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Abstract

It is shown that the null distribution of the F-test in a linear
regression is rather non-robust to spatial autocorrelation among
the regression disturbances. In particular, the true size of the test
tends to either zero or unity when the spatial autocorrelation

coefficient approaches the boundary of the parameter space.
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1 Introduction and summary

The null distribution of the F-test under nonspherical errors has concerned

applied statisticians and econometricians for many decades. Let
y=XB+u=XVpM 4 x@p52 4y (1)

be the model under test, where y and u are T'x 1, X is T'x K and nonstochastic
of rank K < T, g is K x 1, and the disturbance vector u is multivariate
normal with mean zero and (possibly) nonscalar covariance matrix V. The
design matrix is partioned into XM (7T x ¢) and X (T x (K — q)) and the null
hypothesis to be tested is Ho : B = ™),

The standard F-test rejects for large values of

@a/T—K)’ @

where & = y — Xf, = (X'X)"' X'y, & = y — XOp) — X@ 32 52 —
(X' X@)=1 X" (y— XWpM) It has a central F-distribution with ¢ and T— K
degrees of freedom, given Hy and V = o%1, and the problem to be studied here

is the robustness of this null distribution to deviations from V = ¢?1.

So far, this problem has been addressed mainly for given specific forms of
V', with various bounds for the size of the test being derived as the design
matrix X is allowed to vary across all 7' x K-matrices of rank K (Vinod 1976,
Kiviet 1980). Below we take a different approach, following Kréamer (1989) and
Kramer et al. (1990), by fixing X and letting V' vary across a certain range of
disturbance covariance matrices. In particular, we allow the disturbance vector

u to be generated by the spatial autoregressive scheme
u=pWu+e, (3)

where ¢ is a T' X 1 normal random vector with mean zero and scalar covariance
matrix 027, and W is some known 7' x T-matrix of nonnegative spatial weights

with w;; =0 (i = 1,...,T). Such patterns of dependence are often entertained
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when the objects under study are positioned in some "space”, whether geo-
graphical or sociological (in some social network, say) and account for spillovers
from one unit to its neighbors, whichever way ”neighborhood” may be defined.
They date back to Whittle (1954) and has become quite popular in economet-
ric recently. See Anselin and Florax (1995), Kelejian and Prucha (2001) or

Anselin (2001) for a convenient survey of this literature.

The coefficient p in (3) measures the degree of correlation, which can be both
positive and negative. Below we focus on the empirically more relevant case of

positive disturbance correlation, where

1

0<p<

max

and where A4, is the Frobenius-root of W (i.e. the unique positive real eigen-
value such that A, > |\;| for arbitrary eigenvalues \;). The disturbances are

then given by

w=(I—pW) e, (4)

so V= Cov(u) = o2 [(I — pW)(I — pW)'| " and V = 02I whenever p = 0.

Below we consider the null distribution of the F-test for p # 0. This is shown
to be extremely non-robust, with the size of the test tending to either zero
or unity as p — 1/Aae. The same limits are also obtained for the power of
the test. Which of these limits obtains is easily seen from X and W, which
are both observed and known. Therefore, our result provides an easy guide to
the interpretation of both a significant and insignificant F-test when there is
possible spatial correlation among the regression disturbances: If Hy is rejected,
and X and W are such that the size of the test tends to unity, an error of the
first kind has to be suspected. And if Hj is not rejected, and X and W are
such that the size and the power of the test tends to zero, one has to beware

of an error of the second kind.



2 The null distribution of the F-test as auto-

correlation increases

We first rewrite the test statistic (2) as

u'(M® — M)u/q
~ wMu/(T—K) ©)

where M = I — X(X'X)™' X’ and M® = ] — X®O(X@'X@)~1Xx®' Let
Fo7r i be the (1 — ) quantile of the central F-distribution with ¢ and T'— K

degrees of freedom, respectively, where « is the nominal size of the test. Then

P(F > Fiy_y) = P@/(M® —Mpu- . < Fpty g Mu > 0)

= PW/(M® —dM)u>0)

= PEVYHM® —dM)VY2%e > 0)
(where e = V=124 ~ N(0,1))

= P(ET: )
i=1

T
= P((l - p/\mal’)2 Z )‘1512 > 0)7 (6)
i=1
where the &7 are iid X7}, and the A; are the eigenvalues of VI2(M® —dM)V/2,
and therefore also of V(M) — dM).

The limiting rejection probability as p — 1/A,4: depends upon the limiting
behavior of (1 — pApaez)?V. Let

T
W = Z )\iwiwi’ (7)
i=1
be the spectral decomposition of W, with the eigenvalues ); in increasing order.
Then

T 1 ,

i=1



is the spectral decomposition of V', and
L1 fgae (1 = pA)?V = whoor, (9)

a matrix of rank 1. Therefore, all limiting eigenvalues of (1 — pAee)2V (M —

dM) are zero except one, which is given by
tr(wrwp’ (M® —dM)) = wp'(M® — dM)wy. (10)

If we'(M® — dM)wr is positive, the rejection probability tends to one. If
wr'(M® — dM)wy is negative, the rejection probability tends to zero.

As wp'(M® — dM)wy is known, it is easy to determine in practice which
of these cases obtains. For illustration, figure 1 shows both an example
where rejection probability tends to one, and an example where the rejection
probability tends to zero. The weight matrix is 25 x 25 and is derived from a
regular 5 x 5 lattice using the queen criterion, which assigns a weight of one
to all cells immediately surrounding a given cell, and zero otherwise. The case
where the rejection probability tends to zero corresponds to a 25 x 2 X-matrix
with a first column of ones, and a second column given by (1,2,3,...25),
where we test wether the coefficient of the second regressor is zero. The case
where the rejection probability tends to one corresponds to an X-matrix

where the second column was generated as nid(0, 1) variables.

(figure 1 here)

The figure shows that convergence to zero of the rejection probability need
not be monotone and that an X-matrix which induces a limiting rejection
probability of zero might, for certain regions of the parameter space, engender
higher rejection probabilities than X-matrices where the rejection probability

eventually tends to one.

Whether a limit of the rejection probability of zero or one obtains depends on
the interplay of the design matrix X, the weight matrix W, and the nominal
size of the test. For T' = 25, a nominal size of 5%, a weight matrix defined by the



queen criterion, and an X matrix given by a first column of ones, and a second
column of nid(0,1) variables (whose significance is to be tested), a Monte
Carlo experiment was performed with 1000 independent runs. We obtained a
limiting rejection probability of one in about 10% of all cases. Ceteris paribus
the incidence of this irregular behavior diminishes as sample size increases, but
it is possible to find examples where the rejection probability tends to one also

for larger samples and for different types of spatial weights.

3 Spatial autocorrelation and the power of the

test

Let g := XWAW — XMWp(M) Under the alternative, g # 0, and the expression
(5) becomes

[/ (M® — M)u+2¢MPu+ ¢ MPg/q

F= W Mu(T — K) ’ (1)

with rejection occurring if and only if

Oa—pkmmj%ﬂm4@)—(1%—7:g7?F§}_Qﬂﬂu
+ (1 = pAmae)?[29 MPu)

+ (1= pAmaz)?gMP g > 0. (12)

Since the last two terms in expression (12) are easily seen to tend to zero as

p — 1/Anaz, the power of the test has the same limiting behavior as the size.
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Figure 1: Rejection probability of the F-Test



