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Abstract

In this paper the optimal design problem for the estimation of the individual
coe�cients in a polynomial regression on an arbitrary interval �a� b���� � a � b �
�� is considered� Recently� Sahm �	���� demonstrated that the optimal design is
one of four types depending on the symmetry parameter s � �a� b���a� b� and the
speci�c coe�cient which has to be estimated� In the same paper the optimal design
was identi�ed explicitly in three cases� It is the basic purpose of the present paper
to study the remaining open fourth case� It will be proved that in this case the
support points and weights are real analytic functions of the boundary points of the
design space� This result is used to provide a Taylor expansion for the weights and
support points as functions of the parameters a and b� which can easily be used for
the numerical calculation of the optimal designs in all cases� which were not treated
by Sahm �	�����
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� Introduction

Consider the common polynomial regression model with homoscedastic error

E�Y �t�� �

dX
i��

�it
i � fT �t��������

V �Y �t�� � �� � 	�

where the explanatory variable t varies in a compact interval
 say �a� b���� � a � b ����
� � ���� � � � � �d�

T is the vector of unknown parameters
 f�t� � ��� t� � � � � td�T is the vector
of regression functions and di�erent observations are assumed to be uncorrelated� An
approximate design is a probability measure on the interval �a� b� with �nite support �see
e�g� Kiefer ������

� �

�
t�� � � � � tn

w�� � � � � wn

�

where the support points t�� � � � � tn give the positions in the interval �a� b� at which ob�
servations are taken and the weights give the relative proportions of total observations
taken at the corresponding support points� An optimal design minimizes �or maximizes�
a speci�c convex �or convave� function of the information matrix

M��� �

Z
b

a

f�t�fT �t�d��t������

and there are numerous optimality criteria proposed in the literature
 which can be used
for the determination of e�cient designs �see e�g� Silvey ���	� or Pukelsheim ������
In this paper we are studying the optimal designs minimizing the variance of the least
squares estimator for the individual coe�cients in the model �����
 a special case of c�
optimality �see e�g� Pukelsheim ����
 Chapter ��� To be precise let ek � R

d�� denote
the �k � ��th unit vector
 then a design � is called ek�optimal or optimal for estimating
the kth coe�cient �k in the polynomial regression ����� if �k � eT

k
� is estimable by � �i�e�

ek � Range�M����� and � minimizes the function

�k��� � eT
k
M����ek�����

where A� denotes a generalized inverse of the matrix A� The problem of determining
ek�optimal designs in polynomial regression has been considered by many authors mainly
concentrating on the interval ���� �� �see e�g� Studden �����
 Kiefer and Wolfowitz ����
or Hoel and Levine ������� It is well known that in contrast to the famous D�optimality
criterion the problem of minimizing the criterion ����� is not scale invariant and the
solution of the optimal design of the experiment for estimating the individual coe�cients
in polynomial regression on arbitrary intervals was open for a long time�
Recently
 Sahm ��			� made substantial progress and showed that the optimal design for
estimating an individual coe�cient is essentially of one of four types� The speci�c type
depends on the location of the parameter

s � s�b� �
a� b

a� b
� R�����

�



and the optimal design can be determined explicitly in three cases� In the remaining case
an explicit solution of ek�optimal design problem seems to be intractable� even numerically
�see Sahm �����	
�
It is the purpose of the present paper to study this open problem in more detail� Section
� gives a brief review of Sahm�s �����	 results� which is the basis for our approach� In
Section � we deal with the remaining open cases� which can be described by d�k intervals
for the parameter s in ���	� We consider the weights and support points of the ek�optimal
design as functions of the boundary points of the design space� Implementing a technique
similar as in Melas ����� ����	 we introduce a di�erential equation for these functions�
which is used to prove that the weights and support points are real analytic functions
of the bounds of the design space� These results are used to derive in each of the d � k
intervals a Taylor expansion for the weights and support points of the optimal design
using a speci�c point for which the solution is known� We derive recursion formulas for
the coe�cients of this expansion which can be easily used to determine the ek�optimal
design numerically in all remaining open cases� Finally the applicability of our approach
is demonstrated by several examples in Section ��

