the frequency band between 0.07 Hz and

0.4 Hz. Particularly, frequencies around 0.1 Hz and around 0.3 Hz are to be

expected. Therefore, the data were �ltered by a bandpass �lter of the form

g

u

=

Z

0:5

�0:5

G(�)exp(�i2��u)d� (15)

where

G(�) = I

[0:07;0:4]

(�) (16)

In order to obtain sequences of comparable length, each observed series

was truncated to length n=1074. To calculate the time-dependent spectra,

p=5 was chosen. This choice was due to the expected two peaks around

0.1 Hz and 0.3 Hz. Then, the FSD-analysis and the Wavelet analysis were

applied as explained above. All calculations were done using S-Plus and

the S+WAVELETS module (Mathsoft, 1995-1998). Some details about this

programming language may be found in Sche�ner and Krahnke (1998).

Figure 1 shows the result of the FSD-analysis for patient VP 23 as a typical

example. The numerical optimization took several hours and resulted for

this patient in a value of �

2

= 20 on a 100 MHz Pentium PC. The spectrum

appears not very smooth. Two major peaks appear, varying around 0.1 Hz

and 0.3 Hz as expected. Overall, the changes in the spectrum over time do

not come out clearly.
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� � � �

� � � �

� 	 
 �

�  Æ �

Figure 1: Spectrum obtained by FSDM-approach

The above �gure may be directly compared to the corresponding graph ob-

tained using the wavelet approach (Figure 2). Here, the Daubechies-wavelet

of order 3 (Daubechies, 1988) was used. Due to the deleting of wavelet co-

eÆcients for higher frequencies it seems not surprising that a somewhat

smoother spectrum is obtained. Much noise seems to be removed and the

changes in frequency may be followed much easier over time. Yet, changes

due to psychophysiological stress can not be seen clearly from the picture. It

may be noted that calculations for the analysis took less than 5 minutes per

patient since no numerical optimization was necessary.
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� � � �

� � � �

� 	 
 �

�  Æ �

Figure 2: Spectrum obtained by Wavelet-technique

6 Simulation

To evaluate the performance of the FSDM-technique in comparison to the

Wavelet-approach it seemed meaningful to perform a simulation with known

predominant frequencies and AR-parameter sequences. The idea was to com-

pare empirical and true parameters in both cases to decide which technique

gives a spectral estimate closer to the true underlying spectrum. A �rst sim-

ulation was done by generating arti�cial data of the form

y

t

= sin(2 � � � �

1

(t) � t) + sin(2 � � � �

2

(t) � t) + �(t) (17)

where

t = 1; :::; 512 (18)

�

1

(t) = 0:1 + t �

3

5120

(19)

�

2

(t) = 0:2� 0:1 �

t� 1

2

511

2

(20)
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and

�

t

� N(0; 0:5

2

) (21)

The variation of frequencies between 0.1 and 0.4 Hz corresponds to �ndings in

earlier studies of heart rate data (e.g., Mulder,1985). The two time-dependent

sequences of frequencies are displayed in Figure 3.

� � � � �

� � � � 	


 � �  Æ

� � � � �

Figure 3: Dominating frequencies over time in simulation. Solid

line represents �

1

(t), dashed line represents �

2

(t).

The "true" AR-parameters were estimated from these data by the running

windows technique, taking 10 observations at once for each point of time.

The "true" values are shown in Figure 4, whereas Figure 5 displays the AR-

estimates obtained by the FSDM-technique (�

2

= 1). The corresponding

spectracan be found in Figure 6 and 7.
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� � � � �

� � � � 	


 � �  Æ

� � � � �

Figure 4: AR-estimates from Running Windows

� � � � �

� � � � 	


 � �  Æ

� � � � �

Figure 5: AR-estimates from FSDM-technique
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� � � �

� � � �

� 	 
 �

�  Æ �

Figure 6: "True" spectrum (estimated from running windows)

� � � �

� � � �

� 	 
 �

�  Æ �

Figure 7: Spectral estimate following FSDM-technique
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� � � �

� � � �

� 	 
 �

�  Æ �

Figure 8: Spectral estimate, smoothed from FSDM

An improved estimate of the spectrum is obtained after smoothing the AR-

coeÆcients by a robust smoothing algorithm

1

(Figure 8).

On the other hand, using the Wavelet-approach with only 64 coeÆcients cor-

responding to the lowest frequencies for each of the 5 AR-parameters is com-

pletely unsatisfactory. The AR-estimates don`t even come close to the "true"

values as obtained by the running windows approach (Figure 9). While the

�rst four coeÆcients are essentially zero at all t, �(5; t) is constantly equal to

one. Apparently, the wavelet technique as proposed above completely breaks

down in this situation. A comparison between the two methods therfore seems

not to be meaningful. A more careful choice of wavelet coeÆcients appears

to be necessary, e.g. by selecting coeÆcients by a stepwise procedure. This is

subject to current research. However, any deletion of a certain wavelet coeÆ-

cient inuences the estimate of an AR-coeÆcient over the whole time range.

This fact by itself seems somewhat contradictory to the wavelet property of

localizing a signal both in time and

�

frequency

�

(Mallat, 1989).

1

The S-Plus 4.0-function smooth() was used here
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� � � � �

� � � � 	


 � �  Æ

� � � � �

Figure 9: AR-coeÆcients from Wavelet-approach (64 coeÆcients

each). Note the y-scale from +6 � 10

�15

to �4 � 10

�15

for the �rst

4 AR-coeÆcients!

7 Concluding Remarks

A comparison between the FSDM-technique and the Wavelet approach for

estimating nonstationary time series is diÆcult to obtain, because the two

techniques have very di�erent backgrounds. Some promising empirical studies

in favor of the WA-approach are overshadowed by the extremely poor perfor-

mance in our simulation. It seems necessary to improve the wavelet technique

described here by choosing the wavelet coeÆcients in a more re�ned way in-

stead of restricting oneself to low-frequency bands of the AR-parameters. An

alternative may be a stepwise selection of the coeÆcients, but this is a very

time-consuming task. Besides that, selecting only a limited set of wavelet

coeÆcients doesn`t take into account the localizing properties of wavelets.

It should be noted, though, that the �ndings of Schmitz and Urfer (1997)

concerning the good performance of the FSDM-technique was con�rmed by

the simple setting analyzed here. A visually even more appealing result was

obtained after smoothing the AR-sequences. Including a smoothing proce-

dure therefore seems to lead to an improvement of the results under certain
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circumstances. The statistical properties of the corresponding estimates have

to be investigated closely in future research, though.
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