� ek�optimal designs

In this section we brie�y review the known results about ek�optimal designs which form the
basis for our analytic approach in the following section� Because the case k � � �estimation
fo the intercept	 and k � d �estimation of the highest coe�cient	 are well know �see e�g�
Sahm �����	 of Studden ����a	
 we restrict ourselves to the case  � k � d � � Sahm
�����	 introduced the sets

Ai � ���d�k���i� �i��	 i � �� � � � � d� k���	

B��i � �B��i � ��i� �i
 i � � � � � � d� k

Ci � ��i���d�k���i	 i � � � � � � d� k

where �d�k�� �� and ��� � � � � �d�k are the roots of the k�th derivative of the polynomial

�x� 	Ud���x	����	

and Uj�x	 � sin��j � 	 arccosx	� sin�arccos x	 is the j�th Chebyshev polynomial of the
second kind� The points �i are obtained from these roots via the transformation

�i � �i � � � �i	
� cos���d	

 � cos���d	
�

Note that the union of these sets de�nes a partition of the real axis and Sahm �����	
proved that the location of the parameter s de�ned in ��	 determines the structure of
the optimal design as follows� If

s �

d�k�

i��

Ai

�



the ek�optimal design is supported at d � � points including the boundary points a and
b� If

s �

d�k�

i��

B��i

the optimal design for estimating the parameter �k is supported at d points including the
boundary point a and the case

s �
d�k�

i��

B��i

is essentially obtained by symmetry arguments interchanging the role of a and b� In these
cases the ek�optimal design can be described explicitly in terms of transformed Chebyshev
points tj � cos��j�d� and we refer to Sahm ��			�
Theorem ��� for more details� In the
remaining case

s �
d�k�

i��

Ci�����

the situation is substantially more dicult� Here the design is supported at d points
including both boundary points of the design space but an explicit representation of the
weights and support points is not available� Sahm ��			� characterized the solution for
this case by a constrained optimization problem
 which is dicult to use for the numerical
construction of the optimal design� Additionally he proved the existence of points

�i � Ci i � �� � � � � d� k������

for which the solution of the design problem can be found explicitly� The points �i are
the zeros of the k�th derivative of the polynomial

�x� � ��Ud���x������

and for s � �i the ek�optimal design is obtained as the optimal design for estimating
�k in a polynomial regression of degree d � � where the case s � �d�k��

i�� Ai is applicable
�see Section � for more details�� In the next section we will propose an analytic approach
which allows the �numerical� determination in all cases speci�ed by ����� and therefore
closes the �nal gap in the solution of the ek�optimal design problem on arbitrary intervals�

� Analytical properties of ek�optimal designs

Throughout this section we restrict ourselves to the �unsolved� case �����
 for which Sahm
��			� showed that the optimal design is of the form

��k �

�
a� t�

�
� � � � � t�d��� b

	�
�
� 	�

�
� � � � � 	�d��� 	

�

d

�
������

If a is �xed and we vary b such that ����� is satis�ed the weights and support points
in ����� are functions of the right boundary point b� i�e� t�j � t�j�b�
 j � �� � � � � d � �


�



w�

j � w�

j �b�� j � �� � � � � d� We collect the information given by the ek�optimal design ��k in
the vector

� � � � ��b� � �t���b�� � � � � t
�

d���b�� w
�

��b�� � � � � w
�

d�b�����	�

and note that this function is well de
ned due to the uniqueness of the ek�optimal design
��k in ����� for � � k � d �see Sahm �	����� Lemma 	��� Note that formally the optimality
criterion ����� could be considered as a function of nontrivial weights and support points

� � �t�� � � � � td��� w�� � � � � wd�������

where the points ti and wi correspond to the support points and weights of a design of the
form ������ and the optimal design is implicitly determined as a solution of the equations

�

��
�k � ��

However� a direct di�erentiation of the optimality criterion with respect to support points
and weights seems to be intractable due to the nonsingularity of the corresponding infor�
mation matrix of the d�point design� In order to circumvent this problem we will relate
the design problem to a dual extremal problem for polynomials� This duality is used to
derive a necessary and su�cient condition for the parameters of the design and the coef�

cients of the extremal polynomial by di�erentiating an appropriate function� We begin
with a slightly di�erent formulation of the equivalence theorem for ek�optimal designs as
it is usually stated in the literatur �see e�g� Pukelsheim ��������

Lemma ���� Let fk�t� � ��� t� � � � � tk��� tk��� � � � � td�T denote the vector obtained from
f�t� � ��� t� � � � � td�T by omitting the monomial tk� A design ��k is ek�optimal on the interval
�a� b� if and only if there exist a positive number hk and a vector q� � R

d such that the
polynomial �k�t� � tk � fT

k �t�q
� satis�es the following conditions

��� hk�
�
k�t� � � � t � �a� b�

��� supp���k� � ft � �a� b� j hk�
�
k�t� � �g

���
R
�k�t�fk�t�d�

�

k�t� � � � R
d �

Moreover	 in this case hk � �k��
�

k��

Proof� Let ��k denote the optimal design for estimating �k and q� denote the solution of
the generalized Chebyshev problem

inf
q�Rd

sup
x��a�b�

jxk � fT
k �x�qj������

then we obtain

h � eTkM
����k�ek � inf

�
sup

d�Rd��

eTk d

dTM���d





�
n

inf
dT ek��

sup
�

Z b

a

jdTf�t�j�d��t�
o
��

�����

� f inf
q�Rd

sup
t��a�b�

jtk � fT
k �t�qj

�g��

� f sup
t��a�b�

jtk � fT
k �t�q

�j�g��

If ��k is optimal for estimating the parameter �k we de�ne �k�t� � tk � fT
k �t�q

� which
obviously satis�es ���� The inclusion �	� follows by discussing equality in the fourth
equation of �����
 which means that the L��norm is equal to the sup�norm if and only
if the support of ��k is contained in the set of extreme points of the optimal polynomial
�k�t�� In order to show ��� we discuss the equality in the �rst equation of ����� which is
a simple consequence of Cauchy�s inequality� For a d�dimensional vector q let dq denote
a �d ���dimensional vector with �k  ��th component equal to one where the vector �q
is obtained from dq by omitting this component i�e� dTq f�t� � tk � qTfk�t�� Discussing
equality in Cauchy�s inequality yields

ek � M���k�dq� �

Z b

a

f�t��fT �t�dq��d�
�

k�t�

�

Z b

a

f�t��k�t�d�
�

k�t�

which implies ���� On the other hand
 if ��k and q� satisfy conditions ��� � ��� of Lemma
���
 the same calculations show that we have found a saddle point ���k� q

�� such that there
is equality in

inf
�
etkM

����ek � f inf
q�Rd

sup
t��a�b�

jtk � fT
k �t�qj

�g�������

which establishes optimality of ��k for the ek�optimal design problem and optimality of the
vector q� for the extremal problem ������

�

Note that Lemma ��� �and its proof� relate the optimal design problem to an extremal
problem for polynomials �see e�g� Karlin and Studden ������
 Section ����
 or Studden
�����b��� Moreover
 the solution of the extremal problem ����� is unique
 because the
optimal polynomial �k�x� � xk � fT

k �x�q
� must attain its extremal values at the support

points of the ek�optimal design ��k� which is unique
 whenever � � k � d� In the following
we will solve both problems simultaneously� To this and let

T �
n
�t�� � � � � td��� ��� � � � � �d�

T j a 	 t� 	 � � � 	 td�� 	 b� �i 
 ��
dX

j��

�j 	 �
o
������

de�ne for any � � T the design �� by

�� �

�
a� t�� � � � � td��� b

��� ��� � � � � �d��� �d

�
������

�



where �� � � �
Pd

j�� �j� and recall the de�nition of the vector dq � R
d�� for q � R

d

introduced in the proof of Lemma ���� i�e�

fT �t	dq � tk � fT
k �t	q �q � R

d	����
	

It follows from the proof of Lemma ��� that

�k��� 	 �
n
min
q�Rd

��q� �� b	
o
��

����	

for any � � T� where

��q� �� b	 � dTq M��� 	dq������	

and the optimal design ��� satis�es

����q�� � �� b	 � min
��T

max
q�Rd

����q� �� b	 � max
q�Rd

min
��T

����q� �� b	������	

where q� is the optimal solution of the extremal problem� Note that formally the minimum
has to be taken over the set of all vectors � � T such that ek is estimable by the design
�� � i�e� ek � Range�M��� 		� However� it is straightforward to see that in the case ek ��
Range�M��� 		 we have

max
q�Rd

����q� �� b	 ��

�see also Studden ��
��	�� Consequently the optimization over the slightly bigger set T

in ����	 will yield a solution � �� q� such that ek is estimable by the design ���� even if
this restriction is not incorporated in the de�nition of the set T� This observation will be
crucial throughout the following discussion�

Lemma ���� The design ��� is ek�optimal and the vector q� corresponds to the solution
of the generalized Chebyshev problem ����� if and only if the point �q�� � �	 � R

d �T is the
unique solution of the system

�

��
��q� �� b	 � 

�����	

�

�q
��q� �� b	 � 

in the set of all pairs �q� �	 � R
d � T such that ek is estimable by the design �� and such

that
jdTq f�t	j

� � jtk � qTfk�t	j
� � dTq M��� 	dq for all t � �a� b� �

Here �
��
� and �

�q
� denote the gradient of � with respect to � � T and q � R

d � respectively�

Proof� The necessary part follows directly from the known conditions for an extremum�
the representation �����	 and the fact that the solution of the design problem and extremal
problem are unique� In order to prove su�ciency we note that it follows by a direct
calculation from �����	

�



�i� �M��� �dq�� � �

�ii� �dTq f�ti��
� � �dTq f�a��

� i � �� � � � � d

�iii� dTq f�ti� � d
T
q f

��ti� � � i � �� � � � � d� �

where td � b and for c � R
d�� the vector c� � R

d is obtained from c by deleting the
�k���th component� Now let �q�� � �� denote a solution of the system �i� 	 �iii� �obtained
from �
��
�� such that ek � Range�M������ and

jdq�f�t�j � dq�M�����dq�

for all t � �a� b�� Dene � � dTq�f�a�� Note that by condition �ii�

�� � dTq�M�����dq� �� ��

because otherwise this would yieldM�����dq� � � which implies by identity �i�M�����ek �
� contradicting to the estimability of �k by the design ���� Observing the identity �ii� we
nd that ��t� � dTq�f�t� is a polynomial of degree d such that

j��t�j� � �� � t � �a� b��

Dening h � �	� we have identied a triple �h� q�� �� such that the condition ��� of
Lemma 
�� is satised� Condition ��� of this Lemma is obvious from the construction of
the polynomial � and the third condition follows from �i� which implies

� � �M��� �dq��� �
� dX

i��

wif�ti�f
T �ti�dq�

�
�

�
�Z b

a

f�t���t�d���t�
�
�

�

Z b

a

fk�t���t�d�� �t��

Therefore Lemma 
�� and its proof show that the design ��� is the ek�optimal design and
that the vector q� corresponds to a solution of the generalized Chebyshev problem�

�

Note that Lemma 
�� generates a vector di�erential equation� which implicitly determines
� �� q� as vector valued function of the boundary point b such that ���
� is satised �where
the left boundary of the design space has been xed�� In the following discussion we
will show that the Jacobian matrix of the equation �
��
� is nonsingular� which allows
the application of the implicit function theorem to study the functions � ��b� and q��b� as
analytic functions of the right boundary b such that ���
� is satised� To this end dene

� � ���� � � ����d���� � �qT � �T ��

�
����

���b� � �q�T �b�� � �T �b��

as the vector containing the parameters of the ek�optimal design and the coe�cients of
the solution of the corresponding Chebyshev problem and

����� b� � ��q� �� b��

�



then the basic equation ������ can be rewritten as

�

��
�	��� b� 
 � � R

��d��� �������

Finally if U denotes an open set in R
n � we call a function f � U � R real analytic if

for any point u� � U there exists a neighbourhood U� � U of u� such that f jU�
can be

expanded in a convergent Taylor series�

Theorem ���� For any �xed a � R de�ne s�b� 
 �a � b���a � b� and Bi 
 s���Ci� the
components of the function

�� �

�Sd�k

i�� Bi � R
��d���

b � ���b�

are real analytic functions� Moreover� the vector function �� is a solution of the system

G���b�� b� ����b� 
 Q���b�� b�������

with initial conditions

��b�� 
 ���b���������

where b� is any arbitrary point such that ����� is satis�ed for s� 
 s�b�� and the functions
G and Q are de�ned by

G��� b� 

� ��

��i��j

�	��� b�
���d���

i�j��
������

Q��� b� 

� ��

�b��i

�	��� b�
���d���

i��
�������

Proof� We will prove that the Jacobi matrix

J�b� 
 G����b�� b� � R
��d������d���������

is nonsingular� The assertion of Theorem ��� then follows by a straightforward application
of the implicit function theorem �see e�g� Gunning and Rossi �������� For this Jacobi
matrix we obtain the representation

J 
 J�b� 
 �

�
B� D BT

� BT
�

B� E �

B� � �

�
CA

�

������

where A� denotes the ��d � �� � ��d � �� matrix obtained from A � R
��d������d��� by

deleting the �k���th row and �k���th column� The matrices D�B�� B� and E in ������

�



are de�ned as follows �t�� � a� t�d � b�

D � M����� � R
d���d��

BT
� �

�
w�

�f
��t��� � d

T
q�f�t

�

��� � � � � w
�

d��f
��t�d��� � d

T
q�f�t

�

d���
�

� ����������� �
�
w�

�f�t
�

����w
�

�f�t
�

��� � � � � ����
d��w�

d��f
��t�d���

�
� R

d���d��

�	
���

BT
� �

�
dTq�f�t

�

�� � ff�t
�

��� f�t���g� � � � � d
T
q�f�t

�

d� � ff�t
�

d�� f�t���g
�

� ����������� �
�
f�t���� f�t���� ����ff�t

�

��� f�t���gg� � � � � ����
dff�t�d�� f�t���g

�
� R

d���d��

E � diag
�
w�

�d
T
q�f�t

�

�� � d
T
q�f

���t���� � � � � w
�

d��d
�

qf�t
�

d��� � d
�

qf
���t�d���

�

� diag
�
w�

��
���t�����t

�

��� w
�

��
���t�����t

�

��� � � � � w
�

d���
���t�d�����t

�

d���
�
� R

d���d��

where � � f��� �g is a �xed constant and the polynomials � is de�ned by ��t� � dTq�f�t�
�all other entries in the matrix J are ��� The Jacobi matrix J in �	
��� is essentially
obtained by direct dierentiation and the properties of the extremal polynomial ��t� �
dTq�f�t�� For example� consider the calculation of BT

� and let I� � R
d���d denote the

identity matrix with deleted �k � ��th column
 We obtain by straightforward calculation

���

�t�q
�

�

�t
�IT

�
M��� �dq

� �IT
�
�
�
wj��d

T
q f

��tj��� � f�tj��� � wj��d
T
q f�tj��� � f

��tj���
�d��

j��
� R

d�d�� �

Now for q � q� we have ��t�j� � dTq�f�t
�

j� � �����j���������� �j � �� � � � � d� for some
� � f��� �g� This follows from Lemma 	
� which shows that � is equioscillating which
implies ���t�j� � dTq�f

��t�j� � �� Consequently we obtain

BT
� �

� ��

�
���
k �����

�
����j��w�

j��f
��t�j���

�d��

j��

which proves the representation of the block BT
� in �	
���
 The other cases are treated

similary and left to the reader

On the basis of the representation �	
��� the proof of the nonsingularity of the Jacobi
matrix J�b� is straightforward
 Note that the matrix D� is nonnegative de�nite� because
it is obtained from the nonnegative de�nite matrix M����� by deleting the �k � ��th
row and column
 Similary� the matrix E de�ned in �	
��� is negative de�nite� which
follows� because it essentially contains the second derivatives ����ti� �i � �� � � � � d � �� of
the extremal polynomial ��t� � tk � fT

k �t�q
� speci�ed in Lemma 	
�
 To be precise we

note that the results of Theorem �
	 in Sahm ������ show that for the case b � �i this
polynomial is of degree d� � while in the case b � Cinf�ig the polynomial is of degree d
with one extremum outside the interval �a� b�� A careful counting of the multiplicities of
the zeros of the polynomial ���t�� � shows

����ti� � dTq�f
���ti� �� � i � �� � � � � d� ���	
�	�

��



Moreover� by the oscillating property of the extremal polynomial the second derivative
must alternate in sign yielding ����ti���ti� � � �i � �� � � � � d � �� and the de	nition of
the matrix E in �
���� shows that this matrix has negative diagonal elements�
From these auxiliary results it follows that the matrix

D� � �BT
� E

�� �B�

is positive de	nite where �BT
� denotes the matrix obtained fromBT

� by deleting the �k��th
row� Similary� let �BT

� obtained from BT
� by deleting the �k  ��th row� then it follows by

the Frobenius formula and the representation �
����

det J�b� � det

�
B�D�

�BT
�

�BT
�

�B� E �
�B� � �

�
CA

� � det

�
D�

�BT
�

�B� E

�
� det

n
� �B� j ��

�
D�

�BT
�

�B� E

�
���

�BT
�

�

�o
�
����

� � detE � det�D� � �BT
� E

�� �B�� � detf �B��D� � �BT
� E

�� �B��
�� �BT

� g�

Now the matrix �BT
� is of rank d � � �because of the Chebyshev property of the polyno�

mials �� x� � � � � xd� and the matrix D� � �BT
� E

�� �B� is positive de	nite by the preceding
discussion� Consequently all determinants in �
���� are di�erent from zero which proves
the nonsingularity of the Jacobi matrix J�b��

�

Theorem ���� Let b� � Bi � s���Ci� for some i � �� � � � � d� k� and �� be the function

de�ned in Theorem ���� then the coe�cients in the Taylor expansion

���b� � ���b�� 

�X
j��

���j� b���b� b��
j

in a neighbourhood of the point b� can be obtained recursively by the formulas

���s �� b�� � �J���b���
d

db
�s��g���

�s��b�� b�
���
b�b�

s � �� �� �� � � ��
����

where the polynomial ��

�s� of degree s is de�ned by

��

�s��b� � ���b�� 

sX
j��

���j� b���b� b��
j

and the function g is given by

g��� b� �
�

��
����� b� j��	� ��
����

��



Proof� By Theorem ��� the function �� � �d�k
i��Bi � R

��d��� has real analytic components
and its Taylor expansion exists locally for any b� � �d�k

i��Bi� Note that

d

db
g����b�� b� �

�

��
g��� b�

���
�����b�

���
�

�b� 	
�

�b
g��� b�

���
�����b�

and a repeated application of this formula gives

� d

db

�s��

g����b�� b� �
�

��
g��� b�

���
�����b�

����s����b� 	 hs��
��b�� b�����
��

where ���j� denotes the jth derivative of the function �� and the function hs contains
higher order derivatives of g with respect to � and derivatives of the function ���b� up
to the order s� If

���b� �
�X
j��

���j� b���b� b��
j���
��

denotes the Taylor expansion of � at the point b� we obtain from ���
�� for b � b�

� d

db

�s��

g����b�� b�
���
b�b�

�
�

��
g��� b��

���
�������b��

� �s	 �����s	 � b��

	 �hs��
���� b��� � � � ��

��s� b�������
��

where the function �hs depends only on the �rst s 	  coe�cients ����� b��� � � � ��
��s� b��

of the Taylor expansion ���
��� If we use the polynomials

���k��b� �� ���b�� 	

kX
j��

���j� b���b� b��
j

for k � s	  and s in ���
�� we obtain

� d

db

�s��

g����b�� b�
���
b�b�

�
� d

db

�s��

g����s����b�� b�
���
b�b�

� �s	 �����s	 � b�� �
�

��
g��� b� j�������b�� 	

�hs��
���� b��� � � � ��

��s� b���

�if k � s	 � and

� d

db

�s��

g����s��b�� b�
���
b�b�

� �hs��
���� b��� � � � ��

��s� b���

�if k � s�� which gives

� d

db

�s��

g����b�� b�
���
b�b�

� �s	 �����s	 � b�� �
�

��
g��� b�

���
�������b��

������

	 �
d
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�s��g����s��b�� b�� jb�b� �






By Theorem ��� the solution b� ���b� is real analytic and satis�es

g����b�� b� � 	�

in a neighbourhood of b� � Bi which follows from ���
�� and the de�nition of g in ������
Consequently the left hand side of ����	� vanishes and we obtain

�

� d

db

�s��

g����s��b�� b�
���
b�b�

� �s� 
�����s� 
� b�� �
�

��
g��� b�

���
�������b��

� �s� 
�����s� 
� b�� � J�b��

where the last identity follows from the de�nition of J and g by ����	� and ������ respec�
tively� But this equation is equivalent to ������ which proves the assertion of Theorem
����

�

Example ���� The recursion of Theorem ��� can be easily explained for a function
g � R�

� R �although this case does not appear in the solution of the design problem��
Consider for example the problem

g���b�� b� � sin b� log��b��

where we illustrate the application of the recurrence relation deriving the Taylor expansion
of the solution ��b� � esin b� Note that J�	� � �
���	� � �
� because g���	�� 	� � 	
yields ��	� � 
� For s � 	 we obtain from ������

��
� 	� �
d

db
g�
� b�

���
b��

� cos 	 � 


while the recursion for s � 
� �� �� �� � yields
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�
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b��

� �
�
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� �
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�

for the �rst six coe�cients of the Taylor expansion

esin b �
�X
j��

��j� 	�bj�

In general Theorem ��� and ��� show that for any b� such that ����� is satis�ed the
functions

t�j � b� t�j�b� j � �� � � � � d� 


w�j � b� w�j �b� j � �� � � � � d

q�j � b� q�j �b� j � 
� � � � � d


�



�here q�j denotes the jth component of the vector of coe�cients q� of the extremal poly�
nomial� can be expanded into Taylor series in a neighbourhood of the point b�� The
coe�cients of these expansions can be directly computed from the recurrence formulas
������ and therefore the remaining case in the optimal design problem for estimating the
individual coe�cients in a polynomial regression on an arbitrary interval can be easily
solved numerically	 if we are able to 
nd a point b� such that ����� is satis
ed and for
which the solution of the ek�optimal design problem is known� But such a point has been
identi
ed by Sahm ������ who showed that there exist d� k points

�i � s�bi� �
a  bi
a� bi

� Ci i � �� � � � � d� k

such that the optimal design for estimating the parameter �k is supported at the points
at the d Chebyshev points

t�j�bi� �
bi � a

�

n
cos�

j � �

d� �
��� �i

o
j � �� � � � � d������

with weights

w�

j �bi� � ��j��

Pk

����d� �� ���� cos�
�j����
d��

��C
�d�k���
k�� ��i�

C
�d�k���
k ��i�

� j � �� � � � � d������

where �� � �d�� � �	��d���� �j � �	�d��� j � �� � � � � d�� and C
���
n �x� denotes the nth

ultraspherical polynomial �see e�g� Szeg�o �������� Moreover	 the points �i �or equivalently
bi� are determined as the zeros of the polynomial in ������ For this reason we are able
to 
nd in each interval s���Ci� a Taylor expansion for the weights and support points
of the ek�optimal design	 which is based on the location bi � s����i� �i � �� � � � � d � k��
This technique provides a numerical solution for the open design problem and will be
illustrated for the case d� k in the following section�

� A numerical example

Consider the case d � �� We are interested in the estimation of the coe�cient of ��� ��
and �� in the case which cannot be treated by the results of Sahm ������� We concentrate
ourselves on the case a � �� and vary the parameter b� which corresponds to the situation
considered in Section �� The general case can be reduced to this case by an appropriate
scaling of the symmetry parameter s � s�b� � �a  b�	�a� b��

�a� If k � �� we have one critical interval for the symmetry parameter s given by

C� � �
���
�� � ��������� ��������

and �� � �� which corresponds in the b scale to the interval

B� � s���C�� � �������� ������������

and b� � s����� � �� The 
rst six coe�cients in the Taylor expansion for the
coe�cients of the extremal polynomial	 interior support poins and weights are listed

��



in Table ��� and are calculated by the procedure described at the end of Section
� using the recursive relation �����	� For example
 if b � ��� we obtain for the
e��optimal design on the interval ��� ����

��
�
�

�
�� ������ ����� ���

����� ����� ����� �����

�

and the extremal polynomial is given by

���t	 � t� � �����t� � �����t� � �����t� ������

Similary
 the optimal design for estimating the coe�cient of x� on the interval
��� ���� is given by

��
�
�

�
�� ������ ����� ���

����� ����� ����� �����

�

and the extremal polynomial is

���t	 � t� � �����t� � �����t� � �����t� ������

� insert Table ��� here �

Figure ��� shows the interior support points �left �gure	 and weights in dependence
of the parameter b � B� which are obtained by the same reasoning� Note that the
�gure for the weights contains three lines
 where two lines represent the weights
w�

�
�b	 and w�

�
�b	 corresponding to the interior support points t�

�
�b	 and t�

�
�b	 and the

third line corresponds to the weight w�

�
�b	 at the point b�

� insert Figure ���a here �

�b	 If k � � we have two critical intervals for the symmetry parameter s given by

C� � ����������������	� C� � �������� ������	

and the speci�c points �where the solution is known	 are �� � ���������� � �������
This corresponds to the intervals

B� � s���C�	 � �������� ������	� B� � s���C�	 � �������� ������	����	

and the points b� � s�����	 � ������� b� � s�����	 � ������ for the parameter
b� which can be used for the Taylor expansion in the respective intervals� The
corresponding support points and weights are depicted in Figure ���a and ���b�
For example
 if b � ��� the optimal design for estimating the parameter �� on the
interval ��� ���� is �approximately	 obtained from Figure ���a as

��
�
�

�
�� ���� ���� ���

���� ���� ���� ����

�

��



while the e��optimal design on the interval ���� ���� is approximately given by

��
�
�

�
�� ����	 ��
� ���

���� ��
� ���� ����

�

and obtained from Figure �	b �note that for b � ��� we have s � ��
 which
corresponds to the case b � B���

� insert Figure ���a and ���b here �

Of course a better precision can be obtained by using a table of coe�cients for the
Taylor expansion of the weights and support points as a function of the parameter
b as explained in the case k � �� For the sake of completeness the �rst coe�cients
of the corresponding expansions are listed in Table �	a and �	b

� insert Table ��� a and ���b here �

�c� If k � 
 the critical intervals for the symmetry parameter are given by

C� � ��������������	��� C� � ����	���� ��	����� C� � �����	�� �������

and the speci�c points �for which the solution is known� are �� � ������� �� � �
and �� � ������� respectively This gives in the b�scale the intervals

B� � s���C�� � �������� �	�
���� B� � s���C�� � ������
� ��������

B� � s���B�� � �������� �������

and b� � s������ � ������� b� � s����� � � and b� � s������ � ������� respectively
The corresponding support points and weights as functions of the parameter b are
depicted in Figure �
a� �
b and �
c for the di�erent three cases and the coe�cients
in the corresponding Taylor expansions are listed in Table �
a� �
b and �
c The
interpretation of these graphs and tables is exactly the same as in the previous
examples and therefore omitted

� insert Table ��� a�c and Figure ��� a�c here �
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Table ���� First six coecients of the Taylor expansions of the coecients of the extremal
polynomial t� � q�
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of the e��optimal design in a polynomial regession of degree � on the interval
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Table ���a� First six coecients of the Taylor expansions of the coecients of the
extremal polynomial t� � q�
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of the e��optimal design in a polynomial regession of degree � on the

interval ���� b�� where b � ����	��� ��	����� The center of the expansion is b� � ��	����
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Table ���b� First six coecients of the Taylor expansions of the coecients of the
extremal polynomial t� � q�
